搜档网
当前位置:搜档网 › 轴流式风机的性能测试及分析

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析
轴流式风机的性能测试及分析

轴流式风机的性能测试及分析

摘要

轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。

关键词:轴流式风机、性能、工况调节、测试报告

目录

1绪论

1.1风机的概述 (4)

1.2风机的分类 (4)

1.3轴流式风机的工作原理 (4)

2轴流式风机的叶轮理论

2.1概述 (4)

2.2轴流式风机的叶轮理论 (4)

2.3 速度三角形 (5)

2.4能量方程式 (6)

3轴流式风机的构造

3.1轴流式风机的基本形式 (6)

3.2轴流式风机的构造 (7)

4轴流式风机的性能曲线

4.1风机的性能能参数 (8)

4.2性能曲线 (10)

5轴流式风机的运行工况及调节

5.1轴流式风机的运行工况及确定 (11)

5.2轴流式风机的非稳定运行工况 (11)

5.2.1叶栅的旋转脱流 (12)

5.2.2风机的喘振 (12)

5.2.3风机并联工作的“抢风”现象 (13)

5.3轴流式风机的运行工况调节 (14)

5.3.1风机入口节流调节 (14)

5.3.2风机出口节流调节 (14)

5.3.3入口静叶调节 (14)

5.3.4动叶调节 (15)

5.3.5变速调节 (15)

6轴流风机性能测试实验报告

6.1实验目的 (15)

6.2实验装置与实验原理 (15)

6.2.1用比托静压管测定质量流量

6.2.2风机进口压力

6.2.3风机出口压力

6.2.4风机压力

6.2.5容积流量计算

6.2.6风机空气功率的计算

6.2.7风机效率的计算

6.3数据处理 (19)

7实验分析 (27)

总结 (28)

致谢词 (29)

参考文献 (30)

主要符号

p

a

-------------------------------------------------------------------------------当地大气压()p a p

e

-------------------------------------------------------------------------------测点平均静压()p a p

m

?----------------------------------------------------------------------------测点平均动压()p a

q

m -------------------------------------------------------------------------------平均质量流量()s

kg

p

sg1

-----------------------------------------------------------------------------风机入口全压()p a p

sg2

----------------------------------------------------------------------------风机出口全压()p a p

FC

----------------------------------------------------------------------------风机全压()p a p

SFC

---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()s

m3 V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()

KW P a-----------------------------------------------------------------------------轴功率()

KW η-------------------------------------------------------------------------------风机效率()00

n-------------------------------------------------------------------------------风机转速()

min

r

L------------------------------------------------------------------------------平衡电机力臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0

G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数

1绪论

1.1风机的概述

风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备其主要作用是提高气体能量并输送气体。风机的工作原理与轴流风机透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。

1.2风机按压力分类

按风机工作压力(全压)大小分类

p98Pa(10 mmH2O)。此风机无机壳,又称自由

①风扇标准状态下,风机额定压力范围为<

风扇,常用于建筑物的通风换气。

p14710Pa(1500 mmH2O)。一般风机均

②风机设计条件下,风机额定压力范围为98Pa<<

指通风机而言,也是本章所论述的风机。通风机是应用最为广泛的风机。空气污染治理、通风、空调等工程大多采用此类风机。

p196120Pa。压力较高,是污水处理曝气工艺中常

③鼓风机工作压力范围为14710Pa<<

用的设备。

p196120Pa,或气体压缩比大于3.5的风机,如常用的空气压

④压缩机工作压力范围为>

缩机。

1.3轴流式风机的工作原理

轴流式风机得名于流体从轴向流人叶轮并沿轴向流出。其工作原理基于叶翼型理论:

气体由一个攻角。进入叶轮时,在翼背上产生一个升力,同时在翼腹上产生一个大小相等方向相反的作用力,该力使气体排出叶轮呈螺旋形沿轴向向前运动。同时,风机进口处由于压差的作用,气体不断地被吸入。

对动叶可调轴流式风机,攻角越大,翼背的周界越大,则升力越大,风机的压差就越大,而风量越小。当攻角达到临界值时,气体将离开翼背的型线而发生涡流,导致风机压力大幅度下降而产生失速现象。

轴流式风机中的流体不受离心力的作用,所以由于离心力作用而升高的静压能为零,因而它所产生的能头远低于离心式风机。故一般适用于大流量低扬程的地方,属于高比转数范围。

轴流风机右图为轴流式泵与风机的示意图,当原动机驱动浸在工质中的叶轮旋转时,叶轮内流体就相对叶片作用一个升力,而叶片同时给流体一个与升力大小相等方向相反的反作用力,称为推力,这个叶片推力对流体做功使流体能量增加。

2轴流式风机的叶轮理论

2.1概述

轴流式通风机的性能特点是流量大,扬程(全压)低,比转数大,流体沿轴向流入、流出叶轮。其结构特点是:结构简单,重量相对较轻。因有较大的轮毂动叶片角度可以作成可调的。动叶片可调的轴流式通风机,由于动叶片角度可随外界负荷变化而改变,因而变工况时调节性能好,可保持较宽的高效工作区。

2.2轴流式通风机的叶轮理论

2.2.1翼型和叶栅的概念

由于轴流式通风机的叶轮没有前后盖板,流体在叶轮中的流动,类似飞机飞行时,机翼与空气的作用。因此,对轴流式通风机在研究叶片与流体之间的能量转换关系时,采用了机翼理论。为此下面介绍翼型,叶栅及其主要的几何参数。

翼型 机翼型叶片的横截面称为翼型,它具有一定的几何型线,和一定的空气动力特性。翼型见图(2-1):

叶栅 由相同翼型等距排列的翼型系列称为叶栅。这种叶栅称为平面直列叶栅,如图2-2所示。

由于轴流式叶轮内的流动类似并可简化为在平面直列叶栅中绕翼型的流动,而在直列叶栅中每个翼型的绕流情况相同,因此只要研究一个翼型的绕流情况就可以了。这里要注意几个参数

的定义:

叶片安装角βα:弦长(图2-1中所示)与列线(叶栅中翼型各

对应点的连线,如图2-2中B-B )之间的夹角。

流动角β1,β2:叶栅进、出口处相对速度和圆周速度反方向之间的夹角。

2.3 速度三角形

在叶轮任意半径处取一如图2—3所示的叶栅。在叶栅进口,流体具有圆周速度1u 、相对速度1w ,绝对速度1v ,出口具有222v w u 和、,由这三个速度矢量组成了进出口速度三角形。绝对速度也可以分解为圆周方向的分量

u v ,和轴面方向的分量a v ,此时,

轴面分速的方向为轴向,

故用符号a v

表示。轴流式叶轮进出口处流体沿同一半径的流面流动,因而进出口的圆周速度u 1

和u 2相等,即有u 1= u 2=u 。另外对不可压缩流体,对风机流体升压很小,叶轮进出口轴面速度可视为相等,即

a a a v v v ==21

u 和

a v 可用下式计算:

60

Dn m

u s

π=

式中: D —计算截面所取直径,m; n —叶轮转速,r/min ;

?

ηπ

v h v

a D D q v )(4

222-=

m/s

式中:v q ——实际工作流量,m 3/s; D 2——叶轮外径,m; D h ——轮毂直径,m; v η——容积效率; ψ——排挤系数; 再计算出圆周分速

u v ,或已知β1,β2

角,就可绘出叶轮进出口速度三角形,如图2—3

所示。

图2-3 叶栅进口及出口速度三角形

图2-1翼型简图

图2-2平面直列叶栅

由于叶轮进出口具有相同的圆周速度和轴面速度,因此为研究问题方便起见,常把进、出口速度三角形绘在一起,如图2—4所示。因为叶栅中流体绕流翼型与绕流单冀型有所不同,叶栅将影响来流速度的大小和方向,因此为推导公式和论证简化起见,可取叶栅前后相对速度21w w 和的几何平均值

∞w 作为无限远处(流体未受扰动)的来流速度。

其大小和方向由进出口速度三角形的几何关系来确定,即

2

212

)2(

u u a w w w w ++=∞

如用作图法,只需要将图2-4中CD 线中点E 和B 连接起来,此联线BE 即决定了∞w 的大小和方向。

2.4能量方程式

叶片式泵与风机的基本方程式,是建立流体通过旋转叶轮时获得能量的定量关系式。该方程是由欧拉于1756年首先推倒出来的,所以又称欧拉方程式,也叫能量方程式。

其中有两点假设:(1)理想叶轮:叶片数无限多,叶片厚度无限薄,即:流体质点严格沿叶片型线流动,即迹线与叶片的型线重合;(2)流体为理想、不可压缩流体,即:流动过程无能量损失,流体的密度为常数。

依据:动量矩定律:即在定常流中,单位时间内流出与流进控制体的流体对某一轴线的动量矩的变化,等于作用在该控制体的流体上所有外力对同一轴线力矩的代数和。

能量方程式表达式:

)(1122∞∞∞-=u T v u v u p ρ (pa)

)2

2(22212122w w v v P T -+-=∞

∞∞

ρ (pa)

3轴流式风机的构造 3.1基本型式

轴流式通风机可分为以下四种基本型式:

a )在机壳中只有一个叶轮,没有导叶。如图3-2(a)

所示,这是最简单的一种型式,这种型式易产

图2-4叶栅进出口速度三角形重叠

u

u a

a w w w u w w tg 212+=

=∞∞β

图3-1 轴流式(通)风机结构示意图(两级叶轮)

1 进气箱

2 叶轮

3 主轴承 4动叶调节装置 5 扩压

器 6 轴 7 电动机

图3-2轴流泵与风机的基本形式(a )单个叶轮机(b )单个叶轮后设置导叶(c )单个叶轮前设置导叶(d) 单个叶轮前、后均设置导叶

生能量损失。因此这种型式只适用于低压风机。 b )在机壳中装一个叶轮和一个固定的出口导叶。如图3-2(b)所示,在叶轮出口加装导叶。这种型式因为导叶的加装而减少了旋转运动所造成的损失,提高了效率,因而常用于高压风机与水泵。

c ) 在机壳中装一个叶轮和—个固定的入口导叶。如图3-2(c)所示,流体轴向进入前置导叶,经导叶后产生与叶轮旋转方向相反的旋转速度,即产生反强旋。这种前置导叶型,流体进入叶轮时的相对速

度1w 比后置导叶型的大,因

此能量损失也大,效率较低。但这种型式具有以下优点:

①在转速和叶轮尺寸相同时,

具有这种前置导叶叶轮的泵或风机获得的能量比后置导叶型的高。如果流体获得相同能量时,则前置导叶型的叶轮直径可以比后置导叶型的稍小,因而体积小,可以减轻重量。 ②工况变化时.冲角的变动较小,因而效率变化较小。

③如前置导叶作成可调的,则工况变化时,改变进口导叶角度,使其在变工况下仍保持较高效率。 d) 在机壳中有一个叶轮并具有进出口导叶。如图3-2(d)所示,如前置导叶为可调的,在设计工况下前置导叶的出口速度为轴向,当工况变化时,可改变导叶角度来适应流量的变化。因而可以在很大的流量变化范围内,保持高效率。这种型式适用于流量变化较大的情况。其缺点是结构复杂,增加了制造、操作、维护等的困难,所以较少采用。

3.2轴流式风机的构造

轴流式风机与轴流式水泵结构基本相同。有主轴、叶轮、集流器、导叶、机壳、动叶调节装置、进气箱和扩压器等主要部件。轴流风机结构型式见图3-1所示。

a) 叶轮

叶轮的作用与离心式叶轮一样,是提高流体能量的部件,其结构和强度要求较高。它主要由叶片和轮毂组成。叶轮上通常有4—6片机翼型叶片,叶片有

固定式、半调节式和全调节式三种,目前常用的为后两种。它们可以在一定范围内通过调节动叶片的安装角度来调节流量。半调节式只能在停泵后通过人工

改变定位销的位置进行调节。全调节式叶片叶轮配有动叶调解机构,通过调节杆上下移动,带动拉板套一起移动,拉臂旋钮,从而改变叶轮安装角。

轮毂是用来安装叶片和叶片调节机构的,有圆锥形、圆柱形和球形三种。球形轮毂可以使叶片在任意角度下与轮毂有一固定间隙,以减少流体流经间隙的泄漏损失。

b)轴

轴是传递扭矩的部件。轴流式风机按有无中间轴分为两种形式:一种是主轴与电动机轴用联轴器直接相连的无中间轴型;另一种是主轴用两个联轴器和一根中间轴与电动机轴相连的有中间轴型。由中间轴的风机可以在吊开机壳的上盖后,不拆卸与电动机相连的联轴器情况下吊出转子,方便维修。

c)导叶

轴流风机的导叶包括动叶片进口前导叶和出口导叶,前导叶有固定式和可调式两种。其作用是使进入风机前的气流发生偏转,也就是使气流由轴向运动转为旋转运动,一般情况下是产生负预选。前导叶可采用翼型或圆弧版叶型,是一种收敛型叶栅,气流流过时有些加速。前导叶做成安装角可调时,可提高轴流风机变工况运行的经济性。

在动叶可调的轴流风机中,一般只安装出口导叶。出口导叶可采用翼型,也可采用等厚的圆弧版叶型,做成扭曲形状。为避免气流通过时产生共振,导叶数应比动叶数少些。

d)吸入室

轴流风机的吸入室与离心风机类似,为只有集流器的自由进气和带进气箱的非自由进气两种。火力发电厂锅炉的送、引风机均设置进气箱。气流由进气箱进风口沿径向流入,然后在环形流道内转弯,经过集流器(收敛器)进入叶轮。进气箱和集流器的作用与结构要求是使气流在损失最小的情况下平稳均匀地进土叶轮。

e)整流罩

整流罩安装在叶轮或进口导叶前,以使进气条件更为完善,降低风机的噪声。整流罩的好坏对风机的性能影响很大,一般将其设计成半圆或半椭圆形,也可与尾部扩压器内筒一起设计成流线型。

f)扩压器

扩压器是将从出口导叶流出的流体的部分动能转化为压力能,从而提高泵与风机的流动效率的部件,它由外筒和芯筒组成。扩压器按外筒的形状分为圆筒形和锥形两种。圆筒形扩压器的芯筒是流线形或圆台形的;锥形扩压器的芯筒是流线形或圆柱形的。

g)轴承

轴承有径向轴承和推力轴承。径向轴承主要承受径向推力,防止轴径向晃动,起径向定位作用。推力轴承主要承受轴向推力,并保持转子的轴向位置,将轴向力传到基础上。推力轴承一般装在电动机轴顶端的机架上。

4轴流风机性能曲线

轴流风机性能曲线是在叶轮转速和叶片安装角一定时测量的到的,即压力p、效率η、功率N

p-曲线,在小流量区域内出现马鞍形形状,在大流量区与流量Q的关系曲线,其形状特点是:Q

域内非常陡降,在Q=0时,p最大。但是,由于流体的物理性质的差异,使得在实际应用中,轴流风机的性能曲线与水泵有所不同。如轴流风机的静压、静压效率曲线,轴流风机的无量纲性能曲线,都在风机中有重要的应用。

4.1风机的性能参数

风机的性能参数主要有流量、压力、功率,效率和转速。

流量也称风量,以单位时间内流经风机的气体体积表示;

压力也称风压,是指气体在风机内压力升高值,有静压、动压和全压之分;

功率是指风机的输入功率,即轴功率。

风机有效功率与轴功率之比称为效率。

流量

流量是指单位时间风机输出流体的数量。可分为体积流量Q V (3

/m s )、质量流量Q m (/kg s ),体积流量与质量流量的关系为

m V Q Q ρ=

流量可通过装设在工作管路上的流量计测量。 全压

风机提供的能量通常用压头表示,称为全压,系指单位体积气体通过风机后的能量增加值,用符号p 表示,单位为P a 功率

功率可分为有效功率和轴功率。有效功率指单位时间通过风机的流体获得的功,即风机的输出功率,用P e 表示单位为kw

1000

V

e pQ p =

轴功率即原动机传到风机轴上的功率,又称输入功率用P a 表示 轴功率通常用电测法测定,即用功率表测出原动机输入功率'g P 则

'a g d g d g P P P ηηη==

其中g P 、g η----------------原动机输出功率及原动机效率;

d η---------------------------------传动装置效率

效率

效率是风机总效率的简称,指风机输出功率与输入功率之比的百分数。反映风机在传递能量的过程中轴功率有效利用的程度,用η表示

e

00a

100P P η=

? 建立风机进出口的能量关系式,同气体的位能g ρ(Z 2-Z 1)可以忽略,得到单位容积气体所获能量的表达式,即

2

2

2121

2

1

(

)()2

2

st st p p p p

p v v ρ

ρ

=-=+

-+

(N/㎡) (4—1) 即风机全压p 等于风机出口全压2p 与进口全压1p 之差。风机进出口全压分别等于各自的静压1st p 、

2st p 与动压

212

v ρ、2

22v ρ之和。式(4-1)适用于风机进出口不直接通大气(即配置有吸风管和压

风管)的情况下,风机性能试验的全压计算公式。该系统称为风机的进出口联合实验装置,是风机

性能试验所采用的三种不同实验装置之一。

风机的全压p 是由静压st p 和动压d p 两部分组成。离心风机全压值上限仅为1500mm (14710Pa ),而出口流速可达30m/s 左右;且流量Q (即出口流速2v )越大,全压p 就越小。因此,风机出口动

图4-1轴流式风机性能曲线 压不能忽略,即全压不等于静压。例如,当送风管路动压全部损失(即出口损失)的情况下,管路只能依靠静压工作。为此,离心风机引入了全压、静压和动压的概念。

风机的动压定义为风机出口动压,即

2222

1

v p p d d ρ=

= (N/㎡) (4—2) 风机的静压定义为风压的全压减去出口动压,即 21222

1

21122v P p v p p p p st st d st ρρ--=-

=-= (N/㎡) (4—3) 风机的全压等于风机的静压与动压之和,即

2d st p p p += (N/㎡) (4—4)

以上定义的风机全压p ,静压st p 和动压2d p ,不但都有明确的物理意义;而且也是进行风机性能试验,表示风机性能参数的依据。

4.2性能曲线

在风机的基本性能测试中,通常选用转速作为固

定值,然后建立全压、轴功率、效率等随流量的变化的函数关系。

风机的性能曲线是指在转速和流体的密度、叶片安装角一定时风机的全压、轴功率、效率等随流量变化的一组关系曲线。

风机的性能曲线有以下五条:①全压与流量的关系曲线,用p —Q V 表示;②轴功率与流量的关系曲线,用P-Q V 表示;③全压效率与流量的关系曲线,用η-Q V

表示。

轴流式风机性能曲线是在叶轮转速和叶片安装角一定时测量得到的,如图4-1所示。其形状特点是p-q V 曲线,在小流量区域内出现马鞍形形状,在大流量区域

内非常陡降,在q V =0时,p 最大;P a -q V 曲线,在q V =0时,P a 最大,随着q V 的增大P a 减小,因此轴流风机不允许在空负荷时启动,除非动叶可调;V q η-曲线,高效区比较窄,最高效率点接近不稳定分界点c 。

分析p-q V 性能曲线出现马鞍形状的原因,是风机在不同流量下,流体进入叶型冲角的改变,引起叶型升力系数变化。

图p-q V 性能曲线上a,b,c,d,e 为各工况点,曲线上d 为设计工况,此时流体流线沿叶高分布均匀,效率最高;流量大于设计值时,叶顶出口处产生回流,流体向轮毂偏转,损失增加,全压降低,效率下降;当流量减少时,在Vc V Vd q q q <<时,冲角增大,升力系数增大,全压稍有升高,在V Vc q q =时,全压最高;当流量再减小,处于Vb V Vc q q q <<时,在叶片背部产生叶面层分离,形成脱流,阻力增加,全压下降,在V Vb q q =时全压最低;而当V Vb q q <时,全压开始升高,这是因为流量很小时能量沿叶高偏差较大形成二次流,使从叶顶流出的流体又返回叶根再次提高能量,使全压升高,直到q V =0时,全压达到最大值。

图 5-1管路性能曲线及工作点的确定

5轴流式通风机的运行工况及调节

5.1轴流式通风机的运行工况的确定

图解风机装置工况仍然是目前普遍采用的方法。风机P —Q 性能曲线表示风机给单位容积气体提供的能量与流量的关系;管路P —Q 性能曲线表示管道系统单位容积气体流动所需要的能量与流量的关系,这是两条曲线的不同概念。但是,对风机装置来说,两条曲线又相互联系、相互制约,装置工况即是风机与管路的质量平衡结果;也是风机与管路的能量平衡结果。 5.1.1风机装置的管路特性曲线

风机管路系统是指风机装置中除风机以外的全部管路及附件、吸入装置、排出装置的总和。风机管路性能曲线是指单位容积气体从吸入空间经管路及附件送至压出空间所需要的总能量c p (即全压)与管路系统输送流量Q 的关系曲线。一般吸入空间及压出空间均为大气,且气体位能通常忽略,则管路性能曲线的数学表达式为

2Q S p p c = (N/㎡) (5-1)

式子中P S 是管路系统的综合阻力系数(㎏/㎡ )。 P

S 决定于管路系统的阻力特性,根据管路系统的设置情况和阻力计算确定。式子(5-1)表示的管路性能曲线在Q p c -坐

标系中是一条通过原点的二次抛物线。 全压p 表示风机提供的总能量,但是用于克服管路系统阻力的损失能量只能是全压中静压能量。因此,风机装置工况的确定,有时需要用风机的静压与流量关系(Q p ST -)曲线来确定相应的装置工况。此时,风机装置将出现全压工况点N 和静压工况点 M ,如图 5-1 所示,这是意义不同的两个工况点。

5.1.2工作点的确定

风机的运行工况在其性能曲线上的位置即为运行工况点,通常称为工作点。将风机的工作管路特性曲线按同一比例绘于风机工作转速的性能曲线上,如图5-1所示N 点就是风机的工作点,因为风机在输送该流量时产生的能头恰好等于管路系统中通过这一流量时所需要的能头,即N 点为能量的供求平衡点。N 点对应的这组参数即为该风机的运行工况。

对于风机要加以说明的是,虽然反映风机总能量用全压的概念,但全压中动能往往占有较大的比例,而真正能克服管路阻力的是全压中的动能部分。当官路阻力较大时,用全压来确定工作点难以满足系统的要求。因而风机的工作点有时还用静压流量曲线P st -Q V 与管路特性曲线的交点M ,见图5-1风机p-Q V 性能曲线与管路特性曲线的交点N 为风机的总工作点。

5.2风机的非稳定运行工况

风机正常工作时呈现的是稳定工况;当风机选型不当或风机使用欠妥时,某些风机就会产生非稳定工况,风机的非稳定运行将影响甚至破坏其正常工作。与轴流泵相同,轴流风机也具有驼峰形性能曲线,其最大特点就是存在着运行的不稳定工作区,风机一旦进入该区工作,就会产生不同形式的非稳定工况,并表现出明显的非正常工作的征兆。

图5-3

图5-4风机驼峰形性能曲线

图5-2

5.2.1叶栅的旋转脱流

轴流风机叶轮均采用了翼型叶片,气体与翼型之间的相对运动就是翼型绕流。在翼型绕流特性分析中,定义相对运动方向与翼弦线(即翼型前后缘曲率中心之连线)的夹角为冲角(或攻角),如图5-2所示,冲角大小是影响机翼型绕流特性的最重要的因素。当冲角为零时,叶片产生较大的升力和较小的摩擦阻力。当冲角增大时,叶片背水面尾部流动产生分离,外力有所增加而阻力(主要是形体阻力)的

增加更大,叶片升阻比减小。当冲

角增大到某一临界值后,流动分离点前移,分离区扩大,致使升力明显下降而阻力急剧增大。这种绕流现象称为脱流(或失速)。对于依靠外力工作的轴流风机,脱流是产生非稳定工况的一个重要原因。

轴流风机叶轮是由绕轮毂的若干个翼型组成的叶栅,图5-3所示为展开后的平面叶栅,叶片之间为气流通道,如图中标示的1、2、3……。气流在通过旋转叶栅时也会产生脱流现象,但这种脱流总是在某一个叶片首先发生,并在该叶片背水面流道,如图中的流道2的后部因涡流发生流动阻塞。2流道因阻塞减小的流量将向相邻的1、3

流道分流,并与原有的流动汇合使1、3流道的流量增大。

由于汇流改变了1、3流道的流动状况,也改变了1、3流

道的进口流动方向。流道2向流道1的分流方向与叶轮的旋转方向相同,将使叶片冲角减小而抑止了脱流的发生;与此相反流道2向流道3的分流方向与叶轮旋转方向相反,将使叶片冲角增大而诱发了脱流的产生。这样,流道1就保持了正常的流动状况,而流道3因脱流而是非正常的流动状况。与前面的分析完全相同,当流道3因脱流而发生流动阻塞时,也将影响到2、4流道的流动,抑止了2流道的脱流却诱发了4流道的脱流。因为叶轮是旋转的,所以此过程是顺序反复进行的。因此在旋转叶轮中,叶片脱流将沿着叶轮旋转的反方向,周期性而持续地依次传递;这种脱流现象称为旋转脱流。

旋转脱流逆叶轮旋转方向的角速度小于叶轮旋转角速度(约为转速的30%-80%),脱流对叶片仍有很高的作用频率。同时,脱流前后作用于叶片的压力大小也有一定的变化幅度。因此,旋转脱流除了影响风机正常工作,使其性能下降之外;还由于叶片受到一种高频率,有一定变幅的交变力作用,而使叶片产生疲劳损坏;当这一交变力频率等于或接近叶片的固有频率时,叶片将产生共振甚至使叶片断裂。

为防止轴流风机产生旋转脱流,应在风机选型和运行中确

保风机工况点不进入风机的不稳定工作区。 5.2.2风机的喘振

风机驼峰形性能曲线如图5-4所示。根据图解离心泵装置工况的能量平衡关系可知,图中K 点

图5-5风机性能曲线及并联性能曲线

为临界点,K 点右侧为风机稳定工作区,左侧为不稳定工作区。现对具有大容量管路系统的风机装置,并且风机在不稳定运行的工作状况进行讨论。

驼峰形曲线和大容量管路是风机发生喘振的必要件。仍见图5-4,装置原工况点A 为稳定工况。现在需要流量减小至K Q Q <,则工况点沿上升曲线AK 达到K 点,该段变化保持稳定工况。至K 点后沿下降曲线KD 变化,该段为不稳定工作区,使风机工作点即刻降至D 点,0=Q ,D p p =。与此同时,管路性能也沿曲线AK 变化,压力上升至k p ,由于管路容量大,其压力变化滞后于风机工作不稳定变化,所以管路压力保持k p 不变。在风机无流量输出,并且管路压力k p 大于风机压力D p 的条件下,风机出现正转倒流现象,风机跳至C 点工作。由于管路流量输出使其压力下降,倒流流量也随之减小,风机Q —P 性能变化沿CD 线进行。在D 点,管路压力与风机压力D p 相等,倒流流量也等于零,风机即无流量的输出也无流量的输入,但风机仍然在持续运行,故风机工作点又由D 点跳到E 点。但是,由于外界所需风量仍保持K Q Q <,所以上述过程将按E —K —C —D —E 的顺序周期性地反复进行。以上讨论也是对喘振机理的分析。

当具有大容量管路系统的风机处于不稳定工作区运行时,可能会出现流量压力的大幅度波动,引起装置的剧烈振动,并伴随有强烈的噪音,这种现象称为喘振。喘振将使风机性能恶化,装置不能保持正常的运行工况,当喘振频率与设备自振频率相重合时,产生的共振会使装置破坏。

为了防止喘振的发生,大容量管路系统的风机应尽量避免采用驼峰形性能曲线;在任何条件下,装置输出的流量应充分地大于临界流量K Q ,决不允许出现K Q Q <;采用适当的调节方法扩大风机的稳定工作区;控制管路容积等措施都是有效的。 5.2.3风机并联工作的“抢风”现象

当风机并联工作也存在不稳定区时,将会影响风机并联的正常工况,产生流量分配的偏离,即“抢风”现象。

两台具有驼峰形曲线的风机并联工作。假定为同型号风机,性能曲线为∏I -,)(Q p ,用并联性能曲线的方法作出并联性能曲线∏+I -)(Q p ,由于存在不同段曲线并联的可能,因此在

∏+I -)(Q p 中出现了一个∞形状的不稳定工作

区。风机性能曲线及并联性能曲线如图5-5所示。

当并联运行工况点为A 时,相应每台风机均在A 1点工作,风机为稳定运行。若并联风机在不稳定的∞区内运行,管路性能曲线与风机并联性能曲线有两个交点,即B 点和C 点。当在B 点运行时,相应每台风机均在B 1点工作,风机仍为稳定运行。当因各种因素不能维持在B

图5-6入口节流调节

图5-7风机出口节流调节

图5-8动叶调节

点运行时,工况点将下移到C 点,这时相应每台风机的工况点分别在C 1点和C 2点。流量大的这台风机在稳定区的C 1点工作,而流量小的风机的工作在不稳定区的C 2点,由于一台风机在不稳定区工作 ,因此C 点并联工况仅为暂时的平衡状态,随时有被破坏的可能。这种不稳定的并联工况,不仅产生较大的流量偏离,一台风机流量很小甚至出现倒流;同型号风机的不稳定并联工况,还客观导致风机工作点的相互倒换,即两风机大小流量互变。以上过程的反复进行,使风机不能正常并联运行,这是风机“抢风”现象机理的分析。

“抢风”现象不仅影响了并联装置的正常工作,而且还可能引起装置的振动,电机的空载或过载等不良后果。因此,应尽量避免并联风机的不稳定运行。如低负荷工作时应采用单台风机运行;也可采取适当的调节方法等措施来防止“抢风”现象的发生 。

水泵并联运行也存在着类似的“抢水”现象,除了上述的危害之外,还可能引起泵的汽蚀,具有更大的危害性。

5.3风机运行工况调节

风机工况调节也可分为非变速调节与变速调节两种方式。在非变速调节中,又分为节流调节、分流调节、离心风机的前导叶轮调节,轴流风机的动叶调节等不同方法。

5.3.1风机入口节流调节

利用风机进口前设置的节流装置来调节流量的方

法,称为入口节流调节。因为节流增加了管路阻力,所以也改变了管路性能曲线。同时,由于入口节流装置一般安装在风机进口前部位,节流时其断面速度非均匀分布,直接影响到叶轮进口的正常速度分布,因此也改变了风机的性能曲线。节流调节后的装置工况,

则由变化后的两条性能曲线决定,如图5-6所示。风机装置原工况点为M ,流量m Q ;采用节流调节后流量减小为A Q ,其工况点为A ,调节损失能量1H ?。若采用出口节流调节,则工况点应为,

A ,能量损失为2H ?。由于1H ?<2H ?,所以入口节流调节适用于小型风机的调节。入口节流调节除了改变叶轮进的速度分布之外同时还降低了叶轮进口部位的压力,对于水泵增加了汽蚀的危险性,因此水泵不采用这种调节方法。 5.3.2风机出口节流调节

出口节流调节就是将调节阀装在风机的压出管路上,改变调节阀的开度可进行工况调节,如图5-7所示。I 曲线为调节阀全开时管路系统的特性曲线。此时工作点为M 。如需将风机的流量减少为q 1a ,,则应关小调节阀开度,阀门局部阻力系数增大,使管路特性曲线上扬为I ‘

,工作点移到A 。

图5-9变速调节

5.3.3静叶调节

入口静叶调节是轴流式、混流式风机中采用的一种调节方式。其调节特点是结构简单、成本低、操作灵活方便且调节后驼峰性能有所改善,稳定工况区扩大,提高了运行的可靠性。

在调节量不大时,调节的附加阻力较小,调节效率较高。但是随着调节量的增大,调节效率将不断降低。 5.3.4动叶调节

动叶调节一般由两种方式:一种为半调,即在风机停转时,改变动叶安装角度,而风机运转时不能调节,另一种为全调,即在风机运转时可随时改变动叶片安装角。动叶调节的传动方式有机械式和液压式,常见为液压式。

动叶调节优于入口导流器调节,如图5-8所示在为绘制在同一坐标系中,轴流风机动叶调节曲线。

轴流式风机动叶调节的主要特点为:在较大范围内调节流量时效率改变较小,调节经济性高。另外,还可以由额定流量向流量减小或增大的两个方向进行调节,调节范围较大。因此,电厂中大型机组的送、引风机,轴流式、混流式、循环水泵等广泛采用动叶调节。 5.3.5变速调节

通过改变转速来改变泵与风机的性能曲线。 原理:依据比例定律。

优点:转速改变,效率不变,经济性最好。右图所示为风机的转速由n 1升为n 2或降为n 3时,性能曲线的变化情况。由图可见,风机的工作转速升高,其流量、全压增大;反之流量全压减少。

变速调节中管路特性不变,不存在附加的调节阻力,调节经济性高,是泵与风机较为理想的调节方法。但是,

变速调节必须使用变速原动机或增设变速装置,增加了

设备投资和运行维护费用。故这种调节方式主要用于调节较频繁的大、中型泵或风机。 6轴流风机性能测试实验报告 6.1实验目的

①学会通风机主要工作参数,风量Q ,风压P ,轴功率P a ,转速n (从而计算效率η)的实验测定方法。

②通过实验得出轴流式风机的特性曲线(包括P —Q 曲线,P st —Q 曲线,N —Q 曲线, η—Q 曲线)。

6.2实验装置与实验原理

根据国家标准GB1236-2000《通风机空气动力性能实验方法》设计并制作了本实验装置,本实验采用C 型装置—管道

进口和自由出口实验法。流量测量采用皮托静压管(比托管)测定法。装置如图6-1所示:

空气经过调节风阀2进入风管,在整流格栅4后部用毕托管和微压计测试管内静压3e P 及动压j P ?,用温度传感器8测量3断面温度3t ,用温度传感器10测量2断面温度2t ,用大气压计18测量大气压力a P ,然后计算得出断面平均流速V 和风量Q ,通风机进口压力1p ,通风机出口压力2p ,通风机压力FC P 、容积流量、通风机空气功率等 。

用平衡电机13及平衡电机力臂测定轴功率N 。

风机效率η由测定的流量Q ,风压P 和轴功率N 用下列公式计算得出。

由于本实验台基准马赫数小于0.15和压比小于1.02,根据国家标准GB1236-2000规定,流经通风机和试验风道的空气可以看作是不可压缩的:

332211sg sg sg θθθθθθ=====

实验风管内的温度可以测量,且

1321===M M M F F F

1=P k

于是可求试验条件下的通风机性能。 6.2.1用比托静压管测定质量流量

a e p p p +=33

式中:3p —流量测量断面处的静压(Pa );

3e p —流量测量断面处的表压(Pa );

a P —测试地点的大气压力(Pa );

15.2733+=a sg t θ

图6-1 实验装置简图

1.支架

2. 风量调节传动机构

3.调节尾门

4. 整流栅5、进气管6、静压测量传感器7、动压测量传感器8、进风温度 9、风机风管连接件10、出气温度11、轴流风机12、联轴器13、平衡电机14、转速传感器15、重力传感器16、仪表盘17、巡检显示仪18、大气压计

为了测定风量Q ,将风管断面分成等面积的圆环,测定各圆环的静压3e P 及动压j P ?,测点位置如图6-2所示。

本实验风管直径Φ400mm ,分四个圆环测定4个点的动压j P ?。 质量流量m q 按下是确定:

m m p D q ?=32

324

ραεπ

一般取α=0.99、ε=1即可。 6.2.2通风机进口压力

332211sg sg sg θθθθθθ======15.273+a t

a e p p p +=33

2

2

133333

31122m sg m q p p v p A ρρ??

=+=+

????

因为:123M M M F F F ==

()[]3132

3331

121-+??

?

???+=ζρA q p p m e seg

3e p 和()313-ζ为负值。

3

33sg W R p θρ=

2

1112

132

331121

21??

?

???-=?

???????????-=A q p A A A q p p m sg m sg ρρ

图6-2 P dj 测点位置、测点半径

轴流式风机性能测试及分析

或 2

131121??

?

???-=A q p p m seg e ρ

6.2.3通风机出口压力

通风机出口静压2p 等于大气压a p ,即

a p p =2 02=e p

2

23

2

232

2121??

????+=+=A q p v p p m a

m a sg ρρ 2

232

21??

????=A q p m seg ρ 6.2.4通风机压力

通风机压力FC p 和通风机静压sFC p 可按下式求得

21FC sg sg p p p =-

211sFC sg a sg p p p p p =-=-

6.2.5容积流量计算 在进口滞止条件下,

m

V Q Q ρ

=

6.2.6通风机空气功率的计算

FC vsg uc p q P 1=

sFC vsg usc p q P 1=

6.2.7通风机效率的计算

由通风机体积流量Q V 和全压P 来计算通风机有效功率

1000

v e Q p

p ?=

供给通风机轴的机械功率用平衡电机测定。

1000

60)

(20?-=

G G nL P a π (8)

式中 a P —轴功率(kw )

n —风机转速(r/min )

L —平衡电机力臂长度(m ) G —风机运转时的平衡重量(N ) G 0—风机停机时的平衡重量(N )

通风机轴效率 a

u

P P =

η 。 7实验分析

7.1轴流式风机的性能曲线分析

在一定的转速下,对叶片安装角固定的轴流式泵与风机,试验所测得的典型性能曲线如图所示。qv -H(P)曲线,随流量qv 减小,扬程(全压)先是上升,当减小到qvc 时,扬程(全压)开始下降,流量再减小到qvb 时,扬程(全压)又开始上升直到流量为零时的最大值。 轴流式风机性能曲线归结起来有以下特点:

(1) qv -H(P)性能曲线,在小流量区域内出现驼峰形状,在左边为不稳定工作区段,一般不允许风机在此区域工作。

(2) 轴功率P 在空转状态(qv=0)时最大,随流量的增加随之减少,为避免原动机过载,对轴流式泵与风机要在阀门全开状态下启动。如果叶片安装角是可调的,在叶片安装角小时,轴功率也小,所以对可调叶片的轴流式泵与风机可在小安装角时启动。

(3) 轴流式泵与风机高效区窄。但如果采用可调叶片,则可使在很大的流量变化范围内保持高效率。这就是可调叶片轴流式泵与风机较为突出的优点。 7.2叶片安装角、转速对风机性能的影响 (1)叶片安装角对风机性能的影响

由实验测得性能曲线图可见,叶片安装角增大时,相同风量下全压增大,但效率却呈平移特性,随风量的变化不似全压那样规律。另外,由于安装角改变时,效率的变化程度远远小于全压的改变程度,工程上广泛使用调节动叶来改变风机工况,从而取得较满意的节能效果。 (2) 风机转速对风机性能的影响

在相同的安装角度下,工作转速升高一倍,根据泵与风机的相似定律:22

m m m m p D n p D n ρρ????= ? ?????,全压增加到原来的四倍;5

3

m m m m P D n P D n ρρ????

= ? ?????,轴功率增加到原来的八倍;3

V Vm m m

Q D n Q D n ??= ???,流量增加到原来的两倍。

由轴流风机的速度三角形知,转速的变化会引起圆周速度的变化,从而改变了气流流动的方向。

当转速增大时,叶轮牵连速度u 增加,则气体相对于叶轮的进口速度w,和出口速度w 2也有所增加,而气流进口角和出口角减小;当转速减小时,叶轮牵连速度u 减小,则气体相对于叶轮的进口速度w 1和出口速度w 2也有所减小,而气流进口角β1和出口角β2增大。因此当转速变化时,气流的流动方向就会发生改变。气流方向的改变改变了气流与机壳、叶轮间气体流动相互作用的程度。当这种相互作用达到某种状态时,会增加壁面损失、二次流损失、涡流损失等,导致内部流动损失上升,降低通风机的性能。转速过小,气流进口角很大,这时叶型不但没有充分发挥气动特性,相反叶型阻力大增,导致效率下降;转速过高,内部流场的扰动加剧,各个方面的损失降低了叶型的气动力特性,同样不能发挥出较好的性能,造成了效率下降。

风机内部流场的流动是很复杂的,各结构参数之间也有着相互影响。从上述的分析中知,我们都是只改变其中一个参数,了解每一个参数对风机性能的影响,实际上,要考虑的是所有参数对风机的综合影响。通过对各主要因素的分析,能够使我们认识到各因素影响风机全压效率的原因及大小,弄清通风机内部流动的规律以及流动细节,以便对各影响因素综合考虑之后,抓住影响风机性

离心风机试车方案

三门东南特钢集团 D700-2.3/0.98离心鼓风机试车方案 一: 单机试车 1.单机试车内容 1).10KV开关柜及运行柜调试 2)。控制柜及信号柜调试 3)。仪表柜及仪表信号柜调试 4)。启动电阻器调试 5)。配风阀、进风调节阀、放风阀、调试运行,单向阀、空气过滤器检查。 6)。油站及润滑系统的调试运行 7)。冷却水系统的通水检查。

8). 2000KW电机检查测试并做好主电机单独运行各项检查工作。 9).厂房照明线路通电检查。 2:单机试车要求 1)。各部位试车应按设计要求和操作规程进行,并认真做好试车记录,严格把关,直至单车试车合格为止。 2)。原则上谁施工谁负责单机试车,生产厂岗位操作人员随岗监护 和学习,单机试车应服从试车领导小组统一安排,防止相互干 扰和造成设备人身安全事故。 3)。单机试车从日到日止。 二:主YK2000-2/990电机试运行 1 。试车前的准备工作 1)。确认主电机“应检查项目”是否符合要求,例如:轴间间隙、定转子间气隙、绝缘电阻、吸收比等。 2)。检查地脚螺栓是否拧紧,各部接线端头有无松动现象,并盘动转子不得有咔兹声。 3)。检查电机润滑系统,水冷系统运行是否良好。

2. 主电机第一次启动应在空载下进行(不与增速器和空压机连接)空载运行时间为2小时。 3. 电机在试运行中应进行下列检查并做好记录。例如:空载电流、 旋转方向、电机温度、电机振动、电机轴承温度等。 4)。主电机空载运行由施工单位,生产厂,供货方共同监护。 5)。主电机空载运行时间暂定月日。 三:联动试车 1. 试车前的准备工作 1)。操作人员与高配室联系,确认供电、控制、保护系统及 测量仪表信号回路安全可靠,动作灵敏,并取得高配室值班人员的同意。 2)。确认主电机转向符合离心风机的旋转方向要求。 3)。对主电机整体进行检查,电机引出线连接应牢固,电机定、转子回路绝缘符合要求。 4)。检查所有螺栓是否拧紧,并确认一切。 5)。检查润滑系统、油脂性能,油量是否充足,油温应在25-35度,否则,应启动电加热器。

主通风机性能测试措施

编号:PA—JYB—20150109 山西寿阳段王集团平安煤业有限公司 主通风机性能测试的安全技术措施 编制人: _________ 施工单位: _________ 编制日期: 2015 年 01月09日 执行日期: 2015 年 0 月日

审批意见

日月年会审单位及人员签字: 术科:技机电科: 室:调度安监科: 总经理助理:防科:通机运部经理:通防部经理: 副总经理:生产部经理: 总工程师:副总经理(安监): 理:经总

主通风机性能测试的安全技术措施 一、工作概况: 主通风机目前已安装完成,近期计划对主通风机的性能进行测试,为确保测试期间的安全,特编制本安全技术措施。 二、人员组织及分工: 为有利于协调、组织及保证此次风机性能测试的安全顺利进行,特成立领导小组: 组长:曲正战 副组长:王绥增、李军 成员:王超、苗桂山、白华(中煤四处) 技术负责人:张吉福(机电)、李小牛(通风)、主通风机厂家技术员和风机在线监测和电控厂家技术员(由供应科负责联系)、中煤四处技术员(机电科负责通知)、山西公信检测技术负责人(机电科通知中煤四处,然后由中煤四处联系检测中心到矿检测风机性能),具体分工如下:

(1)、阻力调节组:由通防科负责。负责在回风立井井底打密闭,并确保密闭质量和测量期间的阻力调节。【调节方法:由中煤四处用吊车将防爆盖吊下,然后按照4等分的方法将长6m/根的30Kg/m的轨道用吊车吊起[采用卸液压支架专用平衡钩捆绑轨道两端)放在井口上方,通风机启动后抽取地面短路风流,利用人为增加木板(规格:长:3m、宽0.2m、厚0.3m)的方法(每块木板由两人负责放置,木板两端各1人,随着木板3 从井筒边缘往井筒中间推进,后端的人员逐步前移)调节通风阻力(最大通风阻力由主通风机厂家负责提供并在风机检测期间负责调节,确保风机在检测期间通风阻力在风机的最大承受范围内]】。后附《回风立井井口轨道、防护网、木板安装步骤示意图》 (2)、性能测试组:由山西公信检测人员负责。负责检测仪表的安装、使用及测定数据记录、整理。 (3)、电钳组:由机电科(机械负责人:潘福生、电控系统:刘明泉)、中煤四处、风机在线监测厂家(包含电控)、主通风机厂家的电钳工组成。负责测定仪表的电源及接线和风机倒台运行以及在线监测通风机的各种运行数据以及风机风叶的拆除、安装、调整等。 三、测试内容、方法及步骤: 本次通风机安全检测检验是在由风硐、通风机、扩散塔等部分组成可供调节的通风网络的情况下,对两台主通风机进行检测。 1、测定条件:

风机测试方案

通风机安全检测检验方案 山西公信安全技术有限公司 二〇一八年六月二十一日

通风机安全检测检验方案 为搞好通风管理、确保通风机装置安全、经济运行提供科学的依据,依据《煤矿在用主通风机系统安全检测检验规范》AQ1011-2005的规定要求,山西公信安全技术有限公司受炭窑坪煤业有限公司委托对该矿主通风机不同角度(+2.5,-2.5,0,+5,-5)进行安全检测检验。经现场查看和矿方对检测检验的要求,制订本方案。 一、确定通风网络的组成 本次通风机安全检测检验是在由防爆门、回风井、风硐、通风机、扩散器等部分组成可供调节的通风网络。 二、检测项目及测点布置 1.风压 利用风机现有静压测孔,接上矿井通风参数测定仪,直接测定各调节点的相对静压值。 位置:风机集流器处 形状:圆形 2.风量测定 在扩散器风流出口处安装智能测试风杯,测量风速。 3.电气参数 在主通风机电控柜的二次测线路中接入电动机经济运行测试仪,测取电动机的输入功率、电压、电流、功率因数等电气参数。 4.空气密度 用矿井通风参数仪测定风机房阴凉处的大气压力,用温湿度计在

风流出口处测取风流的温湿度,计算各调节工况点空气密度。 5.噪声 在距离通风机扩散器45°方向的3.4m处、离地高度1m处用声级计测取扩散器的A声级噪声。距通风机电机外壳1m外测量机壳辐射噪声。 6.转速 参照额定转速。 7.振动 用便携式测振仪在通风机直接与坚硬基础紧固连接处测量风机的振动。 8.轴承温度 利用矿方现有传感器直接读取数值。 9. 叶片径向间隙 用塞尺在主通风机叶片与机壳(或保护圈)的间隙处测量该间隙值。 三、测定条件 1.装置完好条件: ①测定前应检查通风机、电动机各零部件是否齐全,装配是否紧固,运行是否正常,备用风机确保在10分钟内启动,以保障在测定过程中通风机能安全运行。 ②通风机进风口或出风口至风量、风压测定断面之间应无明显漏风,以确保测定工作的准确性。

离心风机维护检修规程

离心风机维护检修规程-

————————————————————————————————作者: ————————————————————————————————日期: ?

离心风机维护检修规程 资料整理:王发财 1.总则 1.1适用范围 1.1.1本规程规定了离心式风机的设备完好标准、检修周期与内容、检修与质量标准、试车与验收、检修安全与环保注意事项、维护与故障处理。 1.1.2本规程适用于石油化工离心式通风机和离心式鼓风机。 1.2设备结构概述 离心式风机由机壳、转子组、轴承和轴承箱等部件构成,有透平驱动及电机驱动等型式。 1.3编制依据 GB 50275—1998 压缩机、风机、泵安装施工及验收规范 HGJ 1024—79 化工厂离心通(鼓)风机维护检修规程 设备生产厂家提供的技术资料和使用说明书 2.设备完好标准 2.1零部件 2.1.1主、辅机的零、部件完整齐全,质量符合技术要求。 2.1.2电流、温度、压力等仪表和控制、调节装置完整齐全、灵敏正确。 2.1.3风机基础、基座稳固可靠,紧固和连接螺栓齐全、牢固,无松动。 2.1.4管道、阀门、支架、管卡等安装合理、牢固完整、标志分明。 2.1.5转子轴向窜量及各部间隙符合技术要求和规范。 2.1.6防腐、保温完好,符合技术要求。 2.2运行性能 2.2.1设备运转平稳,无异常振动和噪音,电机温升和电流未超过允许值。2.2.2设备达到设计能力,能满足生产需要, 2.2.3润滑油及冷却系统正常,油温、油压、油质符合设计值和规范要求。 2.3技术资料 2.3.1设备的设计、制造、检验、安装、验收等技术文件和档案资料齐全。2.3.2设备操作规程、维护检修规程齐全。

风机性能试验

风机性能试验 一、测量参数及测点布置 1、风机静压测量:(测点位置参考西安院在成都轴流风机所做试验报告) 引、送风机的进口静压测点均布置于各风机进风箱进口法兰略上的矩形直管段上,每个侧壁面中心线处各设一个静压测点,每台风机共设置4个进口静压测点。 引、送风机的出口静压测点布置于各风机扩压筒出口法兰略前的圆形管段上,每台风机沿圆周方向均匀布置3个静压测点。 一次风机进口静压测点布置于进口风门下部, 每个侧壁面中心线处各设一个静压测点,共设置4个进口静压测点。出口静压测点可利用现有标定孔测量。 附图1 1、1压力测孔内径d=2~3mm,最大不超过5mm,外部短导管内径为2~2.5d。见附图1。 1、2介质温度测点采用流量测量截面的测点。 2、流量测量 2、1测量截面布置:(测点位置参考西安院在成都轴流风机所做试验报告) 引风机的流量测量截面布置于引风机进气箱略前的收敛管段上,每台风机设置10个流量测孔。 送风机的流量测量截面布置于送风机进气箱略前的收敛管段上,每台风机设置8个流量测孔。我厂靠背管加长杆接头外径为32 φmm,引风机处测孔孔径应取不小于50 φmm。管座加工见附图。

一次风机流量测量可利用现有标定孔测量 附图2:点1和点2处分别为风机入口平面与出口平面。 2、2流量测量项目及公式 2、2、1风机流量ρ νd A p 2q ? = q V =为测量截面处流量,m 3/s ,A=截面面积m 2,ρ=流量测量截面处介质密度kg/m 3, P d =流量测量截面处平均动压,Pa 。 或风机流量q V =A ×ν q V =测量截面处流量m 3/s ,ν=测量截面处气流平均速度,m 3/s ,A=测量截面面积m 2 式中101325 273273 293.1s a p p t +?+? =ρ Pa=当地大气压Pa ,Ps=测量截面处静压Pa ,t 为流量测量截面处介质温度℃。 2、2、2风机全压()??? ? ? ?-+-=222 1122212νρνρs s p p P 式中P =风机全压Pa ,1s p =点1处静压Pa ,2s p =点2处静压Pa ,1ν=点1处气流速度,点2处气流速度2ν= 2 2ρA q m m/s 。m q =1A 1d 2ρP kg/s 2、2、3风机功率K/1000P ×q ?=νt P KW K=气体可压缩系数约为0.96,P =风机全压Pa,νq =风机容积流量m 3/s 2、2、4风机轴功率tr P P η0a = a P =风机轴功率,mot UI P ?ηcos 30=,tr η=传输效率%,直连时tr η=1。 0P =电动机输出功率,?cos =电动机功率因数,mot η=电动机效率。

离心风机性能试验

离心风机性能试验 一.试验目的 风机性能试验的目的在于掌握离心式风机性能测试的方法,求得离心式风机在给定转速下标准进气状态时的空气动力性能,并给出其特性曲线,从而提供风机合理的工作范围。 二.实验内容 采用计算机自动测试的方法获取离心式风机性能曲线。 三.试验装置和仪器 图1 进出气联合试验装置简图 系统由风机试验台、传感器、数据采集器、PC机和打印机组成。 风机进出口静压测量采用FG300 A 06 BIN M5智能压力变送器,动压测量采用FG700 DP 3 S J1 B M3智能差压变送器,输出为4~20mA电流信号。电机功率测量采用三相交流有功功率变送器,输出为0~+5V电压信号。风机转速测量采用红外光电转速传感器,输出为脉冲信号。数据采集器的任务是将传感器输出的电流、电压以及脉冲信号进行整形、滤波、放大,然后在8051单片机控制下进行A/D变换,所得的结果经RS232标准通讯接口传送给PC机,进行数据的分析、计算及显示,并可将计算结果存于硬盘或打印输出。 四.操作方法及实验步骤 1.按规定要求连接传感器、数据采集器的电源线及信号线,然后开启电源。 2.在PC机上运行测试软件,从下拉式菜单上选择“数据采集”选项,此时屏幕显示风机的全压、静压、轴功率及效率坐标图,各坐标图上均有一红点,分别表示当前风机的全压、静压、轴功率及效率随流量的变化关系,当风机的工况改变时,红点亦会随之移动。 3.关闭风机出口节流锥,开启电机电源,缓慢开启节流锥,逐渐增大风机流量,同时

观察计算机屏幕上四个坐标图中红点的位置,在需要采集数据的工况点,按“回车”键,此时屏幕上的红点变成白点,表示计算机已采集了该工况点处的数据。按此方法,在0~最大流量范围内采集7~10个工况点的数据,数据采集工作即告结束。 4. 从计算机下拉式菜单上选择“特性曲线”选项,计算机立即将屏幕上全部的工况点 拟合成特性曲线。 5. 通过打印机可打印出测试系统图,风机的全压、静压、轴功率及效率曲线,也可打 印出原始的测试数据。若系统未连接打印机,则需手工记录原始数据。 五.实验数据处理 根据泵与风机性能曲线的定义,所有作图数据必须是同一转速下的数据,而测试所得的数据是在不同转速下测得的,所以首先必须应用比例定律将全部数据修正到同一转速下。本实验要求将全部数据都修正到2950r/min 下。最后作出风机的全压曲线、静压曲线、功率曲线和效率曲线。 全压曲线 v q p 0 静压曲线 v q st p 0功率曲线 v q P 0 效率曲线 v q η

主要通风机管理办法

主要通风机管理办法(正 式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:__________________ 单位:__________________ 时间:__________________

文件编号:KG-A0-9229-81 主要通风机管理办法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准'规范的要求进行操作, 使日常工作或活动达到预期的水平。下载后就可自由编辑。 为贯彻执行国家的安全生产方针,保障煤矿职工的 安全和健康,保护国家资源和财产不受损失,保证生产建 设的正常进行,搞好我公司矿井通风瓦斯管理工作,特 制订一下管理办法: 第一章管理部门职责 风机房有地面机电队负责,队长是本单位安全生产 的第一责任人,对所管辖范围内的安全管理工作负全面 责任。 第一条负责本队范围内认真贯彻落实党的安全生产 方针,上级一系列安全文件、指令、会议及指示精神, 坚持生产必须安全,不安全坚决不生产原则。 第二条负责组织每周一次的安全学习和安全培训, 做到全区岗位工必须持证上岗。 第三条负责定期组织本单位的安全检查,及时排查

本单位存在的事故隐患,特别是皮带机综合保护和阻燃皮带使用等方面,发现隐患立即处理,本单位不能处理的向矿分管领导汇报。 第四条对所管辖范围内的设备确保各种保护齐全并灵敏可靠,要定期安排专人试验并存有记录。 第五条负责管辖范围内严格按规程措施和零星任务书施工,无措施任务书不得施工,并且所有岗位工必须坚持正规操作。及时制止“三违”现象。 第六条对所辖范围内出现的事故要按“四不放过"的原则,认真分析原因,找出责任人,并制订行之有效的防范措施,防止类似事故重复发生。 第七条扎实并深入开展质量标准化工作,为本区安全生产做好基础工作,在现场备足安全设施和应急配件,做好本区文明生产工作。 第八条负责制订本单位切合实际的安全管理制度并在现场落实。 第九条负责大型固定设备台台完好,且各种保护齐

无蜗壳离心风机性能及测试方法的探讨_王顶东

第12卷 第3 期2 0 1  2年6月REFRIGERATION AND AIR CONDITIONING 77- 78收稿日期:2011-12- 13作者简介:王顶东,本科,工程师,主要研究方向为暖通空调。 无蜗壳离心风机性能及测试方法的探讨 王顶东 张卫军 丁勇 (合肥通用机电产品检测院) 摘 要 试验分析普通离心风机、无蜗壳离心风机和箱式无蜗壳离心风机的性能差异,总结不同测试方法对无蜗壳离心风机性能测试结果的影响。关键词 离心风机;无蜗壳;箱式无蜗壳 Study on the performance and its testing  methods of voluteless centrifugal fanWang Dingdong Zhang Weijun Ding  Yong(Hefei General Machinery  &Electrical Products Inspection Institute)ABSTRACT The performance differences among  three centrifugal fans(volute,volutelessand chamber voluteless)are experimentally analyzed.The influences of different testingmethods on p erformance test results are concluded.KEY WORDS centrifug al fan;voluteless;chamber voluteless 无蜗壳离心风机一般多以设备冷却风扇的形 式使用,具有风量大、压力高、噪声低、结构紧凑等 优点, 是普通轴流风机[1]和普通离心风机[2 ]无法替代的产品。鉴于无蜗壳离心风机良好的低噪声性能,目前也有厂家推出箱式无蜗壳风机用于建筑物通风换气。笔者通过对比试验数据,分析普通离心风机、无蜗壳离心风机和箱式无蜗壳离心风 机的性能差异, 同时总结不同测试方法[3 ]对无蜗壳离心风机性能测试结果的影响。 1 三种离心风机的性能对比 试验采用标准出气侧试验风室,风室横截面积为3 000 mm×3 000 mm,风室中采用孔板测定流量,其结构如图1所示 。 图1 标准出气侧试验风室 在上述风室装置中对 700  mm后向离心叶轮的3种机型风机进行试验,3种机型的试验安装示意图如图2所示。考虑到3种机型的不同结构有不同的出口面积,采用静压数据作为测试结果进行对比。 由测试结果(见图3)可以看出,普通离心风机的压力要比另外2种机型高,而且随着风量的减小, 其压力的增幅加大。产生这种性能差异的原因:空气从集流器到叶轮出口这一流动过程中3种机型没有区别,但空气离开叶轮出口后就有明显的不同,普通离心风机中,空气在蜗壳引导下沿切向流出蜗壳,这一过程中将无用的旋转动能转化为有用的静压和动压,普通离心风机肯定要比没有蜗壳的机型压力高。当风量减小时, 离心叶轮出口处会产生更高的切向速度,具

主通风机性能测试措施

. . 编号:PA—JYB—20150109 寿阳段王集团平安煤业 主通风机性能测试的安全技术措施 编制人: _________ 施工单位: _________ 编制日期: 2015 年 01月09日 执行日期: 2015 年 0 月日

审批意见 会审单位及人员签字:年月日机电科:技术科: 安监科:调度室: 通防科:总经理助理: 通防部经理:机运部经理: 生产部经理:副总经理: 副总经理(安监):总工程师: 总经理:

主通风机性能测试的安全技术措施 一、工作概况: 主通风机目前已安装完成,近期计划对主通风机的性能进行测试,为确保测试期间的安全,特编制本安全技术措施。 二、人员组织及分工: 为有利于协调、组织及保证此次风机性能测试的安全顺利进行,特成立领导小组: 组长:曲正战 副组长:王绥增、军 成员:王超、苗桂山、白华(中煤四处) 技术负责人:吉福(机电)、小牛(通风)、主通风机厂家技术员和风机在线监测和电控厂家技术员(由供应科负责联系)、中煤四处技术员(机电科负责通知)、公信检测技术负责人(机电科通知中煤四处,然后由中煤四处联系检测中心到矿检测风机性能),具体分工如下: (1)、阻力调节组:由通防科负责。负责在回风立井井底打密闭,并确闭质量和测量期间的阻力调节。【调节方法:由中煤四处用吊车将防爆盖吊下,然后按照4等分的方法将长6m/根的30Kg/m的轨道用吊车吊起[采用卸液压支架专用平衡钩捆绑轨道两端)放在井口上方,通风机启动后抽取地面短路风流,利用人为增加木板(规格:长:3m、宽0.2m、厚0.3m)的方法(每块木板由两人负责放置,木板两端各1人,随着木板从井筒边

风机性能试验台

风机性能试验台 一、产品说明 本试验台能对各种不同类型的风机性能进行测定,能进行定风量和定风压试验,并能对试验参数进行曲线拟合,得出风机的性能曲线。试验台符合标准ASHRAE 51-75的要求。 二、测试项目 1. 定风量定电压试验 2. 定风压定电压试验 3. 定风量定转速试验 4. 定风压定转速试验 三、技术指标 1. 风量范围:110~7000m3/h 2. 重复性精度:±1% 3. 试验台规格:吸风式风机性能台,吹风式风机性能台(可按用户需要进行特殊设计)。 根据GB1236-2000的要求 -技术指标 1. 被测风机风量范围: ·吹风式:1000-20.000m3/h,转速0-6000RPM; 2. 测定精度:重复性精度:±2% 3. 环境:温度:20±15℃;湿度:65±20%(用户保证) 4. 风机尺寸:1000mm以内,宽350 mm(根据客户要求) 一.控制方案 本试验台采用吹风式风洞测试风机性能,具体方案如下:

图1 风室出气试验示意图(用多喷嘴流量计测流量) 图2 风室进气试验示意图(用多喷嘴流量计测流量) 三、风机性能测试台,风机风量台,性能测试台控制参数(在全自动控制方案中为控制参数,在其他方案中为测量参数) 1.风管静压(定静压) u 差压变送器:微压变送器,-500Pa~500Pa/1~5V (精度0.075%) u 控制:PID u 数据记录:通过数据采集器采集到计算机

2.两内空板的压差(定风量) u 差压变送器:微压变送器,,量程0~1000Pa /1~5V(精度0.075%)u 控制:PID:输出控制电动风阀的开启度! u 数据记录:通过数据采集器采集到计算机(国产) 3.被测风机电压 u 电压范围:0~380V DC 二.测量参数 1.被测风机电流 u 测量范围:0 ~50A(测量精度0.01V) u 电流变换器:带分流器, 0~50A / 1~5V DC 。精度0.1% u 数据记录:通过数据采集器采集到计算机 2.风洞温度 u 测量范围:相对温度0~100℃ u 测量精度:±0.2℃ u 信号变换器:0~100℃/ 1~5V DC u 数据记录:通过数据采集器采集到计算机 3.风洞湿度 u 测量范围:相对湿度0~100%RH u 测量精度:相对湿度±3% RH

广元辉煌煤业公司尚武煤矿风机性能测试报告

矿用主要通风机现场 测定报告 报告编号:____________________ 受测单位:盐边县金谷煤业有限责任公司(分矿一号井)设备名称:矿用地面防爆轴流式通风机 设备型号:FBCZ№9/15(1#) 测定类别:定期测定 报告日期:2011年7月20日 测定单位:盐边县金谷煤业有限责任公司 (公章)

参加测定人员名单 矿用主要通风机现场测定报告 一、测定目的 矿井主要通风机的性能测定是矿山通风与安全技术管理工作的

重要内容之一。《煤矿安全规程》(2009年版)第121条规定:新安装的主要通风机投入使用前,必须进行 1 次通风机性能测定和试运转工作,以后每5年至少进行1 次性能测定。 矿井主要通风机安装完毕之后,由于在安装过程中可能产生的安装偏差等因素影响,通风机的性能与出厂时提供的风机性能曲线和参数均有一定差异。为了掌握安装后的通风机真实的性能参数,核实矿井真实的通风能力,在使用前,必须对通风机的排风量、风压、功率、效率等性能参数进行测定和试运转工作。 经过较长时间运转的主要用风机,由于井下潮湿、含尘空气的侵袭致使一些零部件表面发生锈蚀,加上运转过程中机械摩擦等因素的影响,通风机的性能和参数也会受到影响而发生变化。所以,每5 年至少进行1 次主要通风机的性能测定。 主要通风机的性能测定不仅可以了解矿井通风机现状(通风功耗情况和风机运行工况等),实现矿井通风的科学管理,而且也是进行矿井通风能力核定和通风系统优化的重要依据。 二、风机参数 1#风机 风机型号:FBCZ№9/15 风量495~964m3∕min 风压235~1097 Pa

功率P:15kw 风机轴转速:1450r/min 三、矿用主要通风机现场测定基本情况 (一).测定的技术依据: 2009版《煤矿安全规程》 AQ1011-2005《煤矿用主通风机系统检测检验规范》 MT421-1996《煤矿用通风机现场性能参数测定方法》 (二).测定时间:2011年7月20日 (三).测定条件和要求; 1、通风机性能测定一般应在矿井停产条件下,通过进风道调阻,对通风机进行测试。 2、通风机测定前,应能保证其安全运转,风机前后风硐、风道内应无杂物、积水,杜绝漏风现象。 3、使用TF-3通风机综合测试仪,根据现场实际情况选择风杯方法测试风量。 4、测风断面选择在通风机进风平直风道的断面上,保证该端面风速小于35m/s,测点按等面积法保证每平方米至少一个测点;测压断面选择在通风机扩散器入口风叶前平直风道的断面上,利用原有的测试孔插入皮托管进行测量;湿度、温度探头应放在风道内固定好,并防止水等污染物污损;大气压力探头放置在仪器主机处测量。

离心风机检测标准

离心风机检测标准 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

离心式通用风机 1.通则 1.1本章概要 本章节说明离心式风机的制造、工厂测试、交货及安装时之要求。 1.2 工作范围 1.2.1 离心式风机。 1.2.2 设备的安装、操作及维修之设备。 1.3相关章节 1.3.1第15950章--测试、调节及平衡。 1.3.2第15820章--风管附属设备。 1.4国家标准或国际标准 1.4.1 风机测试标准:风机的空气性能或噪音参数,须依以下之一种标准测试(1)中国国家标准(CNS) -CNS7778B4046送风机 -CNS7779B7165送风机检验法 (2)空气运动及控制协会(AMCA) -AMCA210 -AMCA300 - AMCA301 (3)英国国家标准(BS) -BS848PART1 -BS848PART2 (4)国际标准组织(ISO) - ISO5801 1.4.2承包商可建议采用其他国际法规或标准,但须经工程司(技师)核可同意 后使用。 1.5制造商及产品质量的要求 1.5.1提供风机之制造商,应为台湾区冷冻空调工程工业同业公会之会员,至 少须有5年的制造经验。 1.5.2性能认证︰安装功率在1.5kW(含)以上的离心风机,须依照AMCA211取 得空气性能的认证,产品须贴附AMCA性能认证标签。若未 取得AMCA空气性能认证之产品,则须经工研院能资所热流 与送风实验室,或经TAF认证之第3独立公正实验室并经 第3公证人认证下,依AMCA210进行测试,并检附空气性 能正本测试报告(每个风机机型,一份测试报告)。若风量 或静压大于工研院之实验室设备之规格而无法进行时,则 可由制造厂商于工厂进行测试,但制造厂商应于送审时提 送出厂的性能测试程序,以供审查。

煤矿主扇风机性能测试方案及安全措施通用版

解决方案编号:YTO-FS-PD131 煤矿主扇风机性能测试方案及安全措 施通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

煤矿主扇风机性能测试方案及安全 措施通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 根据《煤矿安全规程》及AQ1011-2005有关规定,在矿井生产能力变更前需要对矿井主通风机进行性能测试。为了测试主通风机的安全运行状况和各种技术参数,我矿委托山西省煤矿安全技术监测中心对两台主扇风机性能进行测试。为了确保安全测试,特制定本方案及安全技术措施。 一、主通风机测试时间: 主通风机测试时间安排在20xx年月日点分至日点分。 二、测定时人员组织安排: 为保证测试工作安全、准确、快速进行,测试前设总指挥和各测试小组,各小组各负其责,听从总指挥领导和安排。 1、测试指挥组: 上榆泉煤矿现场总指挥:机电矿长 检测现场指挥:

职责:现场指挥和监护工作 2、工况调节组 组长: 副组长: 成员:通风组人员 职责:负责风机测试时风量调节。 3、风机启动和运行维护组 组长: 副组长: 成员:主扇司机2人、风机房维修电工2人、维修人员6人 职责:负责风机测试过程中启动和运行维护,按总指挥的指令进行风机的开停。 4、风机电机运行参数测试组 组长:成员:山西省煤矿安全技术监测中心 职责:负责风机测试过程中电机参数的测试(电流、电压、功率因数、电机输入功率和转速等)。 负责风机测试过程中风机运行参数的测试(风机风量、风压、风机房水柱计读值、空气密度测算等),根据测试参数及时速算风机的运行工况点,确定测试工况的准确性和可靠性,并作为风机运行工况调节的指导。 5、安全组

主扇风机性能测试安全技术措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.主扇风机性能测试安全技术措施正式版

主扇风机性能测试安全技术措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 主扇是为井下排出废气输入新鲜空气的主要通风设备,一旦出现问题将会直接影响全矿井下的工作。为了保证通风机的正常运行,我矿现对两台主要通风机的安全运行状况和各种技术参数进行性能测试。为此特制定以下主扇性能测试安全技术措施: 一、成立领导组 组长:郭三虎 副组长:杨宏伟申启祥 解利亚许春兔李连生尤耀军郝连跃

成员:武有福乔德兴王天仓张建良 王文耀原保清杜国平柴青海 指挥部设在调度室(电话: 3437950 )。 二、测试前的准备工作 1、测试时所使用的材料(十三块木板)由供应科负责。 2、测试时所需要的仪器由测试单位自行提供,不得使用不合格的仪器。 3、外维队要积极配合好测试工作,确保测试的圆满完成。 4、外维队在测试前检查通风机、电动机各零部件是否齐全,装配是否紧固,运

行是否正常。 5、监控室负责监控系统、分站、传感器运行是否正常。 6、通风科负责检查全矿井通风设施、各地点瓦斯浓度变化情况。 7、调度室负责井下人员的撤离,以及主扇性能测试所需人员的通知调配。 三、安全技术措施 1、风机停止运行前,所有井下人员必须全部撤出,到达地面安全地点。 2、风机开停必须由风机房值班人员严格按照操作规程进行,任何人不得随意停开风机,并挂有“有人工作,禁止合闸”标志牌。 3、风机停止运行后,人工将防爆盖加

风机离心风机的常识与选型(各种压效率概念计算等)

风机离心风机的常识与选型(各种压效率概念计算等) 风机类型 离心风机分类与结构离心风机(后简称风机)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。离心风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;风洞风源和气垫船的充气和推进等。 离心风机分类 主要结构部件 一些常识1、压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有全压、动压、静压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、kPa、mH2O、mmH2O等。2、流量:单位时间内流过风机的气体容积的量,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h。3、转速:风机转子旋转速度。常以n来表示,其单位用r/min。4、功率:驱动风机所需要的功率。常以N来表示,其单位用KW。关于全压、动压、静压1、气流在某一点或某一截面上的总压等于该点截面上的静压与动压之和。而风机的全压,则定义为风机出口截面上的全压

与进口截面上的全压之差,即: Pt =(Pst2 +ρ2 V2 2/ 2)-( Pst1 +ρ1 V12/2) Pst2 为风机出口静压,ρ2为风机出口密度,V2为风机出口速度 Pst1 为风机进口静压,ρ1为风机进口密度,V1为风机进口速度2、气体的动能所表征的压力称为动压,即:Pd=ρV2/23、气体的压力能所表征的压力称为静压,静压定义为全压与动压之差,即:Pst = Pt–Pd注:我们常说的机外余压指的是机组出风口处的静压和动压之和。如下图所表示管道内全压、静压和动压: 静压(Pj)由于流体分子不规则运动而撞击于器壁,垂直作用在器壁上的压力叫静压,用Pj表示,单位用毫米水柱。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压均指相对静压。大于周围大气压的静压为正值,小于周围大气压时静压为负值。例如:风道上的静压力测点是从烟风道壁面上引出的,因此,仪表盘上的风压压力计指示的仅是静压。动压(Pd)流体在管道内或风道内流动时,由于速度所产生的压力称为动压或速度压头。动压值总是正的,用Pd表示,单位用毫米水柱。全压(Pq)是指某点上静压力和动压力的代数和,即:Pq=Pd+Pj;单位也是毫米水柱。全压=静压+动压

风机试验台技术方案

风机试验台技术方案 上海宝准电源科技有限公司2015年8月1日星期六

风机试验台技术方案 一.功能 本试验装置用于风机的性能试验,满足标准GB/T 1236-2000、GB/T2888-2008、JB/T8689-1998、GB19761-2009标准,对风机流量、全压、静压、转速、输入功率、有用功率、全压效率、静压效率等性能参数进行测试。 二、技术指标 1.试验产品的类型: ①直径Φ400~Φ600(mm)离心风机; ②直径Φ400~Φ600(mm)轴流风机; ③试验产品的风量范围:6000~50000m3/h; ④试验产品压力范围:0~5000Pa; 2.被测风机风量范围: 本风量测试系统采用先进的测控技术、数据处理技术以及科学合理的风室结构设计,使系统具有自动化程度高、稳定性好、抗干扰能力强,测试精度高以及节能等优势和特点。 风机风量范围: 6,000~50,000 m3/h,转速0~6000RPM 3.测量过程参数精度和结果误差要求 测量过程参数精度要求 4.结果误差要求:

5.静压要求:风机检测系统的静压要求为0~+5000Pa。 三、控制方案 本试验台采用吹风式测试风机性能,具体方案如下: 四、参数测量 1.风室静压(定静压) ◆精密微压变送器测量 ◆风机测试系统的静压要求为0~+5000Pa,(精度0.075%) ◆控制: PID

◆数据记录:通过数据采集器采集到计算机 2.喷嘴压差 ◆精密微压变送器测量 ◆风机测试系统的差压变送器量程为0~5000Pa(精度 0.075%) ◆控制: PID ◆数据记录:通过数据采集器采集到计算机 3.被测风机电压 ◆电压范围: 220/380V交流风机(测量精度0.2%) ◆电压、电流:通过功率计采集到计算机 4.PID仪表图片如下: 5.被测风机功率 ◆测量结果计算:交流风机为交流功率直接测量 ◆数据记录:通过功率计输入到计算机计算 6.被测风机转速 ◆转速范围: 0 ~ 6000 rpm ◆转速传感器: 1套,光电式 ◆数据记录:通过数据采集器采集到计算机

通风机性能测定

一、系统简介矿井通风机装置性能测定系统(主扇性能测定仪)是中矿能源与安全工程学院开发的科研产品,用于煤矿开展通风机装置性能测定工作,是局(矿)通风和机电管理部门必备的基础仪器。也可用于高校有关专业的实验教学以及科研测试服务。 矿井主要通风机是保证矿井安全生产的重要装备。因此《煤矿安全规程》规定:新安装矿井 主要通风机投产前,必须进行通风机性能的测定和试运转工作,以后每五年至少进行一次性 能测定。该测定系统正是因此需求而研发,其1型产品于1992年就通过原煤炭工业部组织 的技术鉴定。使用这套系统,测定工作除工况调节外只需简单操作计算机即可。且测定速度 快,采集数据量大,自动化程度高,需测参数全部由系统自动采集。测定完毕即可打印数据 报表和性能曲线。是一套先进高效的测定系统,可减小煤矿现场开展此项工作的难度。二、主要功能 该系统是在多年现场实测经验的基础上开发研制的,是将计算机数据采集和传感器技术用于 矿井通风管理工作的一项典型应用。所测参数指标符合国家标准“《工业通风机用标准化风 道进行性能试验》GB/T1236-2000”和煤炭行业标准“《煤矿用主要通风机现场性能参数测 定方法》MT 421-2004”的要求。通过多次改型和软硬件升级已基本适应我国各种类型风机 性能测定的需要。系统采用视窗环境(适用WINDOWS 98、2000、XP等)开发,用计算机控 制系统主机工作,与单片机等开发的测定装置相比,具有数据处理功能更强,人机界面更直 观,交互性更好,信息量更大等特点,更易于使用。该系统适用各种电网电压,并可选配正 压通风方式、双电机测量以及局扇性能测定等功能。 三、系统配置 测定系统的硬件部分由系统主机、测风(三杯式气象专用、差压)传感器、负压传感器、大 气参数(气压、温、湿度)传感器、电机功耗(电压、电流、功率、COSΦ)传感器、转速 传感器、笔记本计算机和打印机等组成。软件主要有数据采集与处理及打印绘图等用户程序。

通风机性能试验

通风机性能试验 通风机性能试验的目的,是为了求得通风机要给定转速下所产生的风量、压力、耗用功率及其效率间的相互关系。这种试验须在机械动转试验合格后才能进行。 一、试验装置 图附—1所示为国家标准(GBl236—76)所规定的一种通风机进气试验装置。在通风机6的进风口连接一圆形风筒4。风筒的直径应尽可能与通风机进口尺寸相同,其长度应不小于风简直径的六倍。整个风筒可以分段连接,各接头处不漏风,内壁面应平整光滑,不得有凹凸不平现象。 附1 通风机进气实验装置 风筒的进口端做成锥形,称为锥形集流器,它能使气流比较平稳均匀地流入风筒。集流器1的具体规格风图附—2,其内壁表面的光洁度不应低于▽5。

附2 锥形集流器 在流集器与风筒4之间固定有风栅节流器3,它由一孔眼较大的金属丝网制成。另外再准备风块其直径比风简直径略小而孔眼规格不同的金属筛板或金属丝网,以便在测试时分层叠加于固定网栅上,调节进风量。 在风筒进口端和截面1处的风筒壁上,分别沿圆周均匀分布钻孔3~4个,孔径~3毫米。贺孔应垂直于风壁,周转围要平整无毛刺。每个贺孔上焊接一个内径为6~10毫米的短管,并用胶管互相连通,再分别接以压力计上,以测量风筒进口静压H 静进和截面I 处的静压H 静1。测量H 静进的压力计最好要用斜管微压计,测量H 静1则用一般U 型压力计。 为了防止气流在风筒内发生扭转,在与通风机进口连接端的风筒内装有整流栅5,其结构尺寸如图附—3。它是一“井”字形隔板,可用厚度为δ=0.012~0.015D 的钢板制成。当厚度较大的,也可以用木板制成。 附3

整流栅 试验风筒的进口端应布置在室内,不受自然风力的干扰,在周围1.5D距离内(自风筒中心算起),不得有障碍物。 为了测量通风机耗有的功率,可采用专门的测功装置。图附—4为利用扭矩法在电动机上测量其转子与定子机壳间的相对扭矩,以计算电动机出力的测功装置。图中1为电动机(一般为4级),由带轴承的支架2支承。3为电动机轴,借联轴器与通风机轴连接。4为定子机壳吊架,通过刀口5悬吊于机架6上。7为固定于定子机壳上的平衡秤杆,其力臂长为L米,两端悬挂有秤盘11。10为秤杆摆动指针。9为刻度。12为测量转速的轴。当电动机旋转时,机壳产生偏转,在秤盘中加上荷重使其平衡。根据荷重的大小即可计算出电动机的出力(轴功率)。 附4 扭矩法测功装置

轴流主通风机性能测试报告

轴流主通风机性能测试报告

煤矿主要通风机性能测定报告 报告编号:2010—01 受测单位:犍为县板板桥煤矿 产品名称:矿用主要通风机 产品型号:FBCDZ—6—№14 测定类别: 日期:2010年10月23日

一、煤矿用主要通风机现场测定基本情况 1、测定的技术依据:煤矿用主要通风机现场性能参数测定方法(MT 421—1996) 2、测定时间:2010年10月23日 3、测定条件和要求; 1)测定前检查通风机、电动机各零部件齐全,装配紧固,运行正常。 2)风井口风门无明显漏风。 3)引风道、风硐内无杂物堆积和积水。 4)利用通风机自身的闸门进行风量调节。 5)每调节一次风量、风压为通风机的一个工况点,通风机的特性曲线应包含有7个以上工况点。 6)风量调节闸门,应安装牢固,其强度应能承受大于通风机最大风压1.5倍的压力。位置应设在距通风机入口大于5倍叶轮直径的巷道内。 4、测定方案: 1)空气密度测定 在风井测风站内的巷道中,用气压计测量绝对静压,用干、湿温度计测量干、湿温度。每调节工况1次测量3次,取其算术平均值计算空气密度。 2)风量测定 利用监控系统风速传感器监测、计算巷道风量,每调节工况1次记录3次,取其算术平均值计算巷道风量。 3)风压测定 a.测压断面选定在风井内与风量测定同一位置。

b.在风井断面上均匀布置4~5根皮托管。用干净、畅通、不漏气的软管,将皮托管的“—”接头与压差计连接,测量静压;将皮托管的“+”接头与压差计连接,测量全压;将皮托管的“+”、“—”接头同时与压差计两端连接,测量速压。 4)转速测定 用转速表测量电动机(风机)转速,每调一个工况点测3次,取其算术平均值。 5)通风机功率测定 用电流表、电压表、功率因数表分别测定电动机电流、电压、功率因数。 6)噪声测量 在主要通风机扩散器出口外,测量风机噪声。 7)反风风量测量 改变风机(电机)运转方向后,利用监控系统风速传感器监测、计算巷道风量。 二、测量仪器 序号仪器名称型号 数 量 只 (台) 检定 有效 期 用途 1 气压计 800~ 1060 hPa 1 有效 测大气 压力 2 温度计0~50℃ 1 有效测温度 3 皮托管 5 有效测压力

相关主题