搜档网
当前位置:搜档网 › 电脑主板供电电路图分析

电脑主板供电电路图分析

电脑主板供电电路图分析
电脑主板供电电路图分析

电脑主板供电电路图分

集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生

一、四大供电的产生

1、CPU供电:

电源管理芯片:

场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。

CPU供电核心电压在上管的S极或者电感上测量。

2、内存供电:

DDR400内存供电的测量点:

(1)、VCCDDR(7脚位):VDD25SUS

MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图:

VDD25SUS测量点在Q18的S极。

(2)、总线终结电压的产生

(3)参考电压的产生

VDD25SUS经电阻分压得到的。

3、总线供电:通过场管Q15产生VDD_12_A.

4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。

5、其他供电

(1)AGP供电:A1脚12V供电,A64脚:VDDQ

2、结合跑线分析intel865pcd主板电路

因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。

一、Cpu主供电(Vcore)

cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。

二、内存供电

1、内存第7脚,场管Q6H1S脚测量2.5v电压

参考电路图:

在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在

0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

2、基准电压的产生:由2.5V分压产生,内存第一脚测量,

电脑主板接口图解

主板内存插槽、扩展插槽及磁盘接口: DDR2内存插槽 DDR3内存插槽 内存规范也在不断升级,从早期的SDRAM到DDR SDRAM,发展到现在的DDR2与DDR3,每次升级接口都会有所改变,当然这种改变在外型上不容易发现,如上图第一副为DDR2,第二幅为DDR3,在外观上的区别主要是防呆接口的位置,很明显,DDR2与DDR3是不能兼容的,因为根本就插不下。内存槽有不同的颜色区分,如果要组建双通道,您必须使用同样颜色的内存插槽。

目前,DDR3正在逐渐替代DDR2的主流地位,在这新旧接替的时候,有一些主板厂商也推出了Combo主板,兼有DDR2和DDR3插槽。 主板的扩展接口,上图中蓝色的为PCI-E X16接口,目前主流的显卡都使用该接口。白色长槽为传统的PCI接口,也是一个非常经典的接口了,拥有10多年的历史,接如电视卡之类的各种各样的设备。最短的接口为PCI-E X1接口,对于普通用户来说,基于该接口的设备还不多,常见的有外置声卡。

有些主板还会提供迷你PCI-E接口,用于接无线网卡等设备 SATA2与IDE接口

横向设计的IDE接口,只是为了方便理线和插拔 SATA与IDE是存储器接口,也就是传统的硬盘与光驱的接口。现在主流的Intel主板都不提供原生的IDE接口支持,但主板厂商为照顾老用户,通过第三方芯片提供支持。新装机的用户不必考虑IDE设备了,硬盘与光驱都有SATA版本,能提供更高的性能。 SATA3接口 SATA已经成为主流的接口,取代了传统的IDE,目前主流的规范还是SATA 3.0Gb/s,但已有很多高端主板开始提供最新的SATA3接口,速度达到6.0Gb/s。如上图,SATA3接口用白色与SATA2接口区分。 主板其他内部接口介绍:

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

主板CPU供电电路原理图

CPU供电电路原理图 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 ● CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1. 线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,

一般主板不可能用这种方法。 2. 开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。 其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰 cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

主板电路详解

主板电路详解 主板可是一台电脑的基石,但是在茫茫主板海洋当中要选择一款好的主板实属难事!一款主板如果要想能够稳定的工作,那么主板的供电部分的用料和做工就显得极为的重要。相信大家对于许多专业媒体上经常看到在介绍主板的时候都在介绍主板的是几相电路设计的,那么主板的几相电路到底是怎样区分的呢?其实这个问题也是非常容易回答的!用一些基本的电路知识就可以解释的清楚。 其实主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定的运行,同时它也是主板上信号强度最大的地方,处理得不好会产生串扰(cross talk)效应,而影响到其它较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单来说,供电部分的最终目的就是在CPU电源输入端达到CPU 对电压和电流的要求,就可以正常工作了。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和技术经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制可以输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。看起来是不是很简单呢!只要是略微有一点物理电路知识的人都能看出它的工作原理。 单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个

电脑主板电源线路图

电脑主板电源线路图 全程图解:手把手教你主板各种插针接口与机箱(电源)的接法 组装电脑的过程并不复杂,我们只需要按照顺序将CPU、内存、主板、显卡以及硬盘等装入机箱中即可,详细的攒机方法请参见:《菜鸟入门必修!图解DIY高手组装电脑全过程》。在组装电脑的过程中,最难的是机箱电源接线与跳线的设置方法,这也是很多入门级用户非常头疼的问题。如果各种接线连接不正确,电脑则无法点亮;特别需要注意的是,一旦接错机箱前置的USB接口,事故是相当严重的,极有可能烧毁主板。由于各种主板与机箱的接线方法大同小异,这里笔者借一块Intel平台的主板和普通的机箱,将机箱电源的连接方法通过图片形式进行详细的介绍,以供参考。由于目前大部分主板都不需要进行跳线的设置,因此这部分不做介绍。 一、机箱上我们需要完成的控制按钮 开关键、重启键是机箱前面板上不可缺少的按钮,电源工作指示灯、硬盘工作指示灯、前置蜂鸣器需要我们正确的连接。另外,前置的USB接口、音频接口以及一些高端机箱上带有的IEEE1394接口,也需要我们按照正确的方法与主板进行连接。

机箱前面板上的开关与重启按钮和各种扩展接口 首先,我们来介绍一下开关键、重启键、电源工作指示灯、硬盘工作指示灯与前置蜂鸣器的连接方法,请看下图。 机箱前面板上的开关、重启按钮与指示灯的连线方法 上图为主板说明书中自带的前置控制按钮的连接方法,图中我们可以非常清楚的看到不同插针的连接方法。其中PLED即机箱前置电源工作指示灯插针,有“+”“-”两个针脚,对应机箱上的PLED接口;IDE_LED即硬盘工作指示灯,同样有“+”“-”两个针脚,对应机箱上的IDE_LED接口;PWRSW为机箱面板上的开关按钮,同样有两个针脚,由于开关键是通过两针短路实现的,因此没有“+”“-”之分,只要将机箱上对应的PWRSW接入正确的插针即可。RESET是重启按钮,同样没有“+”“-”之分,以短路方式实现。SPEAKER是前置的蜂鸣器,分为“+”“-”相位;普通的扬声器无论如何接都是可以发生的,但这里比较特殊。由于“+”相上提供了+5V的电压值,因此我们必须正确安装,以确保蜂鸣器发声。

主板复位电路图精解

主板复位电路 复位包括按POWER键,按RESET键或CTRL+ALT+ DEL或软件的复位因此复位故障包括不复位,复位后自动消失等故障。 一、复位原理

首先,电源启动后,由ATX电源发出电源正常信号PWRER OK即ATX PWRGD, 经反相器HCT14整形后,输出CLROFF信号,进入南桥82371,对其内部寄存器进行清零,同时输入与非门HC132。 当电压达到额定值,且稳定以后,电压控制芯片发出VRMPWRGD信号,也输入 VHC132, 这两信号进入VHC132X 逻辑运算,输出信号,经HCT14整形后,由HCT14的PIN10输出 信号,经处理形成POWROK信号,对南桥及北桥进行复位。南桥复位后,再发出RSTDRV信号,经处理形成ISA RST ,IDERSTDRV 对ISA插 槽及IDE接口进行复位,发出PCI RST信号,对PCI插槽进行复位,复位后主板开始工作。

当按RESET键进行热启动时,U18的PIN9信号为触发复位。 当在设置或WIN98或按CTRL+ALT+DEL进行软关机时,由371发出BIOSRST信号,在U18 的PIN9处输入信号,.触发复位。 二、检修流程(ISA RESET不正常) 1、U18 VHC132的PIN9输入波形不为 1)5165电压控制芯片或其相关电路如C85等损坏,信号不正常; 2)C159、CT26、C356漏电引起4V电压低; 3)软启动与BIOSRST 相关电路有关。 2、U18 VHC132的PIN10 CLF OFF 信号(不正常)

1)C48漏电; 2) U19损坏; 3、 U18的第8脚波形正常,但南桥发出的RSTDRV信号不正常(查U19的PIN13应为) 1)用动态分析法观察U21的10脚是否为,判断是否U21坏; 2)南桥复位信号PWPOK信号不正常,检查相关电容是否漏电或断开连线检查南桥是否损坏(测量反向阻值); 3)检查南桥工作条件,检查32K晶振上是否正常,CMOD放电电压VBAT 2.8V是否正常, ,14.318MHZ、48MHZ、33MHZ频率是否正常,RN29、RN30排阻是否正常;3.3V、5V、3.6V、3VSB是否短路,若以上条件都正常可判断为南桥坏。 4、南桥发出的RSTDRV信号正常,但ISARST信号不正常,

1电脑主板架构图文详解

电脑主板图文详解 认识主机板 「主机板」(Motherboard)不算电脑里最先进的零组件,但绝对是塞最多东西的零组件。事实上,现在新的主机板简直像怪物,上面可能有数十个长长短短、大大小小、圆的方的、各式各样的插槽。即使我已经见过不下百张的主机板,仍然会惊讶于一张板子怎么能塞这么多东西,更可怕的是,东西还一年比一年多。 平台的概念 在电脑零件组中,主机板扮演的是一个「平台」(Platform)的角色,它把所有其他零组件串连起来,变成一个整体。我们常说CPU像大脑一样,负责所有运算的工作,而主机板就有点像脊椎,连接扩充卡、硬盘、网络、音效、键盘、鼠标器、打印机等等所有的周边,让CPU可以掌控。所以玩电脑的人,常会在意「板子稳不稳」,因为主机板连接的周边太多,若稳定性不够就容易出现各种灵异现象。CPU不够快,顶多人笨一点算得慢,但脊椎出毛病就不良于行了。当然,CPU还是最重要的零件,CPU挂了,就像本草纲目所记载的:「脑残没药医」。目前全世界最大的主机板厂通通都在台湾(生产线当然在大陆),所以一定要好好认识一下台湾之光,但就像最前面说的,现在主机板上实在塞太多东西,每个插槽都是一种规格,有自己的历史和技术。这篇主要是讲一个「综观」,各插槽的技术会在对应零组件里详细说明,出现一堆英文缩写请别在意。废话不多说,我们挑一张目前最新的主机板做介绍,大家一起感谢微星提供两张P35 Platinum供小弟任意解体,幸好,在本专题中没有一张主机板死亡。

主机板外观 这是目前新的主机板的模样,看起来密密麻麻跟鬼一样。你电脑里装的可能没这么高级,花样也不一定这么多,但某些东西是每一张主机板都会有的。

笔记本电脑供电电路故障地诊断方法

笔记本电脑供电电路故障的诊断方法 笔记本电脑的主板供电电路是笔记本电脑不可或缺的一部分,其出现问题通常会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除,首先应掌握其基本工作原理,其次要对主板供电电路出现问题后导致的常见故障现象进行了解,最后要不断总结和学习主板供电电路的检修经验和方法。 1 笔记本电脑主板供电电路基本知识 笔记本电脑主板的供电方式有两种,一种是笔记本电脑采用的专用可充电电池供电,另一种是能够将220V市电转换为十几伏或二十几伏供电的电源适配器供电。笔记本电脑的专用可充电池提供的供电电压通常要低于电源适配器的输入供电电压。 无论是笔记本电脑的专用可充电电池还是电源适配器,其输入笔记本电脑主板上的供电并不能被所有芯片、电路以及硬件设备等直接采用,这是因为笔记本电脑主板上的各部分功能模块和硬件设备对电流和电压的要求不同,其必须经过相应的供电转换后才能被采用。 文案

所以,笔记本电脑主板上的各种供电转换电路,成为了笔记本电脑不可或缺的一部分。同时,笔记本电脑的主板供电电路出现问题后,就会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除方法,必须首先掌握其工作原理和常见故障现象,这样才能够在笔记本电脑的检修过程中做到故障分析合理、故障排除迅速且准确。 1.1笔记本电脑主板供电机制 笔记本电脑主板上的供电转换电路主要采用开关稳压电源和线性稳压电源两种。 开关稳压电源是笔记本电脑主板中应用最为广泛的一种供电转换电路。笔记本电脑主板上的系统供电电路、CPU供电电路、芯片组供电电路以及存和显卡供电电路中,都广泛采用了开关稳压电源。 开关稳压电源利用现代电子技术,通过电源控制芯片发送控制信号控制电子开关器件(如场效应管)的“导通”和“截止”,对输入供电进行脉冲调制,从而实现供电转换以及自动稳压和输出可调电压的功能。 笔记本电脑主板上应用的开关稳压电源电路通常由电源控制芯片、场效应管、滤波电容器、储能电感器以及电阻器等电子元器件组成。电源控制芯片是开关稳压电源电路中的供电电压转换控制元器件,场效应管和储能电感器是电路中的电压转换执行元器件,电路中的 文案

电脑电源接口详解(图解)

电脑主板电源接口图解 计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压:在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3 地13 地 4 5V 14 PS-ON 5 地15 地 6 5V 16 地 7 地17 地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V 在电源上看: 编号输出电压编号输出电压20 5V 10 12V

19 5V 9 5V-SB 18 -5V 8 PW+OK 17 地7 地 16 地 6 5V 15 地 5 地 14 PS-ON 4 5V 13 地 3 地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量。 另附:24 PIN ATX电源电压对照表 X电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU的电压降到了 3.3V

单片机复位电路理图解

单片机复位电路原理图解 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一

般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。 图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电

容减至1µF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc 掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。图3中:C:=1uF,Rl=lk,R2=10k

主板内存供电电路维修详解

主板内存供电电路维修 详解 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

主板内存供电电路维修详解 今天写的这例故障十分普遍,修理过程也比较简单,所以拍了一些照片上来简述一下!希望大家能够看明白!今天下午盱眙高达电脑维修公司接到了一块SOLTEK 845PE 主板,故障现象是不能点亮,伴随着蜂鸣器长鸣报警!从报警声得知故障是内存部分,但客户已经更换过其它内存试过,情况还是一样,就此可以判断故障原因是北桥与内存槽的连接线路零件或内存供电问题。 从下图中测试卡显示结果也证明了是不能正确检测到内存。主板测试显示内存部分有问题。 首先检查内存的第七脚供电电压是否是标准的DDR 供电,看下图:内存供电脚,内存左面左数第七脚。 从万用表的读书可以看出,内存供电电压只有左右。离DDR的标准电压相差甚大! 知道具体原因就好办了,顺着内存插槽的第7脚跟着线路找到了内存供电MOS 管,汗一下!!居然在AGP槽尾部下面,傍边还有两个小电解电容!这样就增加了更换难度!为了避免伤及傍边的零件及AGP槽,唯有先拆下电容再用风枪底部辅助加热,上面用电烙铁拆下!(拆下的经过因为双手进行,没有第三只手拍照了) 从该主板上拆下的MOS可以看到已经烧了一个白色的圈!准备装上一个代用的3055 MOS 管! 安装过程也是双手进行,也没有第三只手拍照!下图是装好并清理干净PCB后的效果!除了焊锡比较新外可以说和原装没有任何分别! 装好MOS管后可以试机了,装上内存等必要部件,通电!看下图测量结果:

重新测量内存供电电压,已经恢复到DDR需要的电压。 再装上显卡,可以点亮了~!测试卡的走数也跑到了下一步了!屏幕也出现了自检信息! 还以为全部问题解决了!谁知道还有问题,CMOS不 能保存(电子电压正常)!再经过检查,一直通电的 情况下没问题,拔下电源立刻清零了!从现象来看肯 定是备用电子切换电路问题,很容易就查到了是一只 三极管开路了!换上立刻正常!

单片机各种复位电路原理

单片机各种复位电路原理 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3中:C:=1uF,Rl=lk,R2=10k

3主板供电电路基础知识

主板供电电路设计基础知识 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。

单片机常用复位电路

单片机复位电路设计 一、概述 影响单片机系统运行稳定性的因素可大体分为外因和内因两部分: 1、外因 射频干扰,它是以空间电磁场的形式传递在机器内部的导体(引线或零件引脚)感生出相应的干扰,可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰; 电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导,可通过电源滤波、隔离等措施来衰减该类干扰。 2、内因 振荡源的稳定性,主要由起振时间频率稳定度和占空比稳定度决定。起振时间可由电路参数整定稳定度受振荡器类型温度和电压等参数影响复位电路的可靠性。 二、复位电路的可靠性设计 1、基本复位电路 复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关Ch 可避免高频谐波对电路的干扰。

图1 RC复位电路 图2所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。图3所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果 图2 增加放电回路的RC复位电路 使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。图4 是一个实例当 VCC x (R1/(R1+R2) ) = 0.7V时,Q1截止使系统复位。Q1的放大作用也能改善电路的负载特性,但跳变门槛电压 Vt 受 VCC 影响是该电路的突出缺点,使用稳压二极管可使 Vt 基本不受VCC影响。见图5,当VCC低于Vt(Vz+0.7V)时电路令系统复位。 图3 RC复位电路输入-输出特性

电脑主板各部件详细图解精选

电脑主板各部件详细图解(二) 电脑主板各部件详细图解(二) 由Intel公司推出的一种局部总线。它定义了32位数据总线,且可扩展为64位。它为显卡、 声卡、网卡、电视卡、MODEM等设备提供了连接接口,它的基本工作频率为33MHz,最大传输 速率可达132MB/s。 7.AGP插槽 AGP图形加速端口(Accelerated Graphics Port)是专供3D加速卡(3D显卡)使用的接口。它直接与主板的北桥芯片相连,且该接口让视频 处理器与系统主内存直接相连,避免经过窄带宽的PCI总线而形成系统瓶颈,增加3D图形数 据传输速度,而且在显存不足的情况下还可以调用系统主内存,所以它拥有很高的传输速率, 这是PCI等总线无法与其相比拟的。AGP接口主要可分为AGP1X/2X/PRO/4X/8X等类型。 8.ATA接口 ATA接口是用来连接硬盘和光驱等设备而设的。主流的IDE接口有ATA33/66/100/133,ATA33又称Ultra DMA/33,它是一种由Intel公司制定的同步DMA协定,传统的IDE传输使用数据触发信号的单 边来传输数据,而Ultra DMA在传输数据时使用数据触发信号的两边,因此它具备33MB/S的传输速度。

而ATA66/100/133则是在Ultra DMA/33的基础上发展起来的,它们的传输速度可反别达到66MB/S、100M和133MB/S,只不过要想达到66MB/S左右速度除了主板芯片组的支持外,还要使用一根ATA66/100专用40PIN的80线的专用EIDE排线。 此外,现在很多新型主板如I865系列等都提供了一种Serial ATA即串行ATA插槽,它是一种完全不同于并行ATA的新型硬盘接口类型,它用来支持SATA接口的硬盘,其传输率可达150MB/S。 9.软驱接口

主板供电全解析

主板供电全解析 首先来认识一下CPU供电电路的器件,找一片技嘉X48做例子。 上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。下面我们分开来看。

(图)PWM控制器(PWM Controller IC) 在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。 MOSFET驱动芯片(MOSFET Driver) MOSFET驱动芯片(MOSFET Driver)。在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥 MOS管。很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。

早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。 MOSFET,中文名称是场效应管,一般被叫做MOS管。这个黑色方块在供电电路里表现为受到栅极电压控制的开关。每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。每相电路都要有上桥和下桥,所以每相至少有两颗MOSFET,而上桥和下桥都可以用并联两三颗代

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

电脑主板各部件详细图解

电脑主板各部件详细图解 大家知道,主板是所有电脑配件的总平台,其重要性不言而喻。而下面学习啦小编就以图解的形式带你来全面了解主板,希望对您有所帮助! 电脑主板各部件详细图解 一、主板图解 一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(Glass Epoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractive transfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。

这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated- Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。 然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。

主板CPU供电电路重要的测试点及跑电路方法

主板C P U供电电路重要的测试点及跑电路 方法

主板CPU供电电路重要的测试点及跑电路方法 CPU 供电电路重要测试点及跑电路方法 1.CPU 供电电路重要测试点查找技巧检修任何供电电路时,都要根据工作条件来确定测试点,从而达到迅速确定故障位置的目的。下面以如图6-8 所示的单相供电电 路为例介绍重要测试点。(点击查看大图)图6-8 CPU 单相供电电路重要测试点如下:①加上假负载或CPU 后,测L2 上有无1.1V~1.75V 的Vcore 电压(此点可判断整体CPU 供电电路是否正常);②测L2 电感或VT1 场效应管的S 极有无1.1V~1.75V 电压输出;③测VT1 的D 极有无12 或者5V 电压输入;④测VT1 的G 极有无高电平控制电压;⑤测电源控制芯片有无供电,如+12V/+5V 供电输入。 学习提示

CPU 单相供电电路中的高端MOS 管(VT1)与低端MOS 管(VT2)的G、D、S 极的对地阻值分别如下:① VT1:G 极对地阻值为400Ω 以上,D 极对地阻值为200Ω 以上,S 极对地阻值为20Ω以上;② VT2:G 极对地阻值为400Ω以上,D 极对地阻值为25Ω以上,S 极对地阻值为0Ω。 2.CPU 供电电路跑电路方法(以图6-8 为例)主板跑电路的目的主要是找工作条件,根据工作条件找经过的元件。①从ATX 电源5V/12V 到电源控制芯片,一般直接相连或经过阻值较小的电阻(此路一般小电阻容易开路);②从ATX 电源 5V/12V 到VT1 的D 极,中间经过L1 电感线圈(此路一般很少损坏);③ VT1 或VT2 的G 极往电源控制芯片查找,之间一般经过2.2Ω、4.7Ω的小电阻;④从L2 电感线圈的一端到电源控制芯片,有的主板经过电阻到电源控制芯片。(注:电感线圈的正面或反面有一条粗线往电源控制芯片方向即为反馈电路。)学习提示怎样区分高端MOS 管(VT1)与低端MOS 管(VT2):① VT1 的D 极接 12V 或 5V;② VT2 的S 极接地;③ VT1 的S 极与VT2 的D 极直接相连(通过主板上的粗线可以直接看出)。多相供电电路由多个单相供电电路组成,因此多相供电电路的跑电路方法就是依照单相供电电路来进行的,即相当于把几个单相供电电路并联在同一个主板上。学习提示主板CPU 供电电路可能会造成电源保护故障,电源保护故障是指按下开机按键时,风扇转一圈不转,之后再按开机按键,风扇没反应。处理方法是拔下4 口的ATX 辅助电源线,再按开机按键,若主板风扇一直转,则故障定位在CPU 供电电路中,如果风扇仍不转,说明在ATX 电源接口及与其相连负载的电路中有短路故障。高端MOS 管(VT1)的检修方法:①测VT1 的D 极对地阻值,若为0Ω,则拆下所有VT1 后去测此脚;②拆下VT1 后,若此脚仍为0Ω,则拆下电源控制芯片;③若拆下电源芯片后VT1 的D 极正常,则电源芯片损坏,更换即可。低

相关主题