搜档网
当前位置:搜档网 › 基于加速度的结构件疲劳测试方法研究_黄遂

基于加速度的结构件疲劳测试方法研究_黄遂

基于加速度的结构件疲劳测试方法研究_黄遂
基于加速度的结构件疲劳测试方法研究_黄遂

2015·8

第卷第期

8总第期

50246了动态特性分析。原车架在叉车怠速工况下(约25Hz )由于强迫振动,出现了较大的响应峰值。改进的④号车架虽不能有效地避开在25Hz 附近形成响应峰值,但大幅度降低了响应峰值的幅度,对车架的强迫振动有明显的改善作用。

车架的支撑刚度对车架的动态性能有很大的影响,选择合适的弹簧刚度,可主动控制车架的受强迫振动的激励频段,避开怠速工况下的强迫振动区域,最大限度减小车架的强迫振动,提高叉车的操纵舒适性。

参考文献

[1]田忠.叉车车架的动态特性研究[J].测试技术学报,1996

(10):381-387.

[2]卫良保,

李甲.叉车车架的动态特性与减振分析[J].建筑机械,2013(3):63-66.

[3]吴小峰,

李戈操,张岩,江士同.某型内燃平衡重式叉车车架的静动特性分析[J].工程机械,

2014(1):30-34.[4]杨明亮,徐格宁.基于约束刚柔耦合系统的叉车振动研究[J].机械工程学报,2011(20):89-94.

[5]相曙锋,沈晓庆.叉车车架的试验模态分析[J].工程机械,2014(7):21-25.

通信地址:广西柳州市柳太路1号广西柳工机械股份有限公

司研究总院(545007)

(收稿日期:2015-04-20)

在工程机械作业过程中,出现结构件失效会给用户带来巨大的安全隐患和财产损失,同时也严重影响企业的品牌信誉和产品的销售,生产厂家必须予以重视。结构件的失效类型大体可以分为腐蚀失效、磨损失效和负载失效3类,其发生概率如表1所示。

由表1可见,结构件失效中,负载失效的发生率最高,而且负载失效中,有80%是由交变载荷引起的[1]。因交变载荷引起的金属疲劳失效过程,其损伤累积缓慢而不易察觉。而为了正确评估产品设计寿命,提高整机的可靠性,需要得到结构件在实际工况下所受的应力数据。目前

基于加速度的结构件疲劳测试方法研究

摘要|为了正确评估装载机关键结构件的寿命,提高整机的可靠性,主机厂需要得到各部件在实际工况下所受的应力数据。然而对材料损伤巨大的冲击载荷,普通电栅式应变片传感器往往无法测量。提出基于加速度的结构件疲劳测试方法,即在装载机实际作业工况下,同时采集结构件表面的应变信号和高频率响应的加速度信号,经对比分析、物理意义研究和公式推导,找出二者之间的关系,再根据后续测试的加速度信号,通过目标材料的S -N 曲线分析,评估被测试结构件的疲劳寿命。关键词:结构件;疲劳寿命;加速度信号;应变信号;S-N 曲线

作者简介:黄遂(1984—),男,四川遂宁人,工程师,硕士,研究方向:设备工况状态检测与故障诊断。

黄遂

广西柳工机械股份有限公司

21

试验·研究

Test and Reasearch

2015·8

图1安装在装载机车架上的加速度传感器与应变片

的测试方法中,大多以电栅式应变片传感器来间接测量结构件的应力大小,且主要用于静载测试。然而对于交变

载荷尤其是高频的冲击载荷而言,电栅式应变片传感器由于自身的频率响应低[2](通常小于100Hz ),无法测试到被试件因受到冲击而产生的应变幅值,因此,对该类载荷的测量显得无能为力。本文主要研究交变载荷下基于高频率响应的加速度信号的结构件疲劳测试及评估方法。

1加速度与应变的关系

为寻找加速度与应变存在的关系,在某装载机整机

车架上安装三向加速度传感器,并在对应的方向上粘贴应变片进行实际测量,如图1所示。

表1结构件失效类型及发生率

失效类型发生率/(%)

腐蚀失效15磨损失效

351040

负载失效

静载荷交变载荷

1.1实测条件下加速度与应变的关系

传感器安装调试完成后,采集车架在装载机进行3

种典型工况(翻铲斗、直线铲装、V 形铲装)下的试验数据。测试结果如图2所示(以振动加速度幅值最大的Z 方向为主要研究对象)。图2(a )~图2(c )中的上半部分为应变信号,下半部分为加速度信号。

假设加速度与应变存在一定的比例系数k ,由图2

(a )可得:k 1=61/24=2.5;k 2=77/23=3.3;k 3=58/22=2.6,则翻铲斗工况下k 的范围为2.5~3.3。

同理,由图2(b )可得:k 4=(30~33)/(10~13)=2.5~3;k 5=50/18=2.8,则直线铲装工况下的k 的范围为2.5~2.8。由图2(c )可得:k 6=50/20=2.5;k 7=38/12=3.2;k 8=52/18=2.9;k 9=(38~40)/(10~12)=3.3~3.8,则V 形铲装工况下k 的范围为2.5~3.8。

22

2015·8

第卷第期

8总第期

50246图2(b )直线铲装工况下的某次测试数据

图2(a )翻铲斗工况下的某次测试数据

23

试验·研究

Test and Reasearch

2015·8

图2(c )V 形铲装工况下的某次测试数据

从3种工况的实测数据来看,加速度与应变存在关系式:

a =k ·ε=(2.5~3.8)ε。这种关系是否真实存在,下面将从最基本的原理来进行推导。1.2

加速度与应变的根本关系

加速度和应变都是物体受到力的作用的一种外在表现形式,当物体以加速度运动时,必然存在着结构的微观应变,如图3所示。

当金属受到任意方向的加速度时,金属中的微元会出现不同程度的位移,位移不同而产生扭曲,由此产生了应力,可以通过应变传感器间接测试;该过程无先后顺序,也可以理解成金属材料受力产生形变,其中的微元出现不同程度的位移,产生了应力波,宏观表现为振动,可以通过加速度传感器测试。应变与加速度之间的关系可以通过基本公式推导得出。

由:σ=E ε,σ=ΔF /ΔS ,ΔF=Δm ·a ,Δm=ΔV ·ρ,可得:

ε=σ/E=(1/E )·(ΔF /ΔS )=(1/E )·(Δm ·a /ΔS )=(1/E )·(ΔV ·ρ·a/ΔS )=(1/E )·(ΔS ·Δh ·ρ·a /ΔS )=(Δh ·ρ/E )·a

图3金属受到任意方向的加速度产生应力

24

2015·8

第卷第期

8总第期

50246图4安装在分配阀上的液压钢管

即:ε=k ′·a ,k ′=1/k

以上式中:σ为应力;E 为弹性模量;ε为微应变;Δm 为微元质量;a 为加速度;ΔS 为微元面积;ΔV 为微元体积;ρ为材料密度。

公式推导到最后,E 和ρ均为常数,Δh 是微元的高度,因此,确有ε=f (a )=k ′·a 的关系存在,且关系比例系数k ′仅取决于材料的密度和弹性模量。

由实测数据可知,所测试的装载机车架的加速度与应变的比例系数k ′=1/(2.5~3.8)。

2结构件疲劳寿命评估

以该装载机上故障反馈率最高的安装在分配阀上的

液压钢管(参见图4)为例,运用前文得出的加速度与微应变的关系,对该液压钢管进行疲劳寿命评估。

2.120钢的疲劳特性[3]

该液压钢管的材料为20钢,已知其弹性模量E =207

GPa ;屈服极限σs =254MPa ;强度极限σb =392MPa ,则可计算出该金属材料的疲劳极限:

拉压疲劳极限σrp =0.23(σs +σb )=148MPa ;弯折疲劳极限σrb =0.27

(σs +σb )=174MPa ;扭转疲劳极限σrt =0.15

(σs +σb )=97MPa 以下通过测试正常的装载机作业时,液压钢管处的加速度,再由ε=f (a )=k ′·a ,计算出应力σ,进而评价整机作业时,液压钢管是否能达到该材料的疲劳极限。2.2

加速度测试

分配阀的刚性很大,可以认为分配阀附近都具有相同的加速度,因此贴加速度传感器时,不需像贴应变传感

器一样,必须很准确地贴在测试点。测试后求出的在装载机正常工况下,分配阀处3个方向的合加速度[4-5]如图5所示。

由图5可得,在正常的铲装工况中,分配阀的加速度峰值分布范围为413~584m/s 2,则利用ε=k ′·a 的关系,计算应力分布为:

σ=E ·ε=E ·a /(2.5~3.8)=29.5~48.4MPa 2.3

应力计算

由以上的计算可知,某装载机正常铲装作业时,分配阀加速度峰值达584m/s 2,应力峰值达48.4MPa 。而安装在分配阀上的液压钢管接口处,由于存在焊缝和倒角引

起的应力集中,将存在更大的应力峰值。液压钢管接口处尺寸及实物剖面如图6所示。

图5

正常铲装工况下装载机分配阀上的合加速度

图6

液压钢管接口处尺寸及实物剖面

25

试验·研究

Test and Reasearch

2015·8

图7铲装工况下分配阀上液压钢管的微应变及循环寿命h/r

h/D

0.10.20.30.40.5

0.5 1.90 1.75 1.75 1.90 2.25

1 2.45 2.25 2.35 2.80 3.60

2 3.20 3.00 3.60 4.50 5.70

3 3.75 3.80 4.70 6.2010.0

表2缺口的拉伸应力集中系数[3]

h/r

h/D

0.10.20.30.40.5

0.5 1.80 1.50 1.25 1.10 1.05

1 2.25 1.80 1.50 1.30 1.25

2 2.90 2.30 1.80 1.50 1.30

3 3.50 2.75 2.20 1.80 1.50

表3缺口的弯曲应力集中系数[3]

由图6可知:D=(42-26)/2=8mm,h=(32-26)/2=3mm,

r=1mm(焊缝倒角处,r越大,应力集中系数越小,此处取

较大的1mm作为保守估计)。

根据h/r=3,h/D=0.375,由表2和表3查得该钢管焊

接口处的应力集中系数为:

拉压:a p=4.7~6.2,取6;

弯曲:a b=1.8~2.2,取1.9。

由此可计算出液压钢管倒角处和焊缝口处的最大应

力为:

拉压:σ=σmax·a p=177~290MPa

弯折:σ=σmax·a b=56~92MPa

可见,该液压钢管接口处的应力,在拉压工况下已经

超过20钢的疲劳极限。

2.4管疲劳寿命评估

由上述分析可以发现,正常铲装作业工况下,液压钢

管接口处由于应力集中,局部最大应力会达到290MPa

以上,因此对液压钢管的疲劳评估不能忽略。以下将利用

20钢的S-N曲线[7],对液压钢管的寿命作出评估。

从图7(a)可知,当钢管接口焊缝处最大应力为290

MPa时,能产生近5200的微应变,再对比20钢的S-N

曲线,5200的微应变,对应104循环寿命,实际已进入材

料疲劳的低周循环。结合实际情况,装载机一次铲装循环

大约为30s,一次铲装循环至少存在5次较大的冲击载荷

(见图5)。所以,在极端情况下,钢管的实际寿命仅为:

104次×30s/3600s/5次≈20h

结合我公司对该液压钢管的失效反馈统计(如图8

所示),这也正是为何在整机仅工作200h以内时,就有客

户反馈钢管现出现失效的原因。

通过分析发现,整机作业时,分配阀上的液压钢管会26

2015·8

第卷第期

8总第期

50246图8某装载机分配阀上液压钢管的失效反馈分布

图9采用对接焊的液压钢管

受到较大的冲击应力的作用并出现损伤。当钢管焊接良好时,通常不会引起早期失效。于是,对焊接工艺进行改进,将传统的插接焊改为饱满的对接焊(如图9所示),改进后,该钢管的失效反馈率很快得到控制。

后续还进行了其他一些试验,用于评估装载机后机罩、方向机以及驾驶室的寿命,测试结果都能很好地与反馈数据吻合。因此,基于加速度的结构件疲劳测试方法能够普遍适用于评估金属材料的疲劳寿命。

3结论

基于加速度的结构件疲劳评估测试方法相对于传统

的电栅式应变传感器测试,有3个明显的优势:

(1)加速度传感器的频率响应和精确度远高于应变传感器。整机实际工作中,造成其结构件疲劳的主要是冲击载荷,瞬时的振动冲击会超过静载的数倍,对于高频的冲击信号应变片传感器无法采集到,很难准确地分析。

(2)安装简便,对测试点的要求低。只要被测试点及附近的刚度足够强,就有近似相同的加速度,因此传感器可以安装在被测试点附近的任意位置。

(3)对于相同机型的同一位置,不必重复测量。例如,某正常铲装工况下,分配阀上的冲击加速度最高可达近600m/s 2,由于液压钢管质量相对整机可以忽略,所以无论更换什么型号的钢管,在钢管与分配阀的接口处都会有近600m/s 2的加速度峰值,

按本文的计算方法,再对比钢管材料的S-N 曲线,即可对该处进行寿命评估。

采用加速度进行结构件疲劳评估测试,也存在缺陷:(1)不能对静载进行测试。这是加速度传感器疲劳测试不能完全取代应变传感器的原因。

(2)尽管存在ε=f (a ),但关系比例系数k ′也与应变传感器类型和加速度传感器类型有关,如果更换了传感器,在测试之前需做标定,以确定k ′的取值范围。

参考文献

[1]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1997:126-148.

[2]计欣华,

邓宗白,鲁阳,等.工程实验力学[M].北京:机械工业出版社,2005:102-123.

[3]徐灏.机械设计手册:第2卷[M].北京:机械工业出版社,2001:6-56,61-98.

[4]J T 勃劳希.机械振动与冲击测量[M].沈小白,译.上海:同济大学出版社,1993.

[5]Harris .Shockandvibrationhandbook[M].2002,Vol14:366-395.[6]刘鸿文.材料力学[M].北京:高等教育出版社,2011:349-353.

通信地址:广西省柳州市柳太路1号广西柳工机械股份有限公司研究总院试验研究所(545007)

(收稿日期:2015-03-12)

27

经典编辑南京航空航天大学结构强度的电测法实验报告(含数据)

《结构强度的电测方法》实验报告 学院:航空宇航学院 专业: 学号: 姓名: 组员: 指导教师: 日期:

结构强度电测法实验 一实验目的 1.掌握电阻应变测试原理及方法 2.掌握电阻应变片的安装工艺 3.掌握电阻应变片电桥线路的连接及电阻应变仪的使用 4.测定矩形截面受纯剪切内力作用时的剪切应力分布规律及许用载荷 5.测定特定的弹性元件在对称载荷作用方式下的最大许用载荷 6.测定特定的框架结构在指定外力作用下的危险点应力及最大许用载荷 7.给出测试结果并给出不确定度分析 二实验仪器、设备名称及型号 本实验主要实验仪器和设备有:TS3861静态电阻应变仪、压力试验机、2个待测弹性元件及1个钢架、电阻应变片、导线、电烙铁、丙酮、砂纸、502胶、绝缘胶带、镊子等。 TS3861静态电阻应变仪面板如图1所示。 图1 TS3861静态电阻应变仪面板示意图 其中:(1)CH为通道指示,其下面的两个按扭为通道选择键。 (2) 为读数应变显示窗,其下面的三个按键“自动”、“初值”、“测量”的作用为:“自动”按键在手动测量时无用;“初值”按键为在有初始值的情况下的测量;若先按“初值”再按“测量”按键,为将现通道设置为在“0”初始值的情况下的测量,即“置零”。 (3)根据应变片的阻值选择“应变片电阻Ω”的数字。 (4)根据应变片的灵敏系数选择“灵敏系数K”的数字。

三实验原理及实验方法 1、应变片原理 电阻片分丝式和箔式两大类。丝绕式电阻片是用0.003mm-0.01mm的合金丝绕成栅状制成的;箔式应变片则是用0.003mm-0.01mm厚的箔材经化学腐蚀制成栅状的,其主体敏感栅实际上是一个电阻。金属丝的电阻随机械变形而发生变化的现象称为应变-电性能。电阻片在感受构件的应变时(称做工作片),其电阻同时发生变化。实验表明,构件被测量部位的应变Δl/l与电阻变化率ΔR/R成正比关系,即: 比例系数Ks称为电阻片的灵敏系数。由于电阻片的敏感栅不是一根直丝, 所以K s 不能直接计算,需要在标准应变梁上通过抽样标定来确定。K s 的数值一般 约在2.0 左右,这里取K=2.048。 2、电阻应变仪原理 电阻应变仪是将电阻片感受到应变转化为电阻变化,再把电阻变化通过适当桥路和放大器转为电压变化,并显示出来。电阻应变仪按其测量对象可分为静态电阻应变仪和动态电阻应变仪。动态应变仪有电压和电流输出,提供相关记录仪记录,例如X-Y记录仪、光线示波器和磁带记录仪等等。也有一些应变仪兼有静态应变数值显示和动态电压输出,使用起来比较方便。由于电阻应变仪是一种专用仪器,其显示部分直接显示应变值。通过应变可以计算出载荷、应力和变形,为核算构件的强度提供依据,因此应变仪应用十分广泛应变仪测量电路是一个电桥电路(见图2)它的四个桥臂R1,R2,R3,R4顺序连接在A、B、C、D 之间。电桥AC对角接电源E;BD对角为电桥输出电压U DB。当四个电阻皆由电阻应变片组成,且四枚电阻片阻值和灵敏系数相等时,桥路有如下关系:

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

高频疲劳试验机的主要作用概述

高频疲劳试验机作用 1疲劳试验的对安全的主要作用概述 疲劳强度不仅在航天、航空、车辆、造船和原子能等尖端工业部门有着十分重要的意义,也是影响一般机械产品使用可靠性和使用寿命的一个重要问题。 根据国外的统计,机械零件的破坏50%~90%为疲劳破坏。例如,轴、曲轴、连杆、齿轮、弹簧、螺栓、压力容器、海洋平台、汽轮机叶片和焊接结构等;很多机械零部件和结构件的主要破坏方式都是疲劳。过去的研究表明,军用飞机喷气发动机构件的主要失效原因是高周疲劳。疲劳失效占喷气式发动机全部构件损伤的49%,而高周疲劳又几乎占所有疲劳失效的一半。 疲劳定义:材料在循环应力或循环应变作用下,由于某点或某点逐渐产生了局部的永久结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程。 近几十年来,随着机械向高温、高速和大型方向发展,机械的应力越来越高,使用条件越来越恶劣,疲劳破坏事故更是层出不穷。 我国虽然尚未对疲劳破坏问题做过全面检查,但同类产品的使用寿命往往比发达国家为低,问题更为严重。因此,开展疲劳强度研究工作对我国的机械工业也是刻不容缓的。

疲劳问题首先是19世纪初,由于蒸汽机车问题提出的,但在后来的其他领域,如航空航天、交通车辆、轮船、桥梁、建筑等,也都出现了众多的疲劳破坏。 第二次世界大战中,有若干战斗机是自己坠落而非被敌方击落的。当时约有20架“惠灵顿”号重型轰炸机发生疲劳破坏。 20世纪50年代以来,航空事业得到全面发展,但全球性的飞机事故接连不断,大部分是属于结构疲劳破坏造成的。1951年英国“鸽式”飞机因机翼的翼梁疲劳破坏而在澳大利亚失事;1952年美国F-89蝎式歼击机因机翼接头疲劳破坏而连续发生事故;1953年英国“维金”号又因主梁疲劳破坏而在非洲失事;1054年英国喷气式客机“彗星-I”号因铆钉边缘出现疲劳裂纹而连续两次在航线上坠毁。 20世纪80年代,某石油钻井平台沉船事件,从技术角度分析也是疲劳破坏导致的。由于在钻井平台的一个支撑立柱上,在接近海平面的位置开了一个作业用工业圆孔,导致海水腐蚀,从而强度减弱,经过若干次随机载荷作用后导致裂纹破坏,最终丧失抵抗力。 20世纪90年代初以来,日本、韩国不断发生桥梁、高架公路的支撑立柱出现裂纹、断裂、扭曲的事件,都是由于支撑立柱承受高周荷载的长期作用导致的疲劳破坏。 1998年6月德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡。造成事故的原因是一节车厢的车轮内部疲劳断裂。

焊接对钢结构疲劳的影响及预防措施

焊接对钢结构疲劳的影响及预防措施 自从20世纪初涂药焊条发明至今100年来,焊接已经成为应用最广泛的工艺方法,很难找出另一种发展如此之快,并在应用规模和多样化方面能与焊接相比的工艺,以至于当代许多最重要的技术问题必须采用焊接才能解决,例如造船、铁路、汽车、航空、航天、桥梁、锅炉、大型厂房和高层建筑等都离不开焊接技术的支持。目前在工程生产上,焊接是最主要的连接方法,焊接结构的重量已占钢铁总产量的50%以上,工业发达国家的这一比例已经接近70%。然而焊接结构经常发生断裂事故,其中80%为疲劳失效。在我国,焊接结构因疲劳问题而失效的工程事例也不断出现。例如,90年代末,高速客车转向架中焊接接头的疲劳断裂,以及水轮机叶片根部的疲劳断裂等,都给国家和企业造成了巨大的经济损失。 所谓疲劳是指在循环应力和应变作用下,在一处和几处产生局部永久性积累损伤,经一定的循环次数后产生的裂纹或突然发生断裂的过程。疲劳断裂是金属结构断裂的主要形式之一。大量的统计资料表明,工程结构失效约80%以上是由疲劳引起的。钢结构的疲劳破损是裂纹在重复或交变荷载作用下的不断开展以及最后达到临界尺寸而出现的断裂。疲劳破坏的主要影响因素是应力幅、循环次数和应力集中。一般地说,疲劳破坏经历三个阶段:裂纹的形成,裂纹的缓慢扩展和最后迅速断裂。对于钢结构.实际上只有后两个阶段,因为结构总会有内在的微小缺陷,这些缺陷本身就起着裂纹的作用疲劳破坏的起始点多数在构件的表面。对非焊接构件,表面上的刻痕、轧钢皮

的凹凸、轧钢缺陷和分层以及焰割边不平整,冲孔壁上的裂纹,都是裂源可能出现的地方。对焊接构件,最经常的裂源出现在焊缝趾处,那里常有焊渣侵入。有些焊接构件疲劳破坏起源于焊缝内部缺陷,如气孔、欠焊、夹渣等。 一、影响焊接疲劳强度的主要因素 1.应力集中对疲劳强度的影响 影响焊接结构几何不连续性的因素,都将影响应力集中和疲劳强度。 (1)焊接结构的几何形状结构上几何不连续的部位都会产生不同程度的应力集中。结构的截而变化幅度越大,产生的应力集中越大,结构的疲芳强度越低。 (2)焊接接头形式在接头部位由于传力线受到干扰,因而发生应力集中现象。对接接头的力线干扰较小,因而应力集中系数较小,其疲劳强度也将高于其他接头形式。十字接头或T形接头在焊接结构中得到了广泛的应用。这种承力接头中由于在焊缝向基本金属过渡处具有明显的截而变化,其应力集中系数要比对接接头的应力集中系数高,因此十字或丁形接头的疲劳强度要低于对接接头。提高丁形或十字接头疲劳强度的根本措施是开坡口焊接,并加工焊缝使之圆滑过渡,通过这种改进措施.疲劳强度可有较大幅度的提高。 (3)焊缝局部几何形状的影响焊缝局部几何形状的变化,对焊接结构的疲劳强度将产生十分明显的影响。在一定范围内,余高越大,应力集中系数越大,缺口效应越大,疲劳强度降低。很多人错误的认

抗电强度测试方法

抗电强度试验的概念与方法 江苏省电子信息产品质量监督检验研究院杨东岩 作为电子电器设备安全性能考核的重要手段之一,有关安全标准都会给出抗电强度试验的要求。那么这种试验的目的和要求是什么呢? 一、试验的目的 评价在设备中作隔离用的绝缘耐高压冲击的性能。 1.考核电气设备中带电部件与可触及件之间的用作隔离措施的绝缘材料的性能。 我们知道电流通过人体会引起病理生理效应,通常毫安级的电流就会对人体产生危害,更大的电流甚至会造成人的死亡。因此,在各类电子电气设备的安全设计中防触电保护是一个很重要的内容。 通常产生电击危险的原因有: z触及带电件 z正常情况下带危险电压零部件和可触及的导电零部件(或带非危险电压的电路)之间的隔离用的绝缘击穿 z接触电流过大 z大容量电容器放电 在安全设计中采用的措施之一就是通过使用双重绝缘或加强绝缘,将带危险电压的零部件与可触及件隔离。这样防止危险带电件与可触及件之间的绝缘击穿就是个关键点,产品内所有绝缘都必须能够承受产品在正常工作条件下和单一故障条件下产品内部产生的相关电压,还必须承受来自电网电源和从通信网络传入的瞬态冲击电压,而不飞弧、击穿。 击穿的概念: 当绝缘承受的电压足够高而使得绝缘电阻无法再限制电流的增大,此时在施加电压的两极间发生放电,称为击穿。此时施加在绝缘上的电压引起的电流以失控的方式迅速增大。 击穿的途径:可能是固体绝缘材料内部;或沿两电极之间的绝缘体表面(即所谓的“爬电”);或沿两电极之间最短的空间路径(即气体介质中的“飞弧”) 击穿的主要形式: 电击穿----绝缘材料的电介质结构直接为电场力所破坏而致。 热击穿----由于绝缘材料的介质损耗导致电介质发热所致。 在交变正弦电压作用下绝缘材料的介质损耗为 P=U2ˉ2πˉfˉCˉtgδ 式中:U—电压(V) f—频率(Hz) C—电容(F) tgδ--损耗角正切 在直流电压作用下绝缘材料的介质损耗为 P=U2/R 式中:U—电压(V) R—绝缘电阻(Ω) 电化学击穿----由于外加电压的作用,致使电介质内部发生化学变化而引起。 为考核设计的有效性,。要求在施加相应的试验电压下用于安全隔离的绝缘不能被击穿。 二、试验原理 1.试验电压 电气设备在使用过程中,其绝缘长期承受各种因素引起的瞬态过电压的作用,这些电压

疲劳分析流程 fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 1.1国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N 曲线和疲劳极限的概念以来,国内外疲劳领域的研究已经产生了大量新的研究方法和研究成果。 结构疲劳设计中主要有两方面的问题:一是用一定材料制成的构件的疲劳寿命曲线;二是结构件的工作应力谱,也就是载荷谱。载荷谱包括外部的载荷及动态特性对结构的影响。根据疲劳寿命曲线和工作应力谱的关系,有3种设计概念:静态设计(仅考虑静强度);工作应力须低于疲劳寿命曲线的疲劳耐久限设计;根据工作强度设计,即运用实际使用条件下的载荷谱。实际载荷因为受到车辆等诸多因素的影响而有相当大的离散性,它严重地影响了载荷谱的最大应力幅值、分布函数及全部循环数。为了对疲劳寿命进行准确的评价,必须知道设计谱的存在概率,并且考虑实际载荷离散性,才可以确定结构可靠的疲劳寿命。 20世纪60年代,世界上第一条高速铁路建成,自那时起,一些国外高速铁路发达国家已经深入研究机车车辆结构轻量化带来的关键结构部件的疲劳强度和疲劳寿命预测问题。其中,包括日本对车轴和焊接构架疲劳问题的研究;法国和德国采用试验台仿真和实际线路相结合的技术开发出试验用的机车车辆疲劳分析方法;英国和美国对转向架累计损伤疲劳方面的研究等等。在这些研究中提出了大量有效的疲劳寿命的预测研究方法。 1.2、国内 1.2.1国内疲劳研究现状与方法 国内铁路相关的科研院所对结构的疲劳寿命也展开了大量的研究和分析,并且得到了很多研

材料力学实验资料——电测法

实验三 扭转实验 一、实验目的 1.测定低碳钢扭转时的强度性能指标:扭转屈服应力s τ和抗扭强度b τ。 2.测定灰铸铁扭转时的强度性能指标:抗扭强度b τ。 3.绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。 二、实验设备和仪器 1.扭转试验机 2.游标卡尺 三、实验试样 按冶金部标准采用圆形截面试件,两端成扁圆形。如图1所示。 图1 扭转试件图 圆形截面试样的直径mm 10=d ,标距d l 5=或d l 10=,平行部分的长度为mm 20+l 。若采用其它直径的试样,其平行部分的长度应为标距加上两倍直径。试样头部的形状和尺寸应适合扭转试验机的夹头夹持。 由于扭转试验时,试样表面的切应力最大,试样表面的缺陷将敏感地影响试验结果,所以,对扭转试样的表面粗糙度的要求要比拉伸试样的高。对扭转试样的加工技术要求参见国家标准GB10128—88。 四、实验原理与方法 1.测定低碳钢扭转时的强度性能指标 试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为

p es s 43W M = τ (1) 式中:16/3p d W π=为试样在标距内的抗扭截面系数。 在测出屈服扭矩s T 后,改用电动加载,直到试样被扭断为止。测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为 p eb b 43W M =τ (2) 对上述两公式的来源说明如下: 低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的?-e M 图如图12所示。当达到图中A 点时,e M 与?成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s τ,如能测得此时相应的外力偶矩ep M ,如图13a 所示,则扭转屈服应力为 p ep s W M = τ (3) 经过A 点后,横截面上出现了一个环状的塑性区,如图2b 所示。若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图2c 所示的情况,对应的扭矩s T 为 图1 低碳钢的扭转图 s s s (a ) (b ) (c ) 图2 低碳钢圆柱形试样扭转时横截面上的切应力分布 (a )p T T =;(b )s p T T T <<;(c )s T T = s p s 3 d/2 2 s d/2 0 s s 3 4 12 d 2d 2ττπρρπτρπρρτW d T == ==? ? 由于es s M T =,因此,由上式可以得到

结构强度电测试方法

结构强度电测试方法 1. 实验目的 (1)掌握电阻应变测试原理及方法; (2)掌握电阻应变片的安装工艺; (3)掌握电阻应变片电桥线路的连接及电阻应变仪的使用; (4)熟练运用材料力学性能的电测实验方法; (5)确定构件在轴向载荷作用下危险点的主应力大小和方向及许用载荷; (6)测试矩形截面在纯剪切内力作用下的分布规律; 2. 实验仪器、设备名称及型号 NH -04多功能组合实验装置、TS3863力指示器、YJ -4501A 静态数字电阻应变仪、 实验件、电阻应变片(R=120欧姆,Ks =1.88)和导线若干。 3. 实验原理及实验方法 3.1 电阻应变片的工作原理 当测量某一力学参数时,首先要把这个非电学参数转换成某一电学参数。将非电学参数转换成电学参数的装置称为传感器。电阻片是应用电阻丝的电阻率随丝的变形而变化的关系,把力学参数(如压力、载荷、位移、应力或应变)转换成与之成比例的电学参数。电阻片在工作过程中引起的是电阻的变化。通过测量电桥可使这微小的电阻变化转换成电压或电流的变化,再经电子放大器放大,并根据某一比例常数关系,将其变换成试件的应变值而显示出来。完成上述工作的仪器叫电阻应变仪。 把用电阻片作为敏感元件、用电阻应变仪作为测量仪器的测量方法,称为电阻应变测量。 /(12)S dR d K R ρρεμεε? ?==++????? (1) 式(1)是电阻应变片的工作原理表达式,式中Ks 是应变片的应变灵敏系数。可见应变片是通过应变灵敏系数将应变值转化成为电阻的相对变化值。选用合适的应变电阻丝,在适当的范围就可以得到电阻应变片的dR/R~ε的线性变化关系。 3.2 电阻片的工作特性 电阻片是基于金属导体的应变效应制造而成的。在电阻片的变形过程中,除了机械应变对电阻值影响的特性外,还应具有以下性能,以保证测试精度。 (1) 机械应变极限 电阻片所能测量的最大应变值称为电阻片的机械应变极限。机械应变极限值的大小取决于电阻片的强度、线性段的大小以及基底和粘结剂材料的性质。为了保证测量精度,一般电

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

疲劳试验-大纲

金属疲劳试验 一、实验目的 1.了解疲劳试验的基本原理; 2.掌握疲劳极限、S-N曲线的测试方法; 3.观察疲劳失效现象和断口特征 二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立最大应力σmax或应力振幅σa与相应的断裂循环周次N之间的曲线关系。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σR表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳极限以σ-1表示。中低强度结构钢、铸铁等材料的S-N曲线属于这一类。实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命,如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σR(N)表示。 (a)(b) 图1 金属的S-N曲线示意图 (a)有明显水平部分的S-N曲线(b)无明显水平部分的S-N曲线

2. S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按以下公式计算疲劳极限: ∑==n i i i N R v m 1)(1σσ 式中m —有效试验总次数;n —应力水平级数;σi —第i 级应力水平;v i —第i 级应力水平下的试验次数。 例如某实验过程如图2所示,共14根试件。预计疲劳极限为390MPa ,取其2.5%约10 MPa 为应力增量,第一根试件的应力水平402 MPa ,全部试验数据波动如图2,可见,第四根试件为第一次出现的相反结果,在其之前,只有第一根在以后试验波动范围之外,为无效,则按上式求得条件疲劳极限如下: σR(N)=13 1(3×392+5×382+4×372+1×362)=380MPa 图2 增减法测定疲劳极限试验过程 (2) S-N 曲线的测定 测定S-N 曲线(即应力水平-循环次数N 曲线)采用成组法。至少取五级应力水平,各级取一组试件,其数量分配,因随应力水平降低而数据离散增大,故要随应力水平降低而增多,通常每组5根。升降法求得的,作为S-N 曲线最低应力水平点。然后以其为纵坐标,以循环数N 或N 的对数为横坐标,用最佳拟合法绘制成S-N 曲线,如图3所示。

电线电缆基本测试方法

电线电缆基本测试方法 国标电线电缆和非标电线电缆有以下几点不同: 1、要看。看有无质量体系认证书;看合格证是否规范;看有无厂名、厂址、检验章、生产日期;看电线上是否印有商标、规格、电压等。还要看电线铜芯的横断面,优等品紫铜颜色光亮、色泽柔和,否则便是次品。 2、看铜质。合格的铜芯电线铜芯应该是紫红色、有光泽、手感软。而伪劣的铜芯线铜芯为紫黑色、偏黄或偏白,杂质多,机械强度差,韧性不佳,稍用力即会折断,而且电线内常有断线现象。检查时,你只要把电线一头剥开2cm,然后用一张白纸在铜芯上稍微搓一下,如果白纸上有黑色物质,说明铜芯里杂质比较多。 3、要试。可取一根电线头用手反复弯曲,凡是手感柔软、抗疲劳强度好、塑料或橡胶手感弹性大且电线绝缘体上无裂痕的就是优等品。 4、比价格。由于假冒伪劣电线的制作成本低,因此,商贩在销售时,常以价廉物美为幌子低价销售,使人上当。 5、称重量。质量好的电线,一般都在规定的重量范围内。如常用的截面积为1.5mm2的塑料绝缘单股铜芯线,每100m重量为1.8~1.9kg;2.5mm2的塑料绝缘单股铜芯线,每100m重量为3~3.1kg; 4.0mm2的塑料绝缘单股铜芯线,每100m重量为4.4~4.6kg等。质量差的电线重量不足,要么长度不够,要么电线铜芯杂质过多。 电线电缆的基本测试方法 UL电线电缆标准介绍:电线电缆的基本测试方法 铁丝才是用号的,有18号的。 电线是用侧面积计算的,没有18号的。 电线规格:(单位平方毫米)1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240、。电线线芯结构:1根、3根、7根、19根。 多少平方的电线除多少芯等于每一芯的平方。再除以3.14开平方根就等于每根的半径。最后 X 2=直径。 电线电缆的基本测试方法基本结构 一、导线 1.1、导体电阻:除TPT、TS和TST等锡芯电线外,UL不要求测量电线电缆产品的导体电阻。 1.2、线径:通常电线电缆的线径都是偶数AWG,如18AWG、16AWG等,奇数AWG电线属于特殊例外。 1.3、决定导体截面积的方法有二种:

不同钢结构疲劳强度分析

不同钢结构疲劳强度分析 发表时间:2017-08-31T10:20:36.993Z 来源:《电力设备》2017年第12期作者:孙晓丽赵娜马连凤李晓莉刘谆 [导读] 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能 (中车永济电机有限公司) 摘要:随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在各种电器柜中得到应用,并取得了良好的效益。由于在材料力学性能、加工工艺、初始缺陷影响等方面的差别,高强度结构钢材构件的整体稳定性能与普通强度钢材有明显不同。 关键词:疲劳强度;屈服极限;疲劳寿命 1 、概述 钢材的生产工艺与构件的加工工艺是推动钢结构发展的重要因素,钢材力学性能的提高,能够提升钢结构构件的受力性能、安全性能以及钢结构整体的使用功能;同时,实际应用的不断创新也会促进钢结构的发展,这就对钢材的力学性能提出了新的要求,特别是要求结构材料应具有更高的强度。在这一背景之下,采用新的生产冶金工艺开发出了新型高强度结构钢材,先进的加工工艺特别是焊接技术以及与高强度钢材相匹配的焊接材料也陆续出现,高强度结构钢材具备了应用于实际电器柜的基本条件。本文的研究对象主要针对强度等级在420MPa 及以上的新型高强度结构钢材中厚板材(即板厚<40mm)构件。 2、疲劳的定义及特征 疲劳破坏是指材料或结构在循环交变应力或者循环交变应变的作用下,由于某点或某些点所在的部位发生局部永久性结构变化,在经历一定的循环次数后形成裂纹并最后发生断裂的现象,即在交变载荷重复作用下材料或者结构的结构破坏现象。经过人们长期的经验积累和对疲劳破坏事故的认真考察,疲劳破坏的显著特征己初步为人们所掌握,这些特征使疲劳破坏与传统的静力破坏、腐蚀破坏以及其他破坏形式相区别,给人们对事故的分析带来方便。具体的特征包括:长期性、非屈服性、难以预测性、局部性、影响因素多样性、端口形貌特殊性。 疲劳破坏的过程大致就可以描述为以下的“恶性循环阶段”: 应力集中一一争疲劳裂纹出现一一争裂纹尖端新的应力集中一一卜裂纹扩展一一卜构件发生 断裂。 3、影响结构疲劳强度的因素 构件在某一循环载荷下工作时,构件应力值的大小为一般用S来表示。当构件的应力水平S低于某一个应力限度值的时候,如果构件可以在该应力水平作用下承受无限次循环而不发生疲劳破坏,则该应力限度值为材料或者构件的“疲劳极限”。疲劳失效之前机械零部件所经历的应力或者应变循环次数称为“疲劳寿命”,一般用N表示,前面所提到的“韦勒曲线”或者“疲劳曲线”是表示应力幅Sa或者最大应力Sma、与疲劳寿命N之间关系的一种表达方式。一般我们从标准或者书上所查到的一些材料的疲劳极限和S一N曲线,只能代表标准光滑试样的疲劳性能,称之为“中值S一曲线”。但实际零部件的尺寸、形状和表面情况等是多样的,与标准试件存在一定程度上的差别,所以实际构件的疲劳强度、疲劳寿命与标准试样之间也存在一定的差距。 影响结构疲劳强度的因素主要有:形状,尺寸,表面状况,平均应力,腐蚀介质和温度等等,本节主要介绍与本论文相关的因素即形状、尺寸、表面加工方法对材料疲劳强度的影响。 4、理论计算 在钢结构梁的设计中要让力有很好的传导闭合性,就要充分的发挥每个梁的支撑作用。对4mm和6mm钢板的截面模量计算如下: 对安装梁截面模量计算如下: 4mm钢板 6mm钢板 4mm内部加6mm钢板 通过计算4mm钢板对于x-x抗弯截面模量Wx=4.0612cm3 6mm钢板对于x-x的抗弯截面模量Wx=5.8505cm3 4mm内部增加两块6mm钢板后对于x-x的抗弯截面模量Wx=4.0612+1.681*2=7.4232cm3 根据最大弯曲正应力的计算公式:σmax=M/WX 可见,最大弯曲正应力与弯矩成M正比,与抗弯截面模量Wx成反比,当M不变时,Wx越大,所受的最大弯曲正应力越小,根据以上3种情况可以看出,第3种的抗弯截面模量Wx为7.4232cm3,较第1种增加了将近1倍。 5、实验分析 运用计算机分析软件ANSYS分别对4mm钢板折弯,6mm钢板折弯,4mm钢板折弯内侧加焊6mm钢板, 5mmQ235A槽钢进行了最大

介电常数的测定 (4)

介电常数的测定 0419 PB04204051 刘畅畅 实验目的 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 数据处理与分析 (一)原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: 00r Cd S εεεε= = 式中ε为绝对介电常数,0ε为真空介电常数,12 08.8510/F m ε-=?,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 (二)实验过程及数据处理 压电陶瓷尺寸: 直径: 0.9524.7840.063D mm v mm == 厚度: 0.950.2720.043H mm v mm == 一.根据所给仪器、元件和用具,采用替代法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在实验中采用预习报告中的图()a 连接电路,该电路为待测电容Cx 、限流电阻0R 、安培计与信号源组成的简单串联电路。接入Cx ,调节信号源频率和电压及限流电阻0R ,使安培计读数在毫安范围内恒定(并保持仪器最高的有效位数),记下Ix 。再换接入Cs ,调节Cs 与Rs ,使Is 接近Ix 。若Cx 上的介电损耗电阻Rx 与标准电容箱的介电损耗电阻Rs 相接近,即Rx Rs ≈,则Cx Cs =。 测得的数据如下: 输出频率 1.0002~1.0003kHz 输出电压 20V

Ix=1.5860mA Is=1.5872mA Cs=0.0367F R=1000μΩ Is Ix ≈。此时Rx Rs ≈,有Cx Cs ≈。所以Cx = Cs = 0.0367 F μ。 63 212 2 2 30012 00.0367100.272102339.264024.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????????? ? ? ?? ?? 二.用比较法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在Rx Rs ≈的条件下,测量Cx 与Cs 上的电压比Vs Vx 即可求得Cx : Vs Cx Cs Vx =? (Vs 可以不等于Vx ) 测得的数据如下: 输出频率 1.0003~1.0004kHz 输出电压 20V Vx = 3.527V Vs = 3.531V Cs = 0.0367F R = 1000μΩ Rx Rs ≈。Cx 与Cs 上的电压比 3.5270.9988673.531 Vs Vx == 683.527 0.036710 3.6658103.531 Vs Cx Cs F Vx --∴=?=??=? 83 212 2 2 30012 0 3.6658100.272102336.586924.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????? ???? ? ? ?? ?? 三.用谐振法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 由已知电感L (取1H ),电阻R (取1k Ω)和待测电容Cx 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: 22 14Cx f L π= 式中f 为频率,L 为已知电感,Cx 为待测电容。

疲劳试验简介

疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。 1829年德国人阿尔贝特(J.Albert)为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。1852~1869年德国人沃勒(A.W hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。1849年英国人古德曼(J.Goodman)首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。1946年德国人魏布尔(W.Weibull)对大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。 60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。 试验种类和判据 金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。 高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限(或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环中

高等钢结构--疲劳与断裂

《高等钢结构原理》断裂与疲劳部分 学生作业 系(所):建筑工程系 学号:1432055 姓名:焦联洪 培养层次:专业硕士 2014年11月6日

1、防止焊接钢结构脆性断裂的基本措施 影响钢材脆断的直接因素有裂纹尺寸、作用应力和材料韧性。提高钢材脆性断裂的基本措施有: ①保证施工质量、加强质量检验和施焊工艺管理,避免施焊过程中产生的咬边、裂纹、夹杂和气泡等。 ②焊缝不宜过分集中,施焊时不宜过强约束,避免产生过大残余应力,同时应注意焊缝过于集中和避免截面突然变化。特别是低温下作用的静力荷载发生的脆断,常与残余应力有关。 ③进行合理细部构件设计,避免应力集中。应力集中处会产生同号应力场,使钢材变脆。尽量避免采用厚钢板,厚钢板比薄钢板较易脆断,对钢材的韧性也有降低。 ④选择合理的钢材,钢材化学成分与钢材抗脆断能力有关,含碳量高的钢材,抗脆断能力有所下降,同时控制钢材中硫和磷的含量,硫使钢材热断,磷使钢材冷断,对于在低温下作用的钢结构,应选择抗低温冲击韧性好的材料。 ⑤加载速率越高,钢材的脆断转变温度提高,对于同一韧性的材料,设计动力荷载时允许最低的使用温度比静力荷载高的多,所以根据钢材不同的工作加载速率应选择不同韧性的钢材。 ⑥设计结构时选择优良的结构形式,有助于减少断裂的不良后果。 2、解释应力幅是评价焊接钢结构疲劳强度的一个指标 对于非焊接结构,通常用应力循环特征(应力比)min max /σσρ=来评价钢结构的疲劳强度。但是对于焊接钢结构疲劳强度起控制作用的是应力幅σ?,而几乎与最大应力max σ、最小应力min σ及应力比这些参量无关。这是因为:焊接及 其随后的冷却,构成不均匀热循环过程,使焊接结构内部产生自相平衡的残余应力,在焊接附近出现局部的残余拉应力高峰,横截面其余部分则形成残余压应力与之平衡。焊接残余拉应力最高峰值往往可达到钢材的屈服强度,名义上的应力循环特征(应力比)min max /σσρ=并不代表疲劳裂缝出现的应力状态。并且焊接连接部位因为截面的改变原状,总会产生不同程度的应力集中现象。残余应力和应力集中两个因素的同时存在,使疲劳裂纹发生于焊接熔合线的表面缺陷处或焊

大学物理实验介电常数的测量的讲义

固体与液体介电常数的测量 一、实验目的: 运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。 二、实验原理: 介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120 -?=ε,S 为样品的有 效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 替代法: 替代法的电路图如下图所示。此时电路测量精度与标准电容箱的精度密切相关。实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法: 1、交流谐振电路: 在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。RLC 串联谐振电路如下图所示: 图一:RLC 串联谐振电路 其中电源和电阻两端接双踪示波器。 电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电 容C 两端的电压2π ,落后于电感两端的电压2π ,如图二。 图二:电阻R 、电容C 和电感L 的电压矢量图 电路总阻抗:Z = = L V → -R V →

相关主题