搜档网
当前位置:搜档网 › 几个重要的特殊数列

几个重要的特殊数列

几个重要的特殊数列
几个重要的特殊数列

几个重要的特殊数列

基础知识

1.斐波那契数列

莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即:

假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?

这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用表示第个月初时免

房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是

第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。

现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。

特征根法:设二阶常系数线性齐次递推式为(),其特征方程为

,其根为特征根。

(1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定;

(2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。(这个问题的证明我们将在后面的讲解中给出)

因此对于斐波那契数列,对应的特征方程为,其特征根为:

,所以可设其通项公式为,利用初始条件

得,解得

所以。

这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如:

它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明)

(1)斐波那契数列的前项和;

(2);

(3)();

(4)();

(5)();

2.分群数列

将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组

为单位的序列。如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……

依次类推,第组有个元素,即可得到以组为单位的序列:(),(),(),……我们通常称此数列为分群数列。

一般地,数列{}的分群数列用如下的形式表示:(),(),(),……,其中第1个括号称为第1群,第2个括号称为第2群,第3个括号称为第3群,……,第

个括号称为第群,而数列{}称为这个分群数列的原数列。如果某一个元素在分群数列的第个群中,且从第个括号的左端起是第个,则称这个元素为第群中的第个元素。

值得注意的是一个数列可以得到不同的分群数列。如对数列{}分群,还可以得到下面的分群数列:第个群中有个元素的分群数列为:(),(),()…;

第个群中有个元素的分群数列为:(),(),()…等等。

3.周期数列

对于数列{},如果存在一个常数,使得对任意的正整数恒有成立,则称数

列{}是从第项起的周期为T的周期数列。若,则称数列{}为纯周期数列,若,则称数列

{}为混周期数列,T的最小值称为最小正周期,简称周期。

周期数列主要有以下性质:

(1)周期数列是无穷数列,其值域是有限集;

(2)周期数列必有最小正周期(这一点与周期函数不同);

(3)如果T是数列{}的周期,则对于任意的,也是数列{}的周期;

(4)如果T是数列{}的最小正周期,M是数列{}的任一周期,则必有T|M,即M=();

(5)已知数列{}满足(为常数),分别为{}的前项的和与积,若

,则,;

(6)设数列{}是整数数列,是某个取定大于1的自然数,若是除以后的余数,即

,且,则称数列是{}关于的模数列,记作。若模数列是周期的,则称{}是关于模的周期数列。

(7)任一阶齐次线性递归数列都是周期数列。

4.阶差数列

对于一个给定的数列{},把它的连续两项与的差-记为,得到一个新数列,把数

列称为是原数列{}的一阶差数列;如果,则称数列是数列的一阶差数列,是

{}的二阶差数列;依次类推,可以得到数列{}的阶差数列,其中。

如果某一数列的阶差数列是一非零常数列,则称该数列为阶等差数列。其实一阶等差数列就是我们通常说的等差数列;高阶等差数列是二阶或二阶以上等差数列的统称。

高阶等差数列具有以下性质:

(1)如果数列{}是阶等差数列,则它的一阶等差数列是阶差数列;

(2)数列{}是阶等差数列的充要条件是:数列{}的通项是关于的次多项式;

(3)如果数列{}是阶等差数列,则其前项之和是关于的次多项式。

高阶等差数列中最常见的问题是求通项公式以及前项和,更深层次的问题2是差分方程的求解。解决问题的基本方法有:

(1)逐差法:其出发点是;

(2)待定系数法:在已知阶数的等差数列中,其通项与前n项和S n是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得

(3)裂项相消法:其出发点是an能写成=f(n+1)-f(n)

(4)化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的

设数列{}不是等比数列:若它的一阶等差数列是公比不为1的等比数列,则称它是一阶等比数列;若它的一阶差数列不是等比数列,而二阶差数列是公比不为1的等比数列,则称这为二阶等比数列。一般地说,如果某

一个数列它的阶等差数列不是等比数列,而阶差数列是公比不为1的等比数列,则称这个数列为阶等

比数列,其中。

0阶等比数列就是我们通常所说的等比数列,一阶及二阶以上的等比数列,统称为高阶等比数列。

典例分析

例1.数列的通项公式为,.记,求所有的正整数,使得能被8整除.

(2005年上海竞赛试题)

解:记

注意到,可得

因此,Sn+2除以8的余数,完全由Sn+1、Sn除以8的余数确定

,故由(*)式可以算出各项除以8的余数依次是1,3,0,5,7,0,1,3,……,它是一个以6为周期的数列,从而

故当且仅当

例2.设是下述自然数N的个数,N的各位数字之和为,且每位数字只能取1、3或4,求证:是完全平方数,这里

分析:这道题目的证法很多,下面我们给出借助于斐波那契数列证明的两种方法。

方法一:利用斐波那契数列作过渡证明。

设,其中且。

假设,删去时,则当依次取1,3,4时,分别等于,故当

时,(1)

作数列:且,

现用数学归纳法证明下述两式成立:

(2)

(3)

因为故当时(2)(3)两式成立。

假设当()时,(2)(3)两式成立,由当时,由(1)式、的定义以及归纳假设,知

这样(2)(3)两式对于成立。故(2)(3)两式对于一切自然数成立。,由(2)即可知是完全平方数。

方法二:由的递推关系式寻求的递推关系式,从这个递推关系式对求与斐波那契数列的关系。

设,其中且。

假设,删去时,则当依次取1,3,4时,分别等于,故当

时,

所以

令,则当时,有

因为,下用数学归纳法证明,其中是斐波那契数列:

且,

当时结论显然;

设时结论成立,于是

即当时命题成立。

从上述证明可知,对一切正整数,是完全平方数,从而也是完全平方数。

例3.将等差数列{}:中所有能被3或5整除的数删去后,剩下的数自小到大排成一个数列{},求的值.(2006年江西省竞赛试题)

解:由于,故若是3或5的倍数,当且仅当是3或5的倍数.

现将数轴正向分成一系列长为60的区间段:(0,+ )=(0,60]∪(60,120]∪(120,180]∪…,注意第一个区间段中含有{}的项15个,

即3,7,11,15,19,23,27,31,35,39,43,47,51,55,59.其中属于{}的项8个,为:

,,,,,,,,

于是每个区间段中恰有15个{}的项,8个{}的项,

且有,k∈N,1≤r≤8.由于2006=8×250+6,而,

所以.

例4.将正奇数集合从小到大按第组有个奇数进行分组:{1},{3,5,7},{9,11,13,15,17},……问1991位于第几组?

解:需要写出第n组的第1个数与最后一个数,1991介于其中,而第n组的最后一个数为。

第n组的第一个数即第n-1组的最后一个数后面的奇数,为[2(n-1)2-1]+2=2(n-1)2+1。由题意知2(n-

1)2+1,

解得(n-1)2且,从而且,故,即1991位于第32级中。

例5.设等差数列的首项是,公差为,将按第组有个数的法则分组如下:

,,,……,

试问是第几组的第几个数?并求出所在那组的各项的和。

解:设位于第组,则前组共有3+6+9+…+3(k-1)=项,

所以即

解此方程组得:,

因为且-(,所以。

因此,是第组的第个数,其中。

因为第组是以为首项,为公差的等差数列,所以其所有项的和等于

,其中。

例6.设奇数数列:1,3,5,7,9……(1)按2,3,2,3……的个数分群如下:

(1,3),(5,7,9),(11,13),(15,17,19), (2)

(I)试问数列(1)中的2007是分群数列(2)中的第几群中的第几个元素?

(II)求第个群中的所有的元素之和。

解:(I)将数列(1)重新分群,按每个群含5个元素的方式分群:

(1,3,5,7,9),(11,13,15,17,19), (3)

由于2007排在(1)中的第1004个,因此2007是分群数列(3)中的第201群中的第4个元素。对照分群数列(2)与(3),容易知道(3)中的第201个群的第4个元素是数列(2)中的第402个群中的第2个元素,所以2007是分群数列(2)中第402群中的第2个元素。

(II)对分偶数和奇数两种情况进行讨论。

若为偶数,则,则数列(2)的第群的元素是数列(3)的第群的第3,4,5个元素,由于数列

(3)的第群的5个元素之和是,所以数列(2)中的第群的元素之和为

若为奇数,设,则数列(2)的第群的元素是数列(3)的第群的第1,2个元素。由于数

列(3)的第群的5个元素之和是,所以数列(2)中的第群的元素之和为

例7.数列:1,9,8,5,……,其中是的个位数字(),

试证明:是4的倍数。

证明:数列中为奇或偶数时,分别记为1,0,则得数列:

1,1,0,1,0,1,1,0,0,1,0,0,0,1,1,1;1,1,0,1,0,1,1,0,0,1,0,0,0,1,1,1;…且与的奇偶性相同。

由于数列,的定义及前面得到的新数列的一些项,

可见是以15为周期的周期数列,即得,

而,,……,,

于是……即在1985到2000的这16项中,奇数、偶数各有8项,由于偶数的平方能被4整除,奇数的平方被4除余1,由此命题得证。

例8.已知,,,试证:对于一切,所有的项都不是4的倍数。

证明:方法一:由题设中的递推关系,知的奇偶性只有三种情况:奇,偶,奇;偶,奇,奇;奇,奇,偶。均不是4的倍数。下面证明中的所有项都不是4的倍数。

假设存在是4的倍数的最小下标,则,且均为奇数,为偶数。

由于和,得所以是4的倍数,与所设的矛盾!因此命题得证。

方法二:由于该数列不是周期数列,但模4后得到的数列是周期数列,从开头的几项1,2,7,29,22,23,49,26,-17,……模4后得1,2,3,1,2,3,1,2,3,……发现这是一个周期为3的周期数列。

设,对于(其中)成立,则,所以与

奇偶性相同,

所以

因此,将数列每一项模4后,余数成周期数列,周期为3,因此所有项都不是4的倍数。

例9.一个三阶等差数列{an}的前4项依次为30,72,140,240,求其通项公式

解:由性质(2),an是n的三次多项式,可设an=A n3+B n2+C n+D

由a1=30、a2=72、a3=140、a4=240得

解得:

所以an=n3+7n2+14n+8

例10.对于任一实数序列A={a1,a2,a3,…},定义A为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设

序列(A)的所有项均为1,且a19=a92=0,求a1

解:设序列A的首项为d,则序列A为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项

显然an是关于n的二次多项式,首项等比数列为,

由于a19=a92=0,必有,所以a1=819.

方法二:由题意知,数列A是二阶等差数列,因面它的通项是关于的二次三项式,故可设,由a19=a92=0,知19,92是方程的两个根,所以

,又已知,

从而

解得,所以,将代入求得a1=819.

针对练习:(主要是阶差数列的练习)

1.数列{an}的二阶差数列的各项均为16,且a63=a89=10,求a51

解:法一:显然{an}的二阶差数列{bn}是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是an=

a1+

=a1+(n-1)a+8(n-1)(n-2)

这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以

an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658

解:法二:由题意,数列{an}是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10

由于{an}是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16

即a3-2a2+a1=16,所以

A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16

解得:A=8

an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658

2.求和:S n=1×3×22+2×4×32+…+n(n+2)(n+1)2

解:S n是是数列{n(n+2)(n+1)2}的前n项和,

因为an=n(n+2)(n+1)2是关于n的四次多项式,所以{an}是四阶等差数列,于是S n是关于n的五次多项式k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求S n可转化为求

K n=和T n=

k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以

K n==

T n==

从而S n=K n-2T n=

3.已知整数列{an}适合条件:

(1)an+2=3an+1-3an+an-1,n=2,3,4,…

(2)2a2=a1+a3-2

(3)a5-a4=9,a1=1

求数列{an}的前n项和S n

解:设bn=an+1-an,C n=bn+1-bn

C n=bn+1-bn=(an+2-an+1)-( an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1

=C n-1 (n=2,3,4,…)

所以{ C n}是常数列

由条件(2)得C1=2,则{an}是二阶等差数列

因此an=a1+

由条件(3)知b4=9,从而b1=3,于是an=n2

4.求证:二阶等差数列的通项公式为

证明:设{an}的一阶差数列为{bn},二阶差数列为{cn},由于{an}是二阶等差数列,故{cn}为常数列。又c1=b2-b1=a3-2a2+a1

所以

5.求数列1,3+5+7,9+11+13+15+17,…的通项

解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组:

(1)、(3,5,7)、(9,11,13,15,17),…然后求第n组中各数之和an

依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an

将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而

an=(2n-2n+1)(2n-1)

6.数列{an}的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求{an}的通项公式

解:易算出{an}的二阶差数列{cn}是以2为首项,2为公比的等比数列,则cn=2n,

{an}的一阶差数列设为{bn},则b1=1且

从而

7.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,愉好是n个而不剩余纸,这可能吗?

解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002

由于12+32+…+(2n-1)2=[12+22+…+(2n)2]-[22+42+…+(2n)2]=随着n的增大而增大,当n=19时

=9129<10000,当n=20时=10660>10000,故不存在…

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

(整理)几个重要的特殊数列

几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多?斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 特征根法:设二阶常系数线性齐次递推式为 (),其特征方程为,其根为特征根。 (1)若特征方程有两个不相等的实根,则其通项公式为 (),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为 (),其中A、B由初始值确定。(这个问题的证明我们将在后面的讲解中给出) 因此对于斐波那契数列,对应的特征方程为,其特征根为:

,所以可设其通项公式为,利用初始条件得,解得 所以。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。如在上述数列中,我们将作为第

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

常见特殊数列求和

常见特殊数列求和 前n 项和公式都是以正整数为自变量的函数,在熟练掌握等差、等比数列求和方法的基础上,还要会用其他方法求常见特殊数列的和。 一、分解法 有些特殊数列可以分解为基本的等差数列或等比数列,再分别求和。 例1:求数列211,412,813,…,n n 2 1的前n 项和n S 。 .解:这个数列可以分解成一个等差数列和一个等比数列之和。 n S =211+412+813+…+n n 21=(1+2+3+…+n )+(21+41+…+n 2 1) =()21+n n +2 1121121-??? ??-n =()21+n n +1-n 21 二、错位相减法 有些数列可以把原数列的前n 项分别乘以一个适当的因数作出一个辅助数列,它与原数列相减,从而得到n S 所满足的一个关系式,然后解出n S 。 例2:求数列21,222,323,…,n n 2的前n 项和n S 。 解:n S =21+222+323+…+121--n n +n n 2① 作辅助数列:上式两边同时乘以21 21n S =221+322+423+…+n n 21-+12+n n ② 于是①-②,得 n S - 21n S =21+(222-221)+(323-322)+…+(n n 2-n n 21-)-12+n n ∴21n S =21+221+321+421+…+n 21-12+n n =2 1121121-??? ??-n -12+n n =1-n 21-12+n n ∴n S =2-121 -n -n n 2 评注:设a 1,a 2,a 3,…,a n 组成等差数列,b 1,b 2,b 3,…,b n 组成等比数列,那么求 n S =+++332211b a b a b a …+n n b a 或S ′=a 1b 1+a 2b 2+a 3b 3+…+a n b n 都可以考虑用错位相减法求和,

高中数学数列特殊解法

对于一些基本的求数列的问题。一般采用比较浅的方法就可以得到、但是对于无法用基本原理解的数列就需要特殊解法 不动点法 如果数列 }{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有 h ra q pa a n n n ++= +1(其中p 、q 、 r 、h 均为常数,且 r h a r qr ph - ≠≠≠1,0,),那么,可作特征方程 h rx q px x ++= . (1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ 若λ≠1a ,则,N ,1∈+= n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存 在 ,N 0∈n 使00=n b 时,无穷数列}{n a 不存在. (2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则 11 2--= n n n c c a λλ,,N ∈n 其中 ).(,N ,)(211212111λλλλλ≠∈----= -a n r p r p a a c n n 其中 例14 已知数列{}n a 满足112124 441 n n n a a a a +-= =+,,求数列{}n a 的通项公式。 解:令212441x x x -= +,得2 420240x x -+=,则1223x x ==,是函数2124()41 x f x x -=+的 两个不动点。因为 112124 2 24121242(41)13262 132124321243(41)92793341 n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+。所以数列

数列求和的常用方法

数列求和的常用方法 主要方法: 1.求数列的和关键是看数列的通项公式形式注意方法的选取: 2.求和过程中注意分类讨论思想的运用;转化思想的运用; 一、公式法 二、分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 1、求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 2 、 求 数 列 的 前 n 项 和 : 231 ,,71,41, 1112-+???+++-n a a a n ,… 三、 合并求和法: 1、求22222212979899100-++-+-Λ的和。 2、1-2+3-4+5-6+7-8+9-……….+ n 1-1 n +)( 3(2014山东19文) 在等差数列{}n a 中,已知2d =,2a 是1a 与4a 等比中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()12 ,n n n b a += 记()1231n n n T b b b b =-+-++-L ,求n T . 4.( 2014山东19理) 已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4) 1(1 1 +--n n n a a n 求数列}{n b 的前n 项和n T 。 5、(2011山东理数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:()1ln n n n n b a a =+-,求数列{}n b 的前n 项和n S . 6、(2011山东文数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-, 求数列{}n b 的前2n 项和2n S . 四、 错位相减法:.×. 1、已知数列)0()12(,,5,3,11 2 ≠--a a n a a n Λ,求前 n 项和。 2、 132)12(7531--+???++++=n n x n x x x S 3、求数列 ??????,2 2,,26,24,2232n n 前n 项的和 4、{2}.n n n ?求数列前项和 5、设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=

几个重要的特殊数列

几个重要的特殊数列基础知识 1.斐波那契数列 莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧 洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难, 个月初时免房里的免子的对数,则有,第可以用表示第个月初就已经个月初时,免房内的免子可以分为两部分:一部分是第另一部分是第个月初时新出生的小免子,共有对;在免房内的免子,共对,于是有。有 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 :设二阶常系数线性齐次递推式为特征根法 ),其特征方程为(,其根为特征根。 则其通项公式为),若特征方程有两个不相等的实根(1),其中A、B 由初始值确定;( (2)若特征方程有两个相等的实根,则其通项公式为 ),其中A、(B由初始值确定。(这个问题的证明我 们将在后面的讲解中给出) ,对应的特征方程为因此对于斐波那契数列,其特征根为: 所以可设其通项公式为,, 得利用初始条件,解得

所以。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) 项和;(1)斐波那契数列的前 2);( (3));( );( 4 () (5()); .分群数列2 :按照一定的规则依顺序用括{}将给定的一个数列我们将如在上述数列中,作为第号将它分组,则可以得到以组为单位的序列。作为第二组,将作为第三组,……依次类推,第一组,将组有(个元素,即可得到以组为单位的序列:(),),(),……我们通常称此数列为分群数列。 的分群数列用如下的形式表示:(),{ 一般地,数列} ),(),……,其中第1个括号称为第(1群,第2个括号称为第2群,第3个括号称为第3群,……,第个括号称为第群,{}称为这个分群数列的原数列。如果某一个元素在分群数列的第而数列个群中的第个,则称这个元素为第群中,且从第个元个括号的左端起是第素。 {} 值得注意的是一个数列可以得到不同的分群数列。如对数列分群,还 可以得到下面的分群数列: ),(个群中有第个元素的分群数列为:(), )…;( ),(第),个群中有个元素的分群数列为:()…等等。( .周期数列3 如果存在一个常数,对于数列{恒,}使得对任意的正整数 {有T项起的周期为的周期数列是从第成立,则称数列}。若 ,若,则称数列{为纯周期数列},为}混周期数列,则称数列{T的最小值称为最小正周期,简称周期。 周期数列主要有以下性质:

数列求和7种方法(方法全-例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21

高考数学-求数列通项的特殊方法归纳猜想

1 高考数学-求数列通项的特殊方法归纳猜想 归纳猜想:给出或求出了数列的前几项可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之. 例1、已知点的序列* ),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…,⑴写出n x 与21,--n n x x 之间的关系式(3≥n );⑵设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明. 解:(1)∵ n A 是线段32--n n A A 的中点, ∴12 (3)2 n n n x x x n --+=≥; (2)由题意,得a a x x a =-=-=0121, 21 23222 x x a x x x +=-= -=2111()22x x a --=-,3234332x x a x x x +=-=-=3211 ()24 x x a --=, 猜想*)() 2 1 (1 N n a a n n ∈-=-,下面用数学归纳法证明: (1)当n=1时,a a =1显然成立; (2)假设n=k 时命题成立,即*)() 2 1(1 N k a a k k ∈-=-,则当n=k+1时, k k k k k k x x x x x a -+= -=++++21121=k k k a x x 2 1)(211-=--+=1111 ()()()222k k a a ---=-, ∴ 当n=k+1时命题也成立,故命题对任意* N n ∈都成立. 练习:已知数列{}n a 满足189 a = ,122 8(1)(21)(23)n n n a a n n ++=+ ++,求通项n a . 答案:22425 a = ,34849a = ,48081 a = ,猜测22 (21)1(21)n n a n +-= +, (1)当1n =时,189 a = ,所以等式成立; (2)假设当n k =时等式成立,即22 (21)1(21) k k k a +-+= , 1n k =+时等式也成立.

整理几个重要的特殊数列

几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 特征根法:设二阶常系数线性齐次递推式为 (),其特征方程为,其根为特征根。 (1)若特征方程有两个不相等的实根,则其通项公式为 (),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为 (),其中A、B由初始值确定。(这个问题的证明我们将在后面的讲解中给出) 因此对于斐波那契数列,对应的特征方程为,其特征根为:

,所以可设其通项公式为,利用初始条件得,解得 所以。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。如在上述数列中,我们将作为第

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列求和的常用方法(三课时)

数列求和的常用方法(三课时) 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法: 一、直接(或转化)由等差、等比数列的求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 2 1 3)]1(21[+==∑=n n k S n k n 例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列. (2)令31ln 12n n b a n +== ,,,, 求数列{}n b 的前n 项和T . 解:(1)由已知得12313 27:(3)(4)3.2 a a a a a a ++=?? ?+++=??, 解得22a =. 设数列{}n a 的公比为q ,由22a =,可得132 2a a q q ==,. 又37S =,可知2 227q q ++=,即22520q q -+=, 解得121 22 q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=. (2)由于31ln 12n n b a n +== ,,,, 由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-= {}n b ∴是等差数列. 12n n T b b b ∴=+++ 1()2 (3ln 23ln 2) 23(1)ln 2. 2 n n b b n n n += += += 故3(1) ln 22 n n n T += .

第八节几个重要的特殊数列

第九节 几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多?斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用n F 表示第n 个月初时免房里的免子的对数,则有3,2,1321===F F F ,第2+n 个月初时,免房内的免子可以分为两部分:一部分是第1+n 个月初就已经在免房内的免子,共有1+n F 对;另一部分是第2+n 个月初时新出生的小免子,共有n F 对,于是有n n n F F F +=++`12。 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 特征根法:设二阶常系数线性齐次递推式为n n n qx px x +=++12(0,,1≠≥,q q p n 为常数),其特征方程为q px x +=2,其根为特征根。 (1)若特征方程有两个不相等的实根βα,,则其通项公式为n n n B A x βα+=(1≥n ),其中A 、B 由初始值确定; (2)若特征方程有两个相等的实根α,则其通项公式为1)1([--+=n n n B A x αα(1≥n ),其中A 、B 由初始值确定。 (这个问题的证明我们将在下节课给出) 因此对于斐波那契数列n n n F F F +=++`12,对应的特征方程为12 +=x x ,其特征根为: 251,25121-=+=x x ,所以可设其通项公式为n n n B A F ???? ??-+???? ??+=251251,利用初始条件2,121==F F 得???????=???? ??-+???? ? ?+=???? ??-+???? ??+2 251251125125122B A B A ,解得5251,5251--=+=B A 所以??? ????????? ??--???? ??+=++1125125151n n n F 。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数

数列求和常用方法(经典讲解)

求数列前n 项和常用方法(经典讲解) 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1(21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 2 1 例2 设123n S n =++++,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50)8(12+-n n 50 1 ≤ ∴ 当 8 8-n ,即8n =时,501 )(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那 么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

特殊值法巧解数列题示例

特殊值法巧解数列题示例 特殊值法在解决选择题与填空题中是比较常用的一种方法,在解题中能否灵活运用,体现了解题者的数学素养与能力.下面举例说明特殊值法(特殊数列、特殊数值)在解一些数列题中的应用. 【例1】已知}{n a 是等比数列,且252,0645342=++>a a a a a a a n ,那么53a a +的值等于( ) (A)5 (B)10 (C)15 (D)20 【分析】取}{n a 为常数数列0>=a a n ,则由252645342=++a a a a a a 得2 54252=?= a a ,故5253==+a a a ,所以选A. 【例2】在等差数列}{n a 中,若45076543=++++a a a a a ,则=+82a a ( ) (A)45 (B)75 (C)180 (D)300 【分析】取}{n a 为常数数列a a n =,则由45076543=++++a a a a a 得904505=?=a a ,所以180282==+a a a ,所以选C. 【例3】在各项均为正数的等比数列}{n a 中,若965=a a ,则=+++1032313log log log a a a ( ) (A)12 (B)10 (C)8 (D)2+5log 3 【分析】取}{n a 为常数数列0>=a a n ,则由965=a a 得392=?=a a ,所以 103log 10log log log 31032313==+++a a a ,所以选B. 如果解题者心中有数(具备特殊化思想),那么直接观察利用心算立即可得结果,可大大地提高解题速度,避免不必要的计算。留心观察细事物,沙子也会变金银!

几个重要的特殊数列讲解学习

几个重要的特殊数列

几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第 个月初时,免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于 是有。 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 特征根法:设二阶常系数线性齐次递推式为 (),其特征方程为,其根为特征根。 (1)若特征方程有两个不相等的实根,则其通项公式为 (),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为 (),其中A、B由初始值确定。(这个问题的证明我们将在后面的讲解中给 出) 因此对于斐波那契数列,对应的特征方程为,其特 征根为: ,所以可设其通项公式为,利

用初始条件得,解得 所以。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有 趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列。如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……依次类推,第组有个元素,即 可得到以组为单位的序列:(),(),(),……我们通常称此 数列为分群数列。 一般地,数列{}的分群数列用如下的形式表示:(), (),(),……,其中第1个括号称为第1群,第2个括号称为第2群,第3个括号称为第3群,……,第个括号称为第群,而数列 {}称为这个分群数列的原数列。如果某一个元素在分群数列的第个群中,且从

数列求和7种方法(方法全_例子多)

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式)

=x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n -1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2 +cn ,则a = ,b = ,c = . 解: 原式= 答案: 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和.

相关主题