搜档网
当前位置:搜档网 › 报童数学建模

报童数学建模

报童数学建模
报童数学建模

报童卖报

国贸系报关班:王曦

法学系行政法务一班:何国泽

一、问题:

报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。即报童售出一份报纸赚a-b ,退回一份赔b-c 。报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。试为报童筹划一下每天购进报纸的数量,以获得最大收入。

二、模型分析:

购进量由需求量确定,需求量是随机的。假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为 r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。

三、模型建立:

假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n, ,所以报童每天的收入也是随机的。那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。

记报童每天购进n 份报纸的平均收入为G(n), 如果这天的需求量r<=n,

则售出r 份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。需求量为r 的概率是f(r),则 问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。

四、模型求解:

购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)

计算 令0=dn dG 得dn

dG ()()()()()()dr r p b a dr r p c b n np c a n n ??∞-+---=02

得到()()c b b a dr r p dr r p n n

--=??∞

n 应满足上式。()10=?∞

dr r p 使报童日平均收入达到最大的购进量为 ()c

a b a dr r p n

--=?0 根据需求量的概率密度p(r)的图形可以确定购进量n 在图中用p1,p2分别

表示曲线p(r)下的两块面积,则c

b b a P P --=21 O n r

因为当购进n 份报纸时,()dr r p P n

?=01是需求量r 不超过n 的概率; ()dr r p P n ?∞

=2是需求量r 超过n 的概率,既卖完的概率,所以上式表明,购进的份数n 应使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔的钱b-c 之比。

五、结论:

当报童与报社签订的合同使报童每份赚钱与赔钱之比约大时,报童购进的份数就应该越多。

六、练习:

利用上述模型计算,若每份报纸的购进价为0.75元,售出价为1元,退回价为0.6元,需求量服从均值500份,均方差50份的正态分布,报童每天应购进多少份报纸才能使平均收入最高,最高收入是多少?

当a=1, b=0.75, c==0.6时 需求量r 服从)50,500(~2N r 分布。 3

56.075.075.0121=--=--=c b b a P P 对应的正态分布表得到对应概率为0.9515 所以购进量为5.3128

5500=? 当r<=n 时最高收入为()15.78951.05.31275.01=??-

当r>n 时最高收入为()()()[]6.479515.05.3125006.075.05.31275.01=?-?--?-

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模-大学生就业问题

2010-2011第二学期 数学建模课程设计 2011年6月27日-7月1日 题目大学生就业问题 第 11 组组员1 组员2 组员3 组员4 姓名 学号 0808060217 0808060218 0808060219 0808060220 专业信计0802 信计0802 信计0802 信计0802 成绩

论文摘要 本文讨论了在新的形势下大学生的就业问题。20世纪90年代以来,我国出现了一种前所未有的现象,有着“天之骄子”美誉的大学生也开始面临失业问题。大学生就业难问题已受到普遍关注。大学生毕业失业群体正在不断扩大,已成为我国扩大社会就业,构建和谐稳定社会的急需解决的社会问题。 本文针对我国现有的国情,综合考虑了高校毕业生的就业率和高校招生规模的扩大之间的关系,建立了定量分析的微分方程模型,随后又建立了了离散正交曲线拟合模型对得出的结果进行了检验,并分析模型得出的结果得合理性。最终得到生源数量与失业率之间的拟合多项式和拟合曲线,并预测出了未来高校招生规模的变化趋势。 在找到大学生失业规律以后,本文还具体的对毕业生的性别、出生地对失业的影响做出了定量分析。 关键词:大学生就业微分方程模型多项式曲线拟合MATLAB软件 1、问题重述 大学生就业问题:如果我们将每年毕业的大学生中既没有找到工作又没有继续深造的情况视为失业,就可以用失业率来反映大学生就业的状况。下面的表中给出了某城市的大学生失业数占城市总失业人数的比率,比率的计算是按照国际劳工组织的定义,对16岁以上失业人员进行统计的结果。 表 1

请建立相应的模型对大学生就业状况进行分析找出其中的规律并讨论下面两个问题: (1)、就业中是否存在性别歧视; (2)、学生的出生对就业是否有影响。 2、模型假设 2.1在本次研究中做出以下假设: (1)、假设毕业生求职时竞争是公平的; (2)、假设考研等继续深造的毕业生属于已就业人群; (3)、假设每个毕业生都有就业或者继续深造的意图 (4)、假设就业率和失业率之和为1; (5)、假设本文搜集的数据全部真实可靠; 2.2 在定量分析性别、出生地对失业的影响时还要做以下假设: (1)、假设毕业生就业情况只受性别、出生地等因素的影响; (2)、假设具有上述同等条件的毕业生间就业机会相同 (3)、假设附件中的数据信息均合理; 3、问题分析 3.1 对问题的分析 若要分析新失业群体产生的主要原因,并就其重要性给出各种因素的排序,就需要对搜集的数据进行整理,并进行系统的分析,划分为不同的体系和矛盾,然后我们考虑用Logistic模型分析。 为了得到新失业群体对高校招生生源的影响和预测未来高校招生规模的变

数学建模与计算机的重要性

数学建模与计算机的联系及重要性 摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。本文浅谈了数学建模与计算机在人类生产和生活中的重要性。 关键词:数学建模计算机重要性 当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。 一、数学建模与计算机息息相关 其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。例如下面有这样一道

题就是利用数学软件lingo 求解的。 例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大? 解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型 为: 目标函数 12max 200300z x x =+ 约束条件 1212100,120,160, 0,1,2. i x x x x x i ≤??≤??+≤??≥=? 编写LINGO 程序如下: MODEL: SETS: SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA: A=1,2 ; B=100,120; C=200,300; ENDDATA

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模的经典模板

一、摘要 内容: (1)用1、2句话说明原问题中要解决的问题; (2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点; (3)算法思想(求解思路),特色; (4)主要结果(数值结果,结论);(回答题目的全部“问题”) (5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广 要求 (1)特色和创新之处必须在这里强调; (2)长度 (3)要确保准确、简明、条理、清晰、突出特色和创新点; 二、问题的提出 内容: 用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求; 要求: (1)不是题目的完整拷贝 (2)根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求; 三、条件假设 内容 (1)根据题目中的条件做出假设 (2)根据题目中的要求做出假设; 要求 (1)合理性最重要; (2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺; (3)合理假设作用: 简化问题,明确问题,限定模型的适用范围 四、符号约定 五、问题分析 1.名词解释 2.问题的背景分析 3.问题分析 六、模型建立 抽象要求 (1)模型的主要类别:初等模型、微分方程模型、差分方程模型、概率模型、统计预测模型、

优化模型、决策模型、图论模型等 (2)几种常见的建模目的:(对应相对(1)的方法) 描述或解释现实世界的各类现象,常采用机理型分析方法,探索研究对象的内在规律性; 预测感兴趣的时间爱你是否会发生,或者事物的房展趋势,常采用数理统计或模拟的方法; 优化管理、决策或者控制事物,需要合理地定义可量化的评价指标及评价方法; (3)建模过程常见的几个要点: 模型的整体设计、合理的假设、建立数学结构、建立数学表达式; (4)模型的要求: 明确、合理、简洁、具有一般性; 例如:有些论文不给出明确的模型,只是就赛题所给的特殊情况,用凑得方法给出结果,虽然结果大致对,但缺乏一般性,不是建模的正确思路;((与第三点对应)) (5)鼓励创新,特别欣赏独树一帜、标新立异,但要合理 (6)避免出现罗列一系列的模型,又不做评价的现象; 具体要求: (1)基本模型:首先要有数学模型:数学公式、方案等;基本模型,要求完整,正确,简明(2)简化模型:要明确说明,简化思想,依据;简化后的模型尽可能给出; 七、模型求解 每一块内容包括:计算方法设计或选择、算法设计或选择、算法思想依据、步骤及实现、计算框图、所采用的软件名称 写作要求: 1、需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密 2、需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称 3、计算过程,中间结果可要可不要的,不要列出 4、设法算出合理的数值结果 5、最终数值结果的正确性或合理性是第一位的 6、对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进 7、题目中要求回答的问题,数值结果,结论,须一一列出 8、列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据 9、结果表示:要集中,一目了然,直观,便于比较分析 ▲数值结果表示:精心设计表格;可能的话,用图形图表形式 ▲求解方案,用图示更好 10、必要时对问题解答,作定性或规律性的讨论。最后结论要明确 内容 (1)算法设计或选择,算法的思想依据,步骤; (2)引用或建立必要的数学命题和定理; (3)在不能给出精确解的情况下,需要给出不知一种解法(算法),并进行测试比较,给出

大学生就业问题数学模型

重庆交通大学学生实验报告 实验课程名称数学模型课程设计 开课实验室数学实验室 学院 XXX级 XXX 专业 1 班 开课时间 2013 至 2014 学年第 2 学期设计题目大学生就业问题

2013 年 12月 大学生就业问题 摘要:近年来,我国高校毕业生数量逐年增多,加之当前金融危机的影响,毕业生的就业形势受到前所未有的挑战,甚至出现了所谓“毕业即失业”的说法。因此大学生毕业后能否顺利就业,已成为全社会普遍关注的热点问题。大学生就业难不仅有社会原因,也有大学生自身的原因。如何解决大学生就业难的问题不仅关系到大学生的切身利益,更关系到社会的和谐稳定,需要政府、企业、高校和大学生共同的努力。本文从大学生自身,企业和社会三个大方面方面进行了分析和论述,从而总结出相关的结论及解决大学生就业难题的可行方法。 关键词大学生就业 Matlab 数据拟合 一、问题重述 据中国媒体援引人力和社会保障部的最新统计数据,二零一零年全国高校毕业生为630万人,比去年的611万多19万人,加上往届未能就业的,需要就业的毕业生数量很大,高校毕业生就业形势十分严峻。 随着九十年代末大学扩招和教育产业化政策推行以来,大学生人数的增幅远远超过经济增长所需要的人才增长,大学生就业不难才是怪事,"毕业即失业"成为中国大学生的普遍现象。 尽管如此,中国教育部决定继续扩大全日制专业学位硕士研究生招生规模,努力培养更多高层次、应用型人才。表面上看,研究生扩招能提高大学生学历层次,可以缓解就业难。但是,如果不清理高等教育积弊,扩招研究生来应对就业难将是饮鸩止渴,使就业矛盾更加突出。 现在大学生就业难的问题,是由许多原因造成的,既有社会原因,也有历史原因。 请用数学建模的方法从以下几个侧面探讨大学生就业问题: (1)利用网上大学生就业统计数据建立大学生就业供需预测模型,利用所建模型对2012年就业形势进行预测; (2)分析影响大学生就业的主要因素,建立就业竞争力评价模型,利用所建模型评估你的竞争力;

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学模型课程设计一

课程设计名称: 设计一:MATLAB 软件入门 指导教师: 张莉 课程设计时数: 8 课程设计设备:安装了Matlab 、C ++软件的计算机 课程设计日期: 实验地点: 第五教学楼北902 课程设计目的: 1. 熟悉MA TLAB 软件的用户环境; 2. 了解MA TLAB 软件的一般目的命令; 3. 掌握MA TLAB 数组操作与运算函数; 4. 掌握MATLAB 软件的基本绘图命令; 4. 掌握MA TLAB 语言的几种循环、条件和开关选择结构。 课程设计准备: 1. 在开始本实验之前,请回顾相关内容; 2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 采用向量构造符得到向量[1,4,7,,31] 。 //a=[1:3:31] 2. 随机产生一向量x ,求向量x 的最大值。 // a=rand(1,6) max(a) 3. 利用列向量(1,2,3,,6)T 建立一个范德蒙矩阵A ,并利用位于矩阵A 的奇数行偶数列的元素建立一个新的矩阵B ,须保持这些元素的相对位置不变。 4. 按水平和竖直方向分别合并下述两个矩阵: 100234110,5670018910A B ????????==???????????? 5. 当100n =时,求1121n i y i ==-∑的值。 6. 一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数。 7. 求[1000,2000]之间第一个被17整除的整数。 8. 用MATLAB 绘制两条曲线,[0,2]x π∈,以10 π为步长,一条是正弦曲线,一条是余弦曲线,线宽为6个象素,正弦曲线为绿色,余弦曲线为红色,线型分别为实线和虚线,并给所绘的两条曲线增添图例,分别为“正弦曲线”和“余弦曲线”。

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模中常见的十大模型讲课稿

数学建模中常见的十 大模型

精品文档 数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的 收集于网络,如有侵权请联系管理员删除

环境数模课程设计说明书

2016《环境数学模型》课程设计说明书 1.题目 活性污泥系统生化反应器中底物降解与微生物增长数学模型的建立 2.实验方法与结果 2.1.实验方法 2.1.1.工艺流程与反应器 本设计采用的工艺流程如下图所示: 图2-1 活性污泥系统工艺流程图 本设计工艺采用活性污泥法处理污水,工艺的主要反应器包括生化反应器和沉淀池。污水通过蠕动泵恒速加到生化反应器中,反应器内活性污泥和污水在机械搅拌设备和鼓风曝气设备的共同作用下充分接触,并在氧气充足的条件下进行反应。经处理后,污泥混液通过管道自流到沉淀池中,在里面实现泥水分离。分离后的水通过溢流堰从周边排出,直接被排放到下水道系统,沉淀下来的污泥则通过回流泵,全部被抽回进行回流。 系统运行过程中,进出水流量、进水质量、污水的停留时间、生化反应器的容积、机械搅拌设备转轴转速、鼓风曝气装置的曝气风量气速、污泥回流量等参数在系统运行的过程中都保持不变。待系统持续运行一周稳定后再取样进行分析。 实验的进水为实验室配置的污水,污水分别以葡萄糖、尿素、磷酸二氢钾为碳源、氮源和磷源,其中C:N:P=100:40:1(浓度比),TOC含量为200mg/L。生化反应器内污泥混液的容量为12L,污水停留时间为6h。系统运行时间为两周,第一周是调适阶段,第二周取样测试,测得的数据作为建模的原始数据。 表2-1 污水中各营养物质的含量 2.1.2.取样方法

每隔24h取一次样,通过虹吸管取样。每次取样时,先取进水和出水水样用于测水体的COD指标,其中进水直接取配得的污水溶液,出水取沉淀池上清液。取得的水样过膜除去水中的悬浮固体和微生物,保存在5ml玻璃消解管中,并在4℃下冷藏保存。 取完用于测COD的水样后,全开污泥回流泵,将沉淀池中的污泥全部抽回生化反应器(由于实验装置的原因,沉淀池排泥管易堵,污泥易积聚在沉淀池中,为更准确测定活性污泥的增长情况,在此实验中将泥完全抽回后再测定),待搅拌均匀后,取5ml污泥混液于干净、衡重的坩埚中,待用于测污泥混液的SS。 2.1. 3.分析方法 本实验一共分析进出水COD和污泥混液SS两个指标。其中COD采用《水质快速消解分光光度法》(HJ/T 399-2007)方法进行分析,SS采用《水质悬浮物的测定重量法》(GB 11901-89)方法进行分析。 准确取2ml经过膜处理的水样于5mlcod消解管中,以重铬酸钾为氧化剂,硫酸银-浓硫酸为催化剂,硫酸汞为抗氯离子干扰剂,按一定比例与水样混合均匀。将消解管放在COD 消解仪中,在150℃条件下消解2h。待经消解的溶液冷却后,以空白样为参比液,在COD 分析仪上读出待测水样的COD值,记录数据。 将装在已衡重称重的坩埚中的污泥混液放在烘箱中,在105℃温度下烘3h以上,保证污泥中的水分被充分除去。坩埚冷却后衡重称重,记录干污泥的质量,求得活性污泥的SS。 实验过程的所有样品都设置两个平行样,最后结果取平行样的算术平均值。 2.2.实验结果 2.2.1.实验数据 实验测得数据如下表: 表2-2 活性污泥系统水质分析结果 2.2.2.数据分析

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模课程设计

攀枝花学院 学生课程设计(论文) 题目:产品广告费用分配对销量及利润的影响模型学生姓名:梁忠 学号: 201210802007 所在院(系):数学与计算机学院 专业:信息与计算科学 班级: 12信本1班 指导教师:马亮亮职称:讲师 2014年12 月19 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 题目具有自身阻滞作用的食饵—捕食者模型 1、课程设计的目的 数学建模课程设计是让学生通过动手动脑解决实际问题,让学生学完《数学建模》课程后进行的一次全面的综合训练,是一个非常重要的教学环节。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 根据指导教师所下达的课程设计题目和课程设计要求,在规定的时间内完成设计任务;撰写详细的课程设计论文一份。 3、主要参考文献 【1】姜启源,数学模型(第二版),高等教育出版社,北京。 【2】寿纪麟,数学建模——方法与范例,西安交大出版社。 【3】(美)JOHN A.QUELCH 等著吕—林等译,市场营销管理教程和案例, 北京大学出版社 2000。 【4】戴永良广告绩效评估,中国戏剧出版社,2001。 4、课程设计工作进度计划 序号时间(天)内容安排备注 1 2 分析设计准备周一至周二 2 4 编程调试阶段周三至周一 3 2 编写课程设计报告周二至周三 4 2 考核周四至周五 总计10(天) 指导教师(签字)日期年月日 教研室意见: 年月日 学生(签字): 接受任务时间:2014 年12 月15 日

注:任务书由指导教师填写。 课程设计(论文)指导教师成绩评定表题目名称具有自身阻滞作用的食饵—捕食者模型 评分项目分 值 得 分 评价内涵 选题15% 01 能结合所学课程知识,有 一定的能力训练。符合选 题要求 5 遵守各项纪律,工作刻苦努力,具有良好的科学 工作态度。 02 工作量适中,难易度合理10 通过实验、试验、查阅文献、深入生产实践等渠 道获取与课程设计有关的材料。 能力水平35% 04 综合运用知识的能力10 能运用所学知识和技能去发现与解决实际问题, 能正确处理实验数据,能对课题进行理论分析, 得出有价值的结论。 05 应用文献的能力 5 能独立查阅相关文献和从事其他调研;能提出并 较好地论述课题的实施方案;有收集、加工各种 信息及获取新知识的能力。 06 设计(实验)能力,方案 的设计能力 5 能正确设计实验方案,独立进行装置安装、调试、 操作等实验工作,数据正确、可靠;研究思路清 晰、完整。 07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机 进行资料搜集、加工、处理和辅助设计等。 08 对计算或实验结果的分析 能力(综合分析能力、技 术经济分析能力) 10 具有较强的数据收集、分析、处理、综合的能力。 成果质量45% 09 插图(或图纸)质量、篇 幅、设计(论文)规范化 程度 5 符合本专业相关规范或规定要求;规范化符合本 文件第五条要求。 10 设计说明书(论文)质量30 综述简练完整,有见解;立论正确,论述充分, 结论严谨合理;实验正确,分析处理科学。 11 创新10 对前人工作有改进或突破,或有独特见解。 成绩 指 导 教 师 评 语 指导教师签名:年月日

数学建模中的重要问题解答

数模模拟赛论文 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为:B12 职务姓名学号学院专业和班级 队长张林10251003201 数学与计算科学学院2010数学与应用数 学2班 队员陈强10251003106 数学与计算科学学院2010数学与应用数 学1班 队员庞阳华10251003230 数学与计算科学学院2010数学与应用数 学2班

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 北京市水资源短缺风险综合评价 一.摘要 本文以北京地区水资源短缺风险问题及北京市水资源短缺情况数据来进行综合评价,首先构造隶属函数]5[以评价水资源系统的模糊性,其次利用logistic 回归模型模拟和预测水资源短缺风险发生的概率,而后建立了基于模糊概率的水资源短缺风险评价模型,最后利用判别分析识别出水资源短缺风险敏感因子并提出改进方案。 本文最大的亮点是采用采用Logistic回归模型来模拟缺水量系列的概率分布,logistic回归方法具有对因变量数据要求低、计算结果唯一、模型精度高等优点。 二.问题重述 近年来,我国水资源短缺问题日趋严重,尤其是北京水资源短缺已成为焦

数学建模 自习室管理系统

一.问题重述: 近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求提供一种最节约、最合理的管理方法。根据题目所给出的数据,有以下问题。数据见表。 1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7. 要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的。 2.在第一问基础上,假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,…, 41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。 假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。

相关主题