搜档网
当前位置:搜档网 › 车身尺寸控制设计规范

车身尺寸控制设计规范

车身尺寸控制设计规范
车身尺寸控制设计规范

车身尺寸稳定性控制方法

车身尺寸 稳定性控制方法 龚国平(沙济伦博士指导) 2005年11月 奇瑞公司规划设计院

编写本文目的 ?讨论建立车身尺寸稳定性指标的必要性、可行性以及如何实施。 ?介绍车身尺寸稳定性控制方法。 公司目前车身尺寸控制指标 ?目前,公司车身尺寸主要控制指标是IQG值和尺寸符合率(DAR)。 ?这两个指标侧重控制车身尺寸的准确性,也就是精度,但是相对忽视了更重要的一项指标--稳定性。 认识 IQG ?什么是IQG ? 它是法语:Indice Qualide Geometrique 的所写,中文意思是“车身几何质量指数”,它是用来评定钣金零件、分总成及总成重要几何尺寸一致性的一种工具。 ?IQG值是如何计算的? IQG值=所有超差测量特性扣分之和 / 测量特性总数;它的取值范围是0-10之间。 认识尺寸符合率(DAR) ?什么是DAR ? 它是英语:Dimension Accord Rate 的所写,中文意思是“尺寸符合率”,它是用来评定钣金零件、分总成及总成重要几何尺寸符合要求的程度。 ?DAR值是如何计算的? DAR值=未被扣分测量特性之和 / 测量特性总数;它的取值范围是0-1之间。 结论 ?IQG值和尺寸符合率(DAR)都仅仅控制了车身尺寸的准确性或精度,对尺寸的稳定性却没有控制,或仅有很微弱的控制。

?我们迫切地需要一个控制车身尺寸稳定性的指标。 稳定性比准确性更重要 ?为什么这么说? 一个枪手打靶,可能会有如下四种情形: ?很明显,情况1最差,情况4最好。 ?那么情况2和情况3哪一个比较好呢? 2反映了一种准确性或精度,但是它的分散程度很大,3反映了一种稳定性或一致性,但是它偏离目标很大。究竟哪一种情形更好? ?情况3的解决可能仅仅只需要调整一下准心,很容易就解决了问题。 ?情况2呢?必须对打靶所用的枪进行全面检查,详细分析其原因。 ?对于我们的车身尺寸控制(包括调试)也一样。稳定性比准确性更重要。 ?比如说某个测量特性,它的测量结果表明它一直偏离正确位置10mm,怎么办?很容易解决,只需要调整夹具,调过来10mm;就算因特殊原因,不能调整夹具,那改冲压件也可以,会有立竿见影的效果。 ?如果一个测量特性,测量结果表明它在目标值的正负5mm之间波动,这个问题怎么办?通过调夹具能解决吗?通过更改冲压件能解决吗?

白车身尺寸控制过程中关键功能测点的选择和管理

白车身尺寸控制过程中关键功能测点的选择和管理 Choose and manage of key function spot in BIW dimension control process 作者:刘杰,20600029,宝骏基地车身车间; Writer:Liujie,20600029,BaoJun base body shop; 摘要: 本文对白车身整车尺寸测量过程中关键功能测点的选择和优化的原则进行了一些总结,对于关键功能测点的管理和尺寸质量提升提出了一些建议和方法。 Abstract: This article summarized the principle for choose and optimize of key function spot in BIW dimension control process, and stated some suggest and method for management of key function spot and promotion of dimension and quality. 关键词:白车身,关键功能测点,选择,管理; Key word:BIW,key function spot,choose,manage; 1前言 现代汽车工业中车身制造的特点就是制造系统庞大,往往包括上百个冲压件,几十套工装夹具,和上百个工序;制造工艺复杂,包括材料,冲压,焊接,涂装,总装等工艺流程。这些特点就导致引起车身尺寸变异的偏差源很多,车身尺寸质量的控制就十分困难。为了监控车身尺寸质量,就必须对车身进行尺寸测量。在现有汽车工业中,一般都使用大型的三坐标测量仪对白车身进行全尺寸的测量。这个测量的过程,因为测量周期和测量设备的限制,基本上都是抽检,而且抽检的频次很低(1%以下)。在这种小样本抽样的情况下,三坐标测点的合理布置和选择在很大程度上就决定了数据的质量,在上千的白车身三坐标测点中选择合理的关键功能测点并进行适当的管理和改进就显的尤其重要。 2 关键功能测点的选择 2.1 三坐标测点的一般分类: 按照测点功能的不同,一般可以将常见的三坐标测点分为三类: 1)主要定位基准测点:主要定位基准测点能够比较明显的反应某一级零件的定位状态,有助于对由于定位或者是基准发生变异而产生的尺寸变差进行进行识别和诊断,例如:白车身上左右侧围主定位孔的测点数据,就能比较好的反应总拼台工装上左右侧围主定位销的尺寸偏差; 2)产品特征测点:产品特征测点能够反应零件,分总成,白车身,甚至整车的产品特征,产品特征测点更加关注车身特征,轮廓线,车身内外饰的配合尺寸等,产品特征测点的好坏,直接关系到一台车能不能给顾客以良好的第一印象,例如:车身前档风窗开口的测点,就能很好的反馈前档玻璃和前档风窗开口配合的间隙,段差等感知质量指标;3)过程控制测点:过程控制测点是产品特征测点的必要保证,它属于过程控制,是为了控制某一工序对车身尺寸质量的影响而设置的测点,是为了识别和诊断本工序过程中出现的制造偏差,一般的下工序(主要是总装车间)有装配需求的测点也归类为过程控制测点。 2.2 关键功能测点的选择一般原则: 从所有的白车身三坐标测点中选择出合理的关键功能测点一般遵循两个原则: 1)车身的开口原则:白车身一般是由左右侧围,发动机舱(前车体),前部下车体,后部下车体,顶盖6个主要的分总成组成,这6部分拼合以后,就会形成前挡风窗,发动机舱,后挡风窗,行李厢,左右前侧门,左右后侧门8个开口部分。这8个开口区域的尺寸质量对整车尺寸质量十分重要,因为8个开口区域的尺寸质量不仅关系到整车外观质量(前后挡风窗,门盖),而且关系到整车的操控质量(发动机舱)。但是这8个开口区

有效的车身尺寸控制方法

有效的车身尺寸控制方法 作者:文章来源:发布时间:2010-07-13 新浪微博QQ空间人人网开心网更多 图1 车身尺寸变差鱼骨分析 汽车车身尺寸控制是汽车生产的重要质量控制项目,也是一个系统工程,其控制能力综合反映了一个企业的产品开发和质量控制水平,因此是汽车制造企业的关注焦点。江铃全顺工厂结合自身产品的特点,通过不断地总结和探索找到了一个适合自己的车身尺寸控制方法,即抓住根本,控制车身的变差源。 汽车制造四大工艺中冲压和焊接是基础,是整车质量的保证。在冲压焊装的前期工艺规划中,零件模具和车身焊接夹具以及生产线的设计又是车身尺寸控制的关键环节。设计工装模夹具时,不仅要考虑生产纲领,还必须要熟悉产品结构,了解钣金件变形特点,掌握冲压、涂装以及总装工艺的诸多要求,通晓零部件装配精度及公差分配。只有做到这些,才能对模夹具进行全方位的设计,满足生产制造要求,达到车身尺寸质量要求。下面结合全顺工厂的经验谈谈车身尺寸的控制方法。 变差的来源 由于所有制造过程在人员、机器、材料、方法、环境以及测量方面都存在变动因素(如图1所示),所以车身尺寸的变差不可避免,在制造上也就有了公差的概念,公差的大小、过程能力的高低取决于控制变差能力的大小,这也具体反映了车身制造的质量水平。经历过多次新产品开发流程,我们总结了6方面造成车身尺寸变差的权重:材料占45%,机器占30%,人员和方法占20%,环境和测量占5%。冲压件在投产阶段对车身尺寸影响非常大,具体如表1所示。

表1 车身尺寸合格率与材料状态的对照 控制变差源 在车身开发阶段,有4个阶段会对车身尺寸产生较大影响,分别为产品设计、工艺开发、试生产及批量生产,各阶段产生的影响程度和侧重点不同。要控制变差源,开发阶段控制占70%,过程控制占30%。在开发阶段,产品设计和工艺开发尤为重要。首先,要建立车身统一基准系统,用于统一从冲压件、零件检具、焊接总成、白车身装配,到总装装配的主定位基准原则,建立MCP(Master Control Point)清单,便于冲压、焊接、总装工艺在开发定位工装时协调一致,避免因工序定位选择不同而产生偏差。其次,产品设计要避免冲压成形工艺过于复杂,减少冲压回弹和零件干涉现象,模夹具设计定位必须可靠,如夹具定位孔必须选择传递冲压的主定位孔,定位面必须选取冲压件的可靠面。再次,工装设计时要便于员工取放料,易于操作和维护,以防生产过程中因人机工程问题造成的尺寸变差。 考虑到车身钣金件回弹,形状不规则,材质及冲压工艺的影响,车身夹具都采用过定位设计以校正零件变形,而且定位夹紧单元都设计成三维或二维方向可调以适应零件变化。一般来说,车身夹具设计遵循的原则为: 1. 对单个工件一般用二销二型面的“定位-夹紧”稳定原则。实质上二销确定了X,Y 向,二型面则强化确定了Z向。对特别大的工件,考虑到钣金弹性件可适当增加销与型面的“定位夹紧”,以增加局部区域的稳定性。 2. 定位尺寸一致性传递原则,即不同工序不同夹具的定位尺寸应一致。 3. 焊点可视原则。 4. 以大尺寸、复杂零部件为先导,其余零件随后装上夹具,即逐次“定位-夹紧”。 5. 定位销精度±0.05mm,定位面精度±0.2mm。 在试生产前,工装夹具的安装非常重要,只有合格的工装才能生产出合格的产品。夹具安装到位后,需使用测量设备(如激光跟踪仪)对所有定位孔面进行全尺寸测量,建立完备的定位基准数据,便于生产期间的车身尺寸协调。一般工装到位后的试生产需要维持6个月,以满足投产不同阶段的质量控制目标。试生产阶段主要是解决实际零件和工装夹具的匹配协调性,同时解决操作过程中的实际困难,直到到达设计要求的节拍以及质量目标才可转入到批量生产。

浅谈在线检测与白车身尺寸精度控制

浅谈在线检测与白车身尺寸精度控制 一汽解放汽车有限公司 王治富 李丽芹 赵立彬 1.白车身装配的偏差来源 汽车白车身的制造工艺是一个非常复杂的过程,白车身驾驶室通常由300多个具有复杂空间曲面的薄板冲压零件,在有近100多个装配工位的生产线上大批量、快节奏地焊装而成;同时白车身装配又为一种多层次体系结构,若干零件经焊装夹具焊接成为分总成,分总成又变成下一层装配中的零件。因此中间环节众多,制造偏差很难以控制。 经综合分析其尺寸偏差主要源于以下几个方面:零件本身的偏差、工装夹具定位的不稳定性、焊装变形、操作及工艺的影响(如图) 2.白车身偏差的累积 目前,就我厂来说,检测方式有两种 1、三坐标的常规检测,主要是以一定的频度对白车身驾驶室进行抽样全尺寸检测; 2、在换代驾驶室的焊装线设计上,为了提高白车身的制造精度,在主焊线12工位上安装了在线检测装置对白车身进行100%在线检测。 在线检测装置通常都装在白车身的最后或者后几个工位上,以便对白车身的关键部位进

行检测,监控白车身关键部位的变差情况,以便对问题的及时反映。 但得到的数据通常是最后一个工位的数据,在此之前有11个工序的装配焊接,所以,这最后得道的结果是由12个工序的累积的结果,也就是说,白车身的偏差是由多个工序产生偏差的累积,这样,在分析数据的时候,我们能得到问题的所在,但是究竟是在哪个工序产生的,却很难确定,只能凭经验去分析。扩展开来说,白车身总成是由多个分总成合成,每个分总成也有它本身的累积偏差,同样也会带到白车身总成当中。 所以,我们很自然的想到,对数据的分析要进行工序分离,要做到工序的偏差的分离。在这个问题上,张公绪提出的两种质量的概念,适用于对多工序、多因素加工过程中的质量数据进行针对性的分析和处理,为故障诊断提供依据。工序综合质量也称为总质量,它不但包括本道工序本身固有的加工质量,也包括了所有上道工序加工质量。总质量与所有前道工序和本道工序的加工质量都有关系,反映的是所有工序质量的综合。分质量指的是该道工序固有的质量,只与本道工序的加工和设备情况相关,而与上道工序无关。从生产过程来看,上道工序完成的半成品送到下道工序,经过下道工序加工后,形成综合质量,它包括上道工序的影响和本道工序的作用两部分,从这个角度上说,每道工序都存在两种质量。 如何区别开每个工序质量,以便能更好的发挥在线检测设备及在线检测数据的作用,从而能够更准确的发现问题的所在,减小分析问题的难度,缩短问题处理得时间。是我们需要研究和探索的课题。 3.区别工序质量的几个思路 从我厂的情况来看,第一从设备入手,对各关键装配工序都安装在现检测设备,在我厂新焊装设计的时候,在每个分总成焊装线上都设计了在线检测设备,在关键环节对总成尺寸精度进行严格检测监控,但这样就会带来过高的成本。 第二,利用现有的测量设备(三坐标测量机)进行定期对关键工序进行测量,得到的数据与总成合成后的在线检测数据对比,得出两个工序间的工序质量,从而得出每个关键工序的工序质量,具体的实施方法: 每月对关键工序,即总成形成工序的夹具和总成进行检测,形成统计性的数据表格,分析该工序的工序质量波动的范围是否在可接受的或设计规定的一定范围内,该工序的那些部位能够对后序产生影响,得出该工序的工序质量。 将该数据与在线检测的数据进行对比,分析两者的偏差,将结果纳入过程控制当中,当

整车布置设计规范(修改稿)

整车总布置设计规范 1.范围 本标准规定了整车总布置设计的原则、规定及应满足的有关法规等。 本标准适用于公司新产品开发时的整车总布置设计。 2.引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T490-2000:主图板 QC/T576-1999:轿车尺寸标注编码 GB/T17867-1999:轿车手操纵件、指示器及信号装置的位置 GB14167-1993:安全带固定点 GB11556-1994 :A、区 GB11565-1989:B区 GB11562-1994:前方视野 GB/T13053-1991:脚踏板 SAEJ 1100:头部空间、上下左方便性 3术语和定义 下列术语和定义适用于本标准。 3.1整车总布置 明示所有总成的硬点、关键的参数的布置图 3.2设计硬点 轮距、轴距、总长、总宽、造型风格、油泥模型表面或造型面、人体模型尺寸、人机工程校核的控制要求、底盘等与车身相关零部件对车身的控制点线面及控制结构,都称为设计硬点。 4.整车总布置图上应确定的参数 4.1整车的外廓尺寸; 4.2轴距和前、后轮距; 4.3前悬和后悬长度;

4.4发动机、前轮的布置关系; 4.5轮胎型号、静力半径和滚动半径、负载能力; 4.6车箱内长及外廓尺寸; 4.7前轮接地点至前簧座的距离; 4.8前簧中心距; 4.9后簧中心距; 4.10车架前部和后部外宽; 4.11车架纵梁外形尺寸及横梁位置; 4.12前簧作用长度; 4.13后簧作用长度; 5.参数确定原则及设计的一般程序 5.1参数确定原则 以设计任务书和标杆样车为基准,按设计任务书上规定的或标杆样车上测定的参数进行总布置,如确实不能满足的,需提出经上级领导批准后方能更改。 5.2设计的一般程序 1)总布置设计人员在接到新车型的开发任务后,首先要进行整车构思,并参与市场调研和样车分析,在此基础上制定出总的设计原则和明确设计目标; 2)各专业所建立标杆样车的3D数模,并提供给整车布置人员; 3)总布置设计人员将各专业所提供的数模装配好; 4)对各总成的匹配和布置关系等进行分析,明确它们的优点和不足; 5)各专业所建立拟采用的总成的数模,不提供总布置人员; 6)总布置人员对新的数模进行分析,并提出可行性的建议; 7)对方案进行评审; 8)评审后对各总成进行修改或开发; 6.主要尺寸参数的确定

汽车总布置设计规范

汽车总布置设计规范 一、整车主要参数的确定: 1、前悬、后悬、轴距的确定: 根据设计任务书提供的车身型号、货厢内部尺寸确定前悬、后悬、轴距的尺寸。 1.1前悬长:主要依据车身前悬及车身布置位置,前翻车身还要考虑车身前翻时与保险杠的间隙。 1.2后悬长:也是确定轴距长度,后悬除要符合法规要求之外,要充分考虑对离去角、质心位置的合理性,车身与货厢的合理间隙,应该保证高位进气在车身翻转时有至少30mm间隙。 2、整车高度的确定: 2.1车身高度的确定: 车身高度的确定主要受发动机高低位置的影响,发动机高低位置确定之后,应该保证车身地板与发动机最小间隙在30mm以上。 2.2整车高度确定:(既货厢帽檐或护栏高度的确定) 2.2.1货厢带前帽檐: 应保证车身前翻时,车身及附件与货厢帽檐最小间隙大于60mm。 2.2.2货厢为护栏结构: 安全架与车身顶盖高度差:(GB7258规定:载质量为1吨及1吨以上的货车、农用车为70-100mm)

3、整车宽度的确定: 一般来言,车辆的最宽决定于货厢的宽度。 4、轮距确定: 4.1前轮距: 前轮距的确定实际上就是前桥的选取,前桥的选取主要决定于设计载质量,前轮距主要受车身轮罩的宽度、车轮的偏距影响,并且受到法规(整车外宽不超过 2.5m)的限制,同时要考虑前轮的最大转角。 4.2后轮距: 后轮距的确定实际上就是后桥的选取,后桥的选取主要决定于设计载质量,同时再根据货厢的宽度来选取合适的轮距。 二、驾驶室内人机工程总布置: 1、R点至顶棚的距离:≥910 2、R点至地板的距离:370±130 3、R点至仪表板的水平距离:≥500 4、R点至离合器和制动踏板中心在座椅纵向中心面上的距离:750~850(气制动或带有助力器的离合器和制动器,此尺寸的增加不大于100) 5、背角:5~28° 6、足角:87~95° 7、转向盘外缘至侧面障碍物的距离:≥100(轻型货车≥80) 8、转向盘中心对座椅中心面的偏移量:≤40

浅谈提高白车身功能尺寸合格率的有效管理措施

浅谈提高白车身功能尺寸合格率的有效管理措施 从车身制造来看,制作白车身的总体质量关系到防控缺陷选取的方法。针对于白车身,若要从根本上提升车身的综合性能,就要提升总的尺寸合格率。在日常生产中,注重全方位的流程监管。唯有如此,才能防控隐含的车身尺寸缺陷,确保最佳的精准度。针对于白车身的功能尺寸,探析了日常管理的有效措施,提升生产流程的合格率。 标签:白车身;尺寸合格率;有效管理措施 0 引言 制作车身的流程中若没能及时判断出隐含的缺陷,那么将会干扰后续各步骤的车身生产。一旦产生缺陷,只好追查或召回已经制作成的车身。这样做,就耗费了偏高的初期投资[1]。为杜绝这种弊病,有必要采纳全面的生产管控,从根本入手确保制作出来的白车身能够符合尺寸规格,保证了车身的优质性。有效性的管理措施整合了制造的流程、工装的维护、选取操作方法、实时性的物料查看、保持周边环境等。在常规管理中,还需配备实时性的过程查验,构建一体的控制体系。 1 提升合格率的必要性 白车身在先期制作的进程中,有必要慎重防控潜在的缺陷及弊病,全面提升质量。白车身配备的各类构件都设定了必备的尺寸及功能,要提升制作整车的合格率,不可缺失针对于尺寸的调控监管。日常生产时,一旦查出了某种构件的缺陷,那么很难再去予以补救。在这时,唯有追查制成品或者返修,这样就会耗费额外的更高成本。由此可见,车身需要配备符合规格的功能尺寸,确保吻合了初期要求[2]。 探析全方位的有效管理,应当整合车身操作方法、查验物料的流程、保护周边环境、维护工装、测量方式、人员制造这些方面,都需从严予以管理。从总体上看,这些细微的管理构建了多面体的新模式,同时也区分并且细化了生产白车身的不同职责。依照差别化的准则来监管落实,构建了全面及一体性的流程控制。 2 探析有效的管理 2.1 对于差异性的设备 确保最佳的车身性能,不可缺失配套性的制作设备。设备在运转时,应能维持合适的状态。差别化规则下的分级设备管理整合了多样的要素,也配备了多层次的保障。车身设有成套的工装设备,先期要经过调试才可投入运转。具体来看,在调试夹具后,需要标识精确的夹具线,而后衔接螺栓。若测出夹具变更或者松动,则要及时处理。针对于各层次的工装,拟定了差异性的分级管控。通常来看,

简析重型汽车车身尺寸控制

简析重型汽车车身尺寸控制 摘要:本文介绍了汽车白车身制造过程中的尺寸控制,包括了车身尺寸控制类型、车身尺寸公差的制定和车身尺寸的检测及数据统计分析,及本单位实际生产过程中重型卡车驾驶室尺寸检测控制中的应用实例分析。 关键词:尺寸;控制;检测数据统计分析 前言 高速的汽车工业制造技术发展过程中,汽车车身尺寸控制技术始终扮演着重要的角色。汽车车身尺寸控制技术的提升是汽车制造技术发展提高的需要,它的发展反过来促进了汽车制造能力和制造技术的提高,进而不断的激励促进各汽车制造企业制造出高质量的产品。 1.尺寸检测控制技术 1.1汽车车身尺寸制造过程控制技术 1.1.1汽车车身概念 汽车车身是汽车四大部件之一,它决定了汽车的基本形状、大小和用途。汽车车身是由薄板冲压零件焊成组合件,然后由零件、组合件焊接成几大分总成,由分总成焊接车身总成,装配车门、发动机罩等形成白车身。 1.1.2汽车车身制造基本工艺 车身制造基本工艺包括:a.冲压工艺;b.焊装工艺;c.涂装工艺;d.总装配工艺。 1.1.3汽车车身制造过程尺寸控制 汽车车身制造工艺其中涉及车身尺寸控制的主要为前两部分,而车身冲压工艺是汽车车身生产源头,汽车项目开发过程主要为车身数学模型生成模具,投产得到冲压单件投入焊装车间进行生产,尺寸控制的关键在于数学模型的准确及后期模具开发过程中尺寸的保证能力。焊装夹具是生产产品时的一种辅助手段,它是将工件迅速准确地定位并固定于所定位置,包括引导焊枪或工件的导向装置在内的用于装配和焊接的工艺装备的总称。随着国内外汽车工业的发展,焊接夹具的重要性日益突出,已经成为车身尺寸控制不可或缺的一部分。随着汽车行业的发展,国内外汽车制造厂商对焊装夹具的要求越来越高,这也同时促进了焊装夹具水平的提升,反过来又提升了汽车车身的尺寸精度。 1.1.4国内外车身制造过程尺寸控制

车身设计规范

车身设计规范 针对公司现有车型开发项目较多,为提高通用性,降低成本,特制定以下设计规范,以后各车型开发必须遵从此规范。 第一章:有关间隙的标准 图一、门内间隙 门内间隙应保证两个间隙,如图一所示: 尺寸一 尺寸二 说明:尺寸一:门内板到侧围上门洞止口边外侧的间隙值为16mm。沿门洞一圈,前后门一致。 尺寸二:门内板侧部与侧围门洞配合面之间的间隙为10mm。沿门洞一圈,前后门一致。

图二:门内板与门槛处: 说明: 1. 门内板和门洞(门槛处)止口外侧鈑金之间间隙为16mm,沿门洞一周相同。 1.门洞止口高度为16mm,沿门洞一周相同。 2.门内板台面与门槛面间隙为10mm,同图一尺寸二。 3.外板与门槛之间外表面间隙为6±0.5mm。 图三:门上端与A柱处: 相关尺寸如图所示。

说明:1. 门内板上部和侧围配合处间隙为10mm。 2.门内板配密封条处止口长度为12mm 图四:门上部与侧围上梁处: 说明: 1. 门内板上部内侧与侧围止口外侧之间的间隙为16mm,沿门洞一周。 2. 侧围门洞止口长度为16mm。 3. 多层鈑金搭接,一般情况下外侧鈑金比内侧长1~1.5mm,现规定此值为1.5mm。 4. 此为门洞密封条的结构尺寸,此密封条截面必须沿用。 图五:门上部和B柱处:

说明:1. B柱前止口外侧和前门内板间隙为16mm。 2. B柱后止口外侧和后门内板间隙为16mm。 3. B柱前、后止口长度为16mm。 4. 门框上部内侧止口长度为12mm。 5. 门框上部和B柱配合面之间的间隙为10mm,沿门洞一周。 第二章:外间隙 为提高整车外观,根据奇瑞公司的具体情况,特制定以下外观间隙要求。 1)前翼子板和前门处间隙。 图一 说明:前翼子板和前门处间隙,设计间隙为4±0.5mm; 前翼子板和前门外板在Y方向,车门向内收缩0.5mm。 2)前门和后门处间隙

浅谈白车身零部件尺寸误差分析及公差优化分配

Internal Combustion Engine &Parts 0引言 车身是汽车必不可少的关键性组成部分,车身制造质量涉及到焊接、尺寸、扭矩、选装等方面。在白车身制造过程中零部件尺寸控制极易受到多方面因素影响,制造工艺、零部件公差、定位基准等,要在科学把握基础上针对车身零部件在装配方面的关系,优化分配白车身不同零部件公差的同时深化控制尺寸误差,防止超过规定范围,确保零部件功能作用最大化发挥,全面提升车身制造以及整车装配质量。 1白车身零部件尺寸误差1.1白车身零部件尺寸冲压、焊装、涂装以及总装四大工艺属于传统车身的制造工艺,白车身制造主要和冲压、焊装两大工艺有机联系,对白车身零部件尺寸精准度有着较大的影响。白车身由多个元素组成,前车体、左右侧围、顶盖等,各自发挥着不同的功能作用,直接关系到白车身整体运行性能。作用到白车身中的零部件多样化、复杂化,零部件尺寸质量问题体现在多个方面,比如,基准统一度不高,工装测量基准不科学,工装定位尺寸稳定性不高,导致尺寸出现误差,零 部件不合格的同时影响车身制造质量,必须在高效控制基础上保证车身零部件质量,为实现整车装配质量目标提供重要支撑力量。相应地,图1便是白车身制造的工艺流程结构示意图。 图1白车身制造的工 艺流程结构示意图 1.2白车身零部件尺寸误差 车身零部件质量误差是车辆质量评价的关键性因素,必须在提高尺寸精度与质量过程中将车身制造成本最小化。组成白车身的很多零部件都是在冲压工艺作用下成件的,再在焊装工艺作用下进行有效组装。白车身的外覆盖件属于薄壳零件,性状复杂化且有着较高的刚度要求。在白车身制造过程中,要在简化装配工艺流程基础上确保白车身的外表面有着较高的完整性、连续性,大部分外覆盖的零部—————————————————————— —作者简介:游旭(1983-),男,河北保定人,工程师。 浅谈白车身零部件尺寸误差分析及公差优化分配 游旭;曹立辉 (长城汽车股份有限公司,河北省汽车工程技术研究中心,保定071000) 摘要:整车装配质量和白车身尺寸质量深度联系,高效控制零部件尺寸误差显得尤为重要。因此,本文在分析白车身零部件尺寸 误差基础上探讨了公差优化分配,确保零部件公差分配更加科学化,高效控制尺寸误差的同时最大化提高白车身零部件质量。 关键词:白车身;零部件;尺寸误差;分析;公差优化分配 当的措施来有效控制压铸模以及压铸机的运行故障。具 体在实践操作中,为了达到压铸模寿命延长的效果,那么关键在于控制运行负荷,确保实现压铸工艺成本有效节约的目标。 3.3经常润滑压铸工艺设备 压铸模设备如果缺少必要的润滑处理,则会明显增大压铸操作的故障风险。在此前提下,技术人员对于压铸模需要做到经常进行润滑,尤其是对于导柱、冲头、复位杆与推杆、抽芯机构以及其他的重要部件而言。并且,关于润滑操作也要控制于最佳的频率,确保达到有效预防压铸设备损坏的目的。从预防性的模具维修角度来讲,技术人员针对设备润滑的频率应当做到切实进行控制,确保可以达到从源头上防控压铸模故障的效果。 除了以上的工艺改善要点之外,对于压铸模还要做到适当予以冷却处理。在冷却压铸模的具体操作中,通常来讲必须用到冷却水道,因此就要结合压铸模的具体特征来进行冷却水道的型号选择。在多种模具冷却的具体方案中,应当选择可行性最佳的模具冷却处理方案。同时,技术人员还要格外重视铸件质量、模具生产效率以及模具寿命的几项关键因素控制,确保运用分次冷却的方式来避免过度进行模具的冷却处理。 4结束语 近些年以来,压铸生产领域的压铸工艺已经获得明显的改善,而相应的压铸生产操作流程也达到了全面转型的效果。然而具体在压铸操作的某些环节中,压铸模设备如果突然呈现模具失效的状态,则可能影响到后续的压铸生产操作,甚至还会引发压铸生产的事故。由此可见,压铸工艺效果的整体改善必须依赖压铸模的设计流程完善,作为模具设计人员有必要运用工艺改进的措施进而确保压铸模设备的运行稳定性与安全性。 参考文献:[1]陆佳晖,闵永安,岳加佳,等.大型铝合金压铸模的性能均匀性与开裂机理[J].材料热处理学报,2019,40(03):62-69. [2]肖洪波.交流风机内定子铁芯便捷式压铸模设计[J].特种铸造及有色合金,2018,38(09):968-971. [3]张正来,贾志欣.具有深孔抽芯的壳盖压铸模设计[J].铸造,2018,67(08):688-691. [4]于永香,柯美元.新能源汽车用电控壳体零件的压铸模设计[J].中国铸造装备与技术,2018,53(04):77-80. [5]郭旭.基于S3C2440的压铸模温度控制系统研究[J].煤炭技术,2018,37(05):239-241. [6]斯金伟.压铸模的设计流程及压铸工艺的改善[J].机电产品开发与创新,2012,25(03):75-76.

白车身设计规范

白车身设计规范 一、冲压件设计规范 1.孔 1.1钣金上的冲孔设计要与钣金冲压方向一致。 1.2孔的公差表示方法 1.3过线孔 1.3.1过线孔翻边 1.3.1.1过线孔翻边至少要3mm高。此翻边对钣金起加强作用,防止在安装过程中产生变形,从而影响此孔的密封性。 1.3.1.2如果通过过线孔的零件是面积≤6的固体,或者钣金足够厚,使其在不借助翻边时也能够承受住过线孔安装时的压力,那么此过线孔可以不翻边。 1.3.2过线孔所在平面尺寸 1.3. 2.1过线孔为圆孔(半径设为Rmm)时,孔周圈的平面半径应为(R+6)mm 1.3. 2.2过线孔为方孔时,孔周边的平面尺寸应比孔各边尺寸大6mm。

1.4法兰孔 1.4.1 1.5排水孔 1.5.1排水孔设计在车身内部空腔的最低处,其直径一般为6.5mm。 1.5.2对于车身内部加固的防撞梁,应同样在其空腔的最低处布置排水孔。 1.5.3在车身结构件的空腔及凹陷处必须布置排水孔。 1.6空调管路过孔

1.8管道贯通孔 2.圆角

3.边 3.1密封边 3.1.1行李箱下端 3.1.1.1.为了使水排出止口,如图所示需要留出3.0mm的间隙。 3.1.1.2安装用止口应该具备恒定的高度和厚度(用于弯角的凸缘除外)。 3.1.1.3车门开口周围的止口厚度变化,包括制造变差的范围通常在1.8mm至6.0mm之间。厚度的极端值会产生较高的插入作用力和密封条稳定性等问题。 3.1.1.4止口厚度的变化在任何位置不得超过一个金属板的厚度。如果可能,仅可以使垂直的止口产生厚度变化,绝对不要使弯角半径产生厚度变化。止口厚度的阶段变化会使密封条托架中的水渗漏。 3.1.1.5应该避免带有焊点的止口出现燃油和其它润滑油,这些物质会降低稳定性。 3.1.1.6止口结构类型及其优缺点

白车身尺寸控制论文

白车身尺寸控制 杜明龙 上海赛科利汽车模具技术应用有限公司技术中心OEM技术科 类型:技术类

摘要 白车身的制造质量水平主要包含尺寸精度、焊接质量和外观质量等几个方面,其中,白车身尺寸精度是保证整车零部件装配精度的基础。白车身的制造是由数百个具有复杂空间曲面的薄板冲压零件通过由数十个工位组成的生产线,其特点是大批量、快节奏,零件装配的定位、夹紧点在1000个以上,焊点多达4000~5000个。白车身的制造过程复杂,影响因素众多,整车的制造尺寸精度取决于各方面因素的综合作用。 关键词:白车身尺寸控制

目录 第一章绪论 (4) 第二章影响因素 (5) 2.1.工装夹具 (5) 2.2.零件偏差 (5) 2.3.操作过程 (5) 2.4.测量过程 (6) 第三章控制方法 (7) 3.1.基于测量的尺寸精度控制 (7) 3.2.基于装配的尺寸精度控制 (8) 结论 (9) 参考文献 (10)

第一章绪论 现代汽车工业中车身制造的特点是制造系统庞大,往往包括上百个冲压件,几十套工装夹具,和上百个工序;制造工艺复杂,包括材料,冲压,焊接,涂装,总装等工艺流程。这些特点就导致引起车身尺寸变异的偏差源很多,车身尺寸质量的控制就十分困难。为了监控车身尺寸质量,就必须对零件、工装、操作、测量全程监控。

第二章影响因素 2.1.工装夹具 工装夹具是车身各零件定位和装配的载体。车身主要由薄板冲压件组成,“321”定位原理在车身焊接夹具设计中已不适用,其第一基面上的定位点数目应大于3。定位效果不仅取决于定位点的数目,还取决于定位点的布置形式。 工装夹具的保证能力是有效控制车身尺寸稳定性的关键。在车身制造过程中,工装夹具的材料性能、结构设计以及夹具与零件的匹配情况等,都将影响到工装夹具长期使用的尺寸精度保证能力。在车身生产过程中,基于冲压件尺寸相对于设计尺寸的偏差,会导致工装夹具与零件间产生不同程度的应力集中,长期作用将导致夹具变形和失效,保证能力降低。我们应对工装夹具进行持续状态监控、潜在失效源排除,及时对故障工装夹具进行维护,消除其失效造成的尺寸偏差。 2.2.零件偏差 零件偏差主要出现在冲压阶段,冲压件尺寸偏差造成车身装焊时处于非自然状态,是造成尺寸偏差的另一个原因。多数情况下,由于零件之间匹配不良,虽然在夹具较大的压紧力作用下强行匹配并点焊在一起,但由于产生了较大的强制变形,增加了车身尺寸的不确定性,产生了尺寸偏差。 零件变形是引起尺寸偏差的又一因素,主要问题出现在零件的包装和运输过程。部分变形情况无法目测识别,即使修复后也无法完全恢复至设计尺寸,造成车身尺寸偏差,应结合零件的特点合理设计包装形式和运输方式,消除此类零件偏差。 2.3.操作过程 装焊过程因素是白车身尺寸偏差的主要影响因素,主要包括零件装配、夹具开合以及焊接过程等几方面的顺序和手法(非自动化生产线)。在非自动化制造中,操作过程标准化是控制过程偏差的有效手段,实施标准化操作后,人工操作的不一致、不稳定和不确定性降至最低。 在车身焊接过程中,合理设计/优化操作顺序对车身尺寸精度控制是必要的,操作顺序设计不当会引起零件尺寸偏差和变形。在L车型投产初期,车身顶盖前、后横梁的Z向尺寸波动较大。分析发现,顶盖横梁的内外板匹配面共有64个焊点,焊接顺序显著影响横梁区域尺寸精度,进而对侧围定位造成影响。对焊接顺序进行优化,尺寸偏差和稳定性得到了有效改善。 在非自动化生产线的制造过程中,操作人员的操作手法也会对车身尺寸产生影响。如焊钳电极臂与被焊零件施焊面间角度不垂直,易引起焊点扭曲和焊接变形;焊钳电极臂因角度不当而接触到临近位置的零件边缘,易引起焊接分流和零件变形。在M车型车身尺寸监控中曾发现,行李箱开口两侧翻边区域Z向定位波动较大。分析表明,焊接过程中焊钳电极臂与零件干涉,导致该区域变形。对

汽车设计-汽车车身关键控制点设计规范模板

XX公司企业规范 编号xxxx-xxxx 汽车设计- 汽车车身关键控制点设计规范模板XXXX发布

汽车车身关键控制点设计规范模板 前言 本规范是根据有关国家标准和行业标准,结合设计和生产的需要而制定的。 1 范围 本规范规定了白车身关键控制点设计定义 本规范适用于公司所有车型白车身开发。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是不注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 Q/ZTB 05.008-2010车身漏液孔及定位孔的设计 Q/ZTB 05.001-2010 CATIA车身建模标准 3 定义和术语 3.1 车身统一基准系统RPS(Reference point System) 在车身设计、制造和检测过程中,为避免设计基准、冲压基准、焊接基准和检测基准等基准之间的变换,保证车身在设计过程中零件之间、分总成及其组成零件之间、总成及其组成分总成之间、总成之间、车身及其组成总成之间的设计基准的一致性;保证生产过程中对应于不同的焊装工位,其焊装加工基准具有统一性;保证检测过程中检测对象的检测状态与生产过程中的生产状态的相似性和检测数据与设计基准的可比性,而采用的一种统一基准,也即车身统一基准系统,简称RPS。 3.2 车身总成关键控制点 在车身总成设计、制造和检测过程中,能直接影响整车质量,必须在各个环节中均要求得到保证的点(RPS点)。 采用这些点的意义有两点:一、通过测点,来验证其坐标值能否满足设计要求;二、将相关控制点按功能组织在一起,测量其功能尺寸,从而有效地验证功能尺寸是否符合要求。 4 技术要求 4.1.1 与关键控制点对应的标准件根据不同车型有所不同,列表中只是列出范例,实际应用时必须如实填写;装配卡扣的控制点要填写卡扣的型号; 4.1.2 表中总成列出的控制点数量与实际需要控制点不一致时,可根据实际需要增减; 4.1.3同一个总成,由于选用材料或制造方法不同,控制项目会在内外饰或车身分别重复列出,可根据实际需要选择;

汽车白车身尺寸开发与控制

汽车白车身尺寸开发与控制 摘要:汽车白车身尺寸影响到产品的外观品质和整车性能,逐渐受到各个主机厂 的重视。在产品开发过程中需要根据市场、用户和性能等方面的要求,制定整车尺 寸要求,通过尺寸链分析将整车尺寸要求分解到零部件,制定合理的零部件尺寸和 公差,进而制定零部件和白车身工装、工艺和检具的开发策略和尺寸测量计划,对 关键的尺寸进行监控和分析,达到白车身稳定控制的目的。基于此,文章就汽车白 车身尺寸开发与控制展开论述。 关键词:汽车白车身;尺寸开发;尺寸控制 引言 随着我国社会经济的快速发展,再加上我国政府实施的“车辆购置税减免”、“汽车下乡活动”等一系列政策,汽车已经走进千家万户。各大厂商为了吸引更多 的客户,都在对车身结构进行优化设计,提高汽车的性能优势,而车身尺寸精度 是影响汽车质量的重要因素。因此对汽车白车身尺寸开发与控制展开全面细致地 分析探讨,具有重要的理论意义和实践价值。 1汽车白车身尺寸开发与控制现状 由于国内的自主品牌所采用的是相对特殊的逆向开发的方法,而且在测量的时 候基本采用的还是国外的测量方法,所以在测量的方式和项目方面都不完善,在车 身的尺寸测量方面虽然是模仿国外,但是整体的水平还是有着很大的差距。一旦测 量点发生了偏差,就无法得知后边可能会造成的影响,所反馈的问题又不能及时的 得到处理。所以生产中的车身尺寸的性能就很不稳定,会有很大的波动,整车的组 装也就出现问题,造成汽车最后的运行不稳定,出现啃胎和跑偏的现象。 2白车身尺寸的影响因素 2.1零件尺寸误差 白车身的冲压件,主要分为两部分:一部分是车身表面的外覆盖件,另一部 分是内部结构冲压件,车身的结构非常复杂,在车身制造过程中需要经过冲压、 剪切、弯曲、拉伸等多个过程环节,而且很多厂商都对车身尺寸提出了很高的要求,在加工过程中,每一个环节都有可能出现误差,而且这种差错会一级一级放大,使得车身整体尺寸与实际需求存在很大的差距,甚至会导致车身彻底报废。 例如在冲压环节,冲压件的模具位置、冲压力度都存在一定的变动区间,冲压模 具在长时间使用之后其精度和形状也得不到保障,使得冲压件的尺寸很容易出现 差错,冲压件在包装运输过程中,碰撞、拖拽等操作都会容易导致出现零件变形,影响到零部件尺寸,而且这种变形大多无法通过肉眼察觉出来,这种尺寸有问题 的零件会一直存在于加工环节当中,最终影响到白车身尺寸及整车质量。 2.2夹具结构不合理 夹具主要用来保证产品的形状和尺寸精度符合图纸和技术要求,必须使被装 配的零件或部件获得正确的位置和可靠的夹紧,防止在焊接过程中出现零部件焊 接变形问题。夹具主要具备定位和夹紧功能,在焊装过程中,即使在焊装夹具的 夹持下,钣金件的位移和变形还是在所难免,只是数量上是相对微小而已。为减 少焊接过程中的位移和变形,对夹具定位机构的位置、数量、夹紧力等都有相关 要求。一条白车身焊接生产线,有数百套夹具,每套夹具都会影响到部分安装点 的尺寸位置。在焊接工艺中,车身的定位效果一方面受到夹具定位点数目的影响,另一方面会受到定位点分布的影响,工装夹具的材料性能、结构特点都会车辆的 定位精度产生一定的影响,而且这种影响是不受人为控制的,这就导致白车身尺

整车总布置硬点设计规范

XXXXXX有限公司 整车总布置硬点设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 20100000000发布 20100000000实施 XXXXXX有限公司发布

目录 一概述 (2) 二整车设计基准 (2) 1.1 整车坐标系 (2) 1.2 整车设计状态 (2) 三整车总体设计硬点 (3) 3.1整车外部尺寸参数控制硬点 (3) 3.2底盘系统布置主要控制硬点 (5) 3.3人机工程布置设计硬点 (8) 四结束语 (9)

一概述 整车的总布置设计过程是设计硬点(Hard Point)和设计控制规则逐步明确、不断确定的过程。设计硬点是确定车身、底盘与零部件相互关系的基准点、线、面及控制结构的统称,主要分为安装装配硬点(简称ASH,包括尺寸与型式硬点)、运动硬点(简称MTH)、轮廓硬点及性能硬点等四类。 设计硬点的确定过程就是总布置设计逐步深化的过程,后续的设计工作必须以确定的设计硬点为基础展开。但随着设计的深入和方案的修改完善,部分设计硬点还有进一步调整的可能。 所有硬点值都是在整车坐标系下的坐标值,长度值表示到小数点后一位,十分位为估计值(四舍五入)。角度值表示到小数点后一位,十分位为估计值(四舍五入),用度分秒表示时书写到分。长度单位未注明均为mm,角度单位未注明均为°。 所有未注明的安装硬点均指与车身配合面上车身孔的几何中心点的坐标,例如:配合圆孔的坐标指配合面车身圆孔圆心坐标,椭圆孔或长圆孔的坐标指配合面椭圆孔或长圆孔的几何中心点的坐标,方形孔的坐标指配合面对角线交点的坐标。 二整车设计基准 1.1 整车坐标系 电动乘用车设计过程中,整车总布置在设计软件三维环境下进行。整车坐标系采用右手坐标系,它是总布置设计和详细设计中的基准线。整车坐标系与设计软件中整车文件的绝对坐标系重合。 整车坐标系的定义如下:高度方向,取汽车车架中间平直段的上平面为Z轴零线,上正下负;宽度方向,取汽车的纵向对称中心线为Y轴零线,以汽车前进方向左负右正;长度方向,取通过设计载荷时汽车前轮中心的垂线为X轴零线,前负后正;整车坐标系原点即为三个坐标轴的交点。 1.2 整车设计状态 整车设计的设计状态按GB19234-2003《乘用车尺寸代码》规定执行,即满载状态;空载状态(整车整备质量状态)和半载状态则作为另两个重要状态进行设计校核。 在整车的布置中,将车架放平(车架中间平直段保持水平),作为基准保持不动,在车身上固定的底盘件也随之保持不动。车轮的不同状态构成了不同的地面线,从而得到空载、半载、满载等不同的整车姿态。

汽车白车身设计规范

汽车白车身设计规范

————————————————————————————————作者: ————————————————————————————————日期:

汽车白车身设计规范 1. 范围 本标准归纳了[BIW]白车身结构设计的一些基本方法和注意事项。 本标准适用于长春宇创公司白车身结构设计及检查。 2.基本原则 2.1 白车身设计是一个复杂的系统并行设计过程,要彻底地摒弃孤立地单个零件设计方法,任何一个零件只是其所处在的分总成的一个零件,设计时均应考虑其与周边相关零部件的相互关系。 评注:周边造型匹配[面差、分缝影响外观];周边安装匹配[焊接装配、安装件的连接、安装空间]2.2 任何一种车型的白车身结构均可按三层板的设计思想去构思结构设计,即最外层是外板,最内层是内板,中间是加强板,在车身附件安装连接部位应考虑设计加强板。 评注:结构的强度、刚度与横截面积有关系,与周边的展开的周长也有关系,“红旗3”轿车的一个宣传点就是其前防撞横梁为六边型。 2.3 所设计的白车身结构在满足整车性能上、结构上、四大工艺[冲压工艺、焊接工艺、涂装工艺、总装工艺]是否比参考样车或其他车型更优越,是否符合国内(尤其是客户)的实际生产状况,以便预先确定结构及工艺的改良方案。 2.4 白车身在结构与性能上应提供车身所需的承载能力,即强度和刚度要求。 3.冲压工艺要求 3.1 在设计钣金件时,对于影响拉延成型的圆角要尽可能放大,原则上内角R≥5,以利于拉延成型;对于折弯成型的圆角可以适当放小,原则上R≈3即可,以减小折弯后的回弹。 1)板件最小弯曲半径 最小弯曲半径见下表: 最小弯曲半径(R)、最小直边高度(h)、最小孔边到弯曲半径R中心的距离(L)值 行业标准材料 弯曲半径(R)、 直边高度h、 距离L 冷轧板、镀锌板弯曲半径R≥2t 直边高度h≥R+2t 距离L≥2t 优先使用 标准 冷轧板、镀锌板弯曲半径R≥3t

相关主题