搜档网
当前位置:搜档网 › 2018年指数与指数函数高三第一轮复习讲义

2018年指数与指数函数高三第一轮复习讲义

2018年指数与指数函数高三第一轮复习讲义
2018年指数与指数函数高三第一轮复习讲义

2018《高三第一轮复习课:指数与指数函数》

咸丰一中数学组:青华

高考要求:

(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;

(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;

(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 重点难点:

对分数指数幂含义的理解,学会根式与分数指数幂的互化掌握有理指数幂的运算性质; 指数函数的性质的理解与应用,能将讨论复杂函数的单调性、奇偶性问题转化为讨论比较

简单的函数的有关问题.

知识梳理

1.根式的概念 (1)根式

如果一个数的n 次方等于a ( n >1且n ∈N *),那么这个数叫做a 的n 次方根.也就是,

若x n =a ,则x 叫做___________,其中n >1且n ∈N *.式子n

a 叫做_______,这里n 叫做_________,a 叫做__________. (2)根式的性质

①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号________表示.

②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数的正的n 次方根用符号________表示,负的n 次方根用符号________表示.正负两个n 次方根可以合写成________(a >0).负数没有偶次方根

______(_____(0)

||(_____(0)n n n a a a n a ??=≥??=??

为奇数)为偶数)

;)n

n a =__________(a n a . 00n =

2.有理数指数幂 (1)幂的有关概念

①正整数指数幂:∈???=n a a a a n

(ΛN *).

n 个

②零指数幂:)0(10

≠=a a ③负整数指数幂:∈=

-p a

a p p (1

Q a ≠0,).

④正分数指数幂:a n

m =n m a (a >0,m 、n 都是正整数,n >1). ⑤负分数指数幂:m n

a

-=

n

m a

1=

n

m

a

1

(a >0,m 、n 都是正整数,n >1)

⑥0的正分数指数幂等于_________,0的负分数指数幂___________.

(2)有理指数幂的运算性质

①a r a s =________(a >0,r ,s ∈Q ). ②(a r )s =________(a >0,r ,s ∈Q ). ③(ab )r =________(a >0,b >0,r ∈Q ). (注)上述性质对r 、∈s R 均适用。

3.指数函数的图象与性质

a >1

0

图象

定义域 (1)____________________ 值域 (2)____________________

性质 (3)过定点________________

(4)当x >0时,__________;当x <0时,__________ (5)当x >0时,____________;

当x <0时,__________

(6)在(-∞,+∞) 上是______________ (7)在(-∞,+∞) 上是

______________

2)指数函数都以x 轴为渐近线(当10<a 时,图象向右无限接近x 轴); 3)对于相同的)1,0(≠>a a a 且,函数x

x

a

y a y -==与的图象关于y 轴对称。

4)指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则

在y 轴右侧,图像从上到下相应的底数由大变小; 在y 轴左侧,图像从下到上相应的底数由大变小;

即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.

探究点一 有理指数幂的化简与求值 例1(1) 1

1

2

632728----??? ???()4131303342

7+0.064()2160.018---??--+-++-??

(2) .)2(248533233

23

233

2

3

134a

a a a a

b a

a

ab b b a a ???-÷++--

(3)已知112

2

3x x

-+=则=-+-+--8

4

22

1x x x x 。 指数幂化简与求值的原则和要求: (1) 化简原则:

①化根式为分数指数幂;②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序. (2)结果要求:

①若题目以根式形式给出,则结果用根式表示;

②若题目以分数指数幂的形式给出,则结果用分数指数幂的形式表示; ③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂.

探究点二 指数函数的图象及其应用 例2 (1).已知函数2

2(0,1)x y a

a a +=->≠的图象恒过定点A (其坐标与a 无关),则

定点A 的坐标为 .()2,1--

(2)若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取

值范围是__________.

(3)已知函数y =(1

3

)|x+1|.

①作出函数的图象(简图); ②由图象指出其单调区间;

③由图象指出当x 取什么值时有最值,并求出最值.

4. y =2-x 的图像可以看成是由函数y =2-x+1+3的图像平移后得到的,平移过程是 ( )

A .向左平移1个单位,向上平移3个单位

B .向左平移1个单位,向下平移3个单位

C .向右平移1个单位,向上平移3个单位

D .向右平移1个单位,向下平移3个单位

5.函数y =e x +e -

x

e x -e

-x 的图象大致为 ( )

6、函数x

y 2=与2

x y =的图象的交点个数是( ) A .0个 B .1个 C .2个 D .3个

7、函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是

探究点三 指数函数的性质及应用 例3 (1)函数y=

2

21

-x

的值域是( ) A.{y|y<-

21或y>0} B.{y|y<0或y>0} C.{y|y<-2或y>0} D.{y|y<-2

1

或y>2}

(2)已知函数3234+?-=x x y 的值域为[]7,1,则x 的范围是 ( )

A.[]4,2

B.)0,(-∞

C.[]4,2)1,0(? D .(][]2,10,?∞-

(3)函数y =(2

1

)2

22

+-x x

的递增区间是___________.()

-,1∞

(4)下列各式中正确的是( )

A B C D .<<.<<.<<.<<()()()()()()()()()()()()121512121215151212

151212

23231

3

13232

3

2313

2

3

2323

1

3

点评:比较两个指数幂大小时,尽量化同底数或同指数,当底数相同,指数不同时,构

造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.

(5)若函数,)

2(,2)

2(),2()(???≥<+=-x x x f x f x

则)3(-f 的值为

(6)若关于x 的方程25-|x+1|-4×5-|x+1|=m 有实数根,则实数m 的取值范围是( ) <0 ≥-4 ≤m<0 ≤m<0 (7)例2.设0≤x ≤2,求函数y =12

24

2

2

1++?--a a x

x 的最大值和最小值.

(8).已知定义域为R 的函数f (x )=-2x +b

2x +1+a

是奇函数.

①求a ,b 的值; ②判断并证明函数()f x 的单调性;

③若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.

课后练习:

1.下列结论正确的个数是 ( )

①当a <0时,2

32

)(a =a 3; ②n

a n =|a |;

③函数y =2

1

)2(-x -(3x -7)0的定义域是(2,+∞);

④若100a =5,10b =2,则2a +b =1. A .0 B .1 C .2 D .3

2.函数y =(a 2-3a +3)a x 是指数函数,则有 ( ) A .a =1或a =2 B .a =1 C .a =2 D .a >0且a ≠1

3.如图所示的曲线C 1,C 2,C 3,C 4分别是函数y =a x ,y =b x ,y =c x ,y =d x 的图象,则a ,b ,c ,d 的大小关系是 ( ) A .a

4.已知实数a 、b 满足等式(12)a =(1

3)b 下列五个关系式 ①0b a <<;②0a b << ;

③0a b <<;④0b a <<;⑤a b =其中不可能...成立的关系式有

A .1个

B .2个

C .3个

D .4个

5. 设.

1348.029.0121,8,4-??

? ??===y y y y 3=(12

)-1. 5,则 ( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3

C .y 1>y 2>y 3

D .y 1>y 3>y 2

6. 若a >1,b >0,且a b +a -b =22,则a b -a -

b 的值等于 ( ) B .2或-2 C .-2 D .2

7.下列说法中,正确的是

( )

①任取x ∈R 都有3x >2x ②当a >1时,任取x ∈R 都有a x >a -

x ③y =(3)-

x 是增函数 ④y =2|x |的最小值为1

⑤在同一坐标系中,y =2x 与y =2-

x 的图象对称于y 轴 A .①②④ B .④⑤ C .②③④ D .①⑤

8.已知函数f (x )=2x

-2,则函数y =|f (x )|的图象可能是( )

9.函数y =(1

2)x +1的图象关于直线y =x 对称的图象大致是 ( )

10.正实数x 1,x 2及函数f(x)满足4x =

)

(1)

(1x f x f -+,且f(x 1)+f(x 2)=1,则f(x 1+x 2)的最小值为( )

C .54 D.4

1

11.若22

()21

x x a a f x ?+-=+为奇函数,则实数a = .

12.若曲线x

|y|=2+1与直线y =b 没有公共点,则b 的取值范围是________.

13使得对于区间D 上的一切实数x 都有f (x )≤g (x )成立,则称函数g (x )为函数f (x )在区间D 上的一个“覆盖函数”,设f (x )=x 2,g (x )=2x ,若函数g (x )为函数f (x )在区间[m ,n ]上的一个“覆盖函数”,则m -n 的最大值为________.

14.设关于x 的方程∈=--+b b x x

(02

41

R ),

(1)若方程有实数解,求实数b 的取值范围;

(2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。

高中数学完整讲义指数与指数函数1指数基本运算

题型一 指数数与式的运算 【例1】 求下列各式的值: ⑴ 33(5)-;⑵ 2(3)-; ⑶ 335; ⑷ 2()()a b a b -<; ⑸ 4334(3)(3)ππ---.⑹2 3 8;⑺12 25- ;⑻5 12-?? ???;⑼34 1681- ?? ??? . 【例2】 求下列各式的值: ⑴ 44100;⑵ 55 (0.1)-;⑶ 2(4)π-;⑷ 66 ()()x y x y ->. 【例3】 用分数指数幂表示下列各式: (1)3 2x (2)43)(b a +(a +b >0) (3)32 )(n m - (4)4 )(n m -(m >n ) (5) 5 6 q p ?(p >0) (6)m m 3 典例分析 板块一.指数基本运算

【例4】 用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)3 22b a ab + (4)4233)(b a + 【例5】 用分数指数幂的形式表示下列各式(其中0)a >:3a ;2a . 【例6】 用根式的形式表示下列各式(a >0) 15 a ,34 a ,35 a -,23 a - 【例7】 用分数指数幂的形式表示下列各式: 2 a a ,3 3 2a a ,a a (式中a >0) 【例8】 求值:23 8,12 100 -,314-?? ???,3 41681- ?? ??? . 【例9】 求下列各式的值: (1)12 2 (2)1 2 6449- ?? ??? (3)34 10000- (4)23 12527- ?? ???

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

2018年指数与指数函数高三第一轮复习讲义

2018《高三第一轮复习课:指数与指数函数》 咸丰一中数学组:青华 高考要求: (1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 重点难点: 对分数指数幂含义的理解,学会根式与分数指数幂的互化掌握有理指数幂的运算性质; 指数函数的性质的理解与应用,能将讨论复杂函数的单调性、奇偶性问题转化为讨论比较 简单的函数的有关问题. 知识梳理 1.根式的概念 (1)根式 如果一个数的n 次方等于a ( n >1且n ∈N *),那么这个数叫做a 的n 次方根.也就是, 若x n =a ,则x 叫做___________,其中n >1且n ∈N *.式子n a 叫做_______,这里n 叫做_________,a 叫做__________. (2)根式的性质 ①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号________表示. ②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数的正的n 次方根用符号________表示,负的n 次方根用符号________表示.正负两个n 次方根可以合写成________(a >0).负数没有偶次方根 ______(_____(0) ||(_____(0)n n n a a a n a ??=≥??=??

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

艺术生高考数学专题讲义:考点7 指数与指数函数

考点七 指数与指数函数 知识梳理 1.根式 如果a =x n ,那么x 叫做a 的n 次实数方根(n >1且n ∈N *),当n 为奇数时,正数的n 次实数方根是一个正数,负数的n 次实数方根是一个负数,记为:n a ;当n 为偶数时,正数的n 次实数方根有两个,它们互为相反数,记为:±n a .式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. (1)两个重要公式 ① n a =?????a (n 为奇数),|a |=?????a (a ≥0),-a (a <0)(n 为偶数); ② (n a )n =a (注意a 必须使n a 有意义). (2)0的任何次方根都是0. (3)负数没有偶次方根. 2.分数指数幂 (1)分数指数幂的概念: ①正分数指数幂:a m n =n a m (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a m n -= 1 a m n = 1n a m (a >0,m ,n ∈N *,且n >1). ③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质: ①a r a s =a r + s (a >0,r ,s ∈Q ); ②(a r )s =a r s (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.无理数指数幂 一般地,无理数指数幂a r (a >0,r 是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 4.指数函数的图象与性质

图象 定义域 R 值域 (0,+∞) 性质 过点(0,1),即x =0时y =1 当x >0时,y >1; 当x <0时,00时,01 是R 上的增函数 是R 上的减函数 典例剖析 题型一 指数幂的化简与求值 例1 的值是 . 答案 -3 解析 . 变式训练 下列各式正确的是 .(填序号) ① ② ④a 0=1 答案 解析 根据根式的性质可知 正确. ,a =1条件为(a ≠0),故①、②、④错. 例2 化简或求值 (1) (2) (a 2 3 ·b -1 ) 12 -·a 1 2 - ·b 1 3 6 a · b 5 解析 (1)原式= = . (2)原式= a 13 - b 12 ·a 12 -b 13 a 16 b 56 =a 111326 ---·b 115 236 +-=1a . 解题要点 指数幂运算的一般原则

高考数学-指数与指数函数讲义.doc

指数与指数函数 一?填空题 1. 已知f(x)=(a2-1)x是减函数,则a的取值范围是________. 2. (-1.8)0+(1.5)-2× 2 3 3 3 8 ?? ? ?? -(0.01)-0.5+ 3 2 9=________. 3. 指数函数y=? ? ?? ?b a x的图象如图所示,则二次函数y=ax2+bx的顶点横坐 标的取值范围是________. 4. 已知0≤x≤2,则y= 1 2 4325 x x - -?+的最大值为________. 5. 已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则g(x)=a x+b的图象是________. 6. (2011·新沂一中模拟)已知f(x)= ()1 1,0 2 ,0 x a x a x a x ? -++< ? ? ?≥ ? 是(-∞,+∞)上的减函数,那么实数a的取值范围是________. 7. 若函数f(x)?g(x)分别是R上的奇函数?偶函数,且满足f(x)-g(x)=e x,则有________. ①f(2) ??, 则f(2 010)=________.

二?解答题 10. 计算 ÷ 3a -73a 13; (2)2 3338-??- ??? +120.002--10(5-2)-1+(2-3)0; (3)已知1 1224m m -+=,求33221122m m m m -- -+的值. 11. 函数f (x )= 2-x x -1 的定义域为集合A ,关于x 的不等式22ax <2a +x (a ∈R )的解集为B , 求使A ∩B =A 的实数a 的取值范围. 12. (2011·丹阳中学期中)设函数f (x )=ka x -a -x (a >0且a ≠1)是奇函数. (1)求k 的值; (2)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集; (3)若f (1)=32 ,且g (x )=a 2x +a -2x -2mf (x )在[1,+∞)上的最小值为-2,求m 的值

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

人教高一数学指数函数讲义

第四节、指数函数 一、初中根式的概念; 如果一个数的平方等于a ,那么这个数叫做a 的平方根,如果一个数的立方等于a ,那么这个数叫做a 的立方根; (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示。 . 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n 。 思考:n n a =a 一定成立吗? 结论:当n 是奇数时,a a n n = 当n 是偶数时,???<≥-==) 0()0(||a a a a a a n n 例1、(1)=-+125.08 33-4 1633 (2)7722)(2y x y xy x -+ +-=

2.分数指数幂 正数的分数指数幂的意义 规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(11 *>∈>==-n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. 无理指数幂:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 对于根式的运算,简单的问题可以根据根式的意义直接计算,一般要将根式化为分数指数幂,利用分数指数幂的运算性质来进行计算。 例2、化简(1)=÷?----32 11321 32)(a b b a b a b a (2)=?÷?363342b ab a

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

高考数学(人教A版,理)一轮复习配套讲义:第2篇 第5讲 指数与指数函数

第5讲指数与指数函数 [考纲] 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底 数为2,3,10,1 2, 1 3的指数函数的图象. 4.体会指数函数是一类重要的函数模型. 知识梳理1.根式 (1)根式的概念 ①n a n= ?? ? ??a,n为奇数, |a|= ? ? ?a,a≥0, -a,a<0, n为偶数. ②(n a)n=a. 2.有理数指数幂 (1)幂的有关概念 ①零指数幂:a0=1(a≠0). ②负整数指数幂:a-p=1 a p(a≠0,p∈N *); ③正分数指数幂:a n m=n a m(a>0,m,n∈N*,且n>1);

④负分数指数幂:a n m -= a n m 1 = 1n a m (a >0,m ,n ∈N *,且n >1); ⑤0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 辨 析 感 悟 1.指数幂的应用辨析 (1)(4 -2)4=-2.( ) (2)(教材探究改编)(n a n )=a .( ) 2.对指数函数的理解 (3)函数y =3·2x 是指数函数.( ) (4)y =? ?? ?? 1a x 是R 上的减函数.( ) (5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

指数函数及其性质(讲义)

指数函数及其性质(讲义) ? 知识点睛 一、指数函数的定义 一般地,函数__________( )叫做指数函数,其中x 是自变量,函数的定义域是R . 二、指数函数的图象和性质 1. 指数函数x y a =(a >0,且a ≠1)的图象和性质: 2. 指数函数底数变化与图象分布规律 ①x y a =,②x y b =,③x y c =,④x y d =, 有01b a d c <<<<<,即: x ∈(0,+∞)时,x x x x b a d c <<<; x ∈(-∞,0)时,x x x x b a d c >>>. ? 精讲精练

1. 下列以x 为自变量的函数中,是指数函数的是____________. ①4x y =;②4y x =;③4x y =-;④(4)x y =-; ⑤(21)x y a =-(12 a > ,且a ≠1);⑥4x y -=. 2. 若函数2()(33)x f x a a a =-+是指数函数,则实数a 满足( ) A .a =1或a =2 B .a =1 C .a =2 D .a >0且a ≠1 4. 已知对不同的a 值,函数()2f x a =+(a >0,且a ≠1)的图象恒过定点P , 则点P 的坐标是( ) A .(0,3) B .(0,2) C .(-1,3) D .(1,2) 5. 求下列函数的值域: (1)()32x f x =-,x ∈[-1,1];

13. (1)函数223()2 x x y --=的单调递增区间是________________. (2)已知f (x )=2x 2-x -3,1()()2 x g x =,则函数(())y f g x =的单调递增区间是___________,单调递减区间是___________. 【参考答案】 ? 知识点睛 一、指数函数的定义 01x y a a a =>≠,(且) ? 精讲精练 1. ①⑤⑥ 2. C 3. (1)(0]∞-,;(2)(01),

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

指数以及指数函数的整理讲义经典-(含答案)

指数与指数函数 一、指数 (一)n 次方根: 1的3次方根是( ) A .2 B .-2 C .±2 D .以上都不对 2、若4 a -2+(a -4)0有意义,则实数a 的取值范围是( ) A .a ≥2 B .a ≥2且a ≠4 C .a ≠2 D .a ≠4 (二)、 n 为奇数,a a n n = n 为偶数,?? ?<-≥==0 ,0 ,a a a a a a n n 1.下列各式正确的是( ) =-3 =a =2 D .a 0=1 2、.(a -b )2+5 (a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成立的条件是( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y >0 D .x <0,y <0 4、求下列式子 (1).33 4433)32()23()8(---+- (2)223223--+ (三)、分数指数幂 1、求值 4 3 52 13 2811621258- --?? ? ????? ??;;; 243 的结果为 A 、5 B 、5 C 、-5 D 、-5 3、把下列根式写成分数指数幂的形式: (1)32ab (2)()42 a - (3) 3432x x x (四)、实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

指数函数经典例题和课后习题

百度文库 - 让每个人平等地提升自我 指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

相关主题