搜档网
当前位置:搜档网 › 修正剑桥模型

修正剑桥模型

修正剑桥模型
修正剑桥模型

修正剑桥模型

剑桥模型的屈服轨迹为:

()

2

220/p M f p M q p =-+ 式中:f 为屈服函数。

屈服后,弹塑性刚度矩阵D 定义如下:

T E ep E T E D D D I D D cH ααααα??==-??-??

式中:I 为单位矩阵;

,,T

r z g f f f f θαασσσσ???????===?????????; H =(1,1,1);

D E 为弹性刚度矩阵;

1c e c pp k

λ+=-; λ,k 为等向压缩和回弹曲线的斜率;

修正剑桥模型主要有三个模型参数,即λ,k ,M 。这三个参数均可利用常规三轴实验测定。根据勘察报告提供的土体压缩指数Cc 、回弹指数Cs 、内摩擦角φ,即可确定λ,k ,M 值。

其中:/ln10c C λ=;

/ln10S k C =;

()6sin /3sin M ??=?-。

剑桥模型

1.剑桥模型(Cam-clay Model ) 剑桥模型是由英国剑桥大学Roscoe 等于1963年提出的,这个模型基于正常固结土和超固结土试样的排水和不排水三轴实验基础上,提出了土体临界状态的概念,并在实验基础上,再引入加工硬化原理和能量方程,提出剑桥模型。这个模型从试验和理论上较好的阐明了土体弹塑性变形特征,尤其考虑了土的塑性体积变形,因而一般认为,剑桥模型的问世,标志着土本构理论发展的新阶段的开始。 (1) 剑桥模型。剑桥模型基于传统塑性位势理论,采用单屈服面和关联流动法则屈服面形式也不是基于大量的实验而提出的假设,而是依据能量理论提出的。 依据能量方程,外力做功dW 一部分转化为弹性能e dW ,另一部分转化为耗散能(或称塑性能)p dW ,因而有 dW =e dW +p dW (1-154) e dW =e e V qd d p γε+' (1-155) p p V p qd d p dW γε+'= (1-156) 剑桥模型中,由各向等压固结实验中回弹曲线确定弹性体积变形 p p d e k d e V ' ' += 1ε (1-157) 式中,k 为膨胀指数,即 p In e '-回弹曲线的斜率。 同时,假设弹性剪切变形为零,即 0=e d γ (1-158) 则弹性能 p d e k p p d k dW e '+=''= 1υ (1-159) 剑桥模型中还建立如下的能量方程,即塑性能等于由于摩擦产生的能量耗散,则有 p p p V d p qd d p γνγε'=+'- (1-160) 式中第一项改用负号,是因为p V d ε取以压为正。代入式(1-161) ?? ? ??==ij p ij p d s d d λεεθθσ (1-161) 并考虑式(1-158),则有 γγγνd p M d p M d p dW p p p '='='= (1-162) 式中,M 为q p '-'平面上的破坏线的斜率,即

清华大学高等土力学复习题完整版

清华大学高等土力学复 习题 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

高等土力学 第一章土的物质构成及分类 1蒙脱石和伊利石晶胞结构相同,但蒙脱石具有较大的胀缩性,为什么? 2用土的结构说明为什么软粘土具有较大流变特性,原生黄土具湿陷性? 3试述非饱和土中水的迁移特征及控制迁移速率的主要因素? 4非饱和土中水的运移规律与饱和土中水的渗透规律有什么不同? 试述非饱和土和饱和土中孔隙水迁移规律的异同点? 5X射线衍射法是怎样分析粘土矿物成份的? 6粘土表面电荷来源有哪几方面利用粘粒表面带电性解释吸着水(结合水)形成机理 7非饱和土中土水势以哪种为主如何测定非饱和土的土水势大小 8非饱和土中的土水势主要由哪个几个部分组成非饱和土中水的迁移速率主要与哪几种因素有关 9请用粘性土的结构解释粘性土具有可塑性而砂土没有可塑性的机理。 10试简明解说土水势的各分量? 11土的结构有哪些基本类型各有何特征 12分散土的主要特征是什么为什么有些粘性土具有分散性 13粘性土主要有哪些性质,它们是如何影响土的力学性质的? 14为什么粘土颗粒具有可塑性、凝聚性等性质,而砂土颗粒却没有这些性质? 15非饱和粘性土和饱和的同种粘性土(初始孔隙比相同)在相同的法向应力作用下压缩,达到稳定的压缩量和需要的时间哪个大,哪个小,为什么? 16粘土的典型结构有哪几种,它们与沉积环境有什么联系,工程性质方面各有何特点? 17粘性土的结构与砂土的结构有什么不同? 18为什么粘性土在外力作用下具有较大流变特性? 19粘土矿物颗粒形状为什么大都为片状或针状,试以蒙脱石的晶体结构为例解释之。 第二章土的本构关系及土工有限元分析 1中主应力对土体强度和变形有什么影响?分别在普通三轴仪上和平面应变仪上做试验,保持σ 3 为常量,增加σ 1-σ 3 所得应力应变关系曲线有何不同所得强度指标是否相同 2屈服面和硬化规律有何关系? 3弹塑性柔度矩阵[C]中的元素应有哪三点特征? 4剑桥弹塑性模型应用了哪些假定欲得到模型参数应做哪些试验 5广义的“硬化”概念是什么什么叫硬化参数 6什么是流动规则什么叫塑性势流动规则有哪两种假定 7弹塑性模型中,为什么要假定某种型式的流动法则,它在确定塑性应变中有何作用?8根据相适应的流动规则,屈服面和塑性应变增量的方向有何特征? 9试解释为什么球应力影响塑性剪应变?

土的本构模型综述

土的本构模型综述 1 土本构模型的研究内容 土体是天然地质材料的历史产物。土是一种复杂的多孔材料,在受到外部荷载作用后,其变形具有非线性、流变性、各向异性、剪胀性等特点。为了更好地描述土体的真实力学—变形特性,建立其应力应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即为土体的本构关系。自Roscoe等1958~1963年创建剑桥模型以来,各国学者相继提出了数百个土的本构模型,包括不考虑时间因素的线弹性模型、非线弹性模型、弹塑性模型和考虑时间因素的流变模型等。本文将结合土本构模型的研究进程,综合分析已建立的经典本构模型,指出各种模型的优缺点和适用性,并对土本构模型的未来研究趋势进行展望。 2 土的本构模型的研究进程 早期的土力学中的变形计算主要是基于线弹性理论的。在线弹性模型中,只需两个材料常数即可描述其应力应变关系,即E和v或K和G或λ和μ。其中邓肯张双曲线模型是研究最多、应用最广的非线弹性模型。20世纪50年代末~60年代初,土塑性力学的发展为土的本构模型的研究开辟了一条新的途径。Drucker等(1957年)提出在Mohr-Coulomb锥形屈服面上再加一组帽形屈服面,Roscoe等(1958年~1963年)建立了第一个土的本构模型——剑桥模型,标志着土的本构模型研究新阶段的开始。70年代到80年代,计算机技术的迅速发展推动了非线性力学理论、数值计算方法和土工试验的发展,为在岩土工程中进行非线性、非弹性数值分析提供了可能性,各国学者提出了上百种土的本构模型,包括考虑多重屈服面的弹塑性本构模型和考虑土的变形及内部应力调整的时间效应的粘弹塑性模型。此外,其他本构模型如土的结构性模型、内时本构模型等也是从不同角度描述土本构关系,有的学者则借用神经网络强大的自组织、自学习功能来反演土的本构关系。

高等土力学课程-CamClay

基于修正剑桥模型模拟理想三轴不排水试验 ——两种积分算法的对比分析(CZQ-SpringGod ) 1、修正剑桥模型 在塑性功中考虑体积塑性应变的影响,根据屈服面一致性原则,假定屈服函数对硬化参数的偏导为0,就获得了以理想三轴不排水试验为基础的修正剑桥模型屈服函数: 2 2 (,)()0c q f p q p p p M =+-= (1) 其中3kk p σ=,ij ij ij s p σδ=-,212ij ij J s s = ,q =M 为临界线斜率,c p 为前期固结压力。 硬化/软化法则: p c v c dp v d p ελκ =- (2) 式中p v ε为体积塑性应变,v 为比体积,λ为正常固结线斜率,κ为回弹线斜率。 由于不排水屈服面推导过程是基于硬化参数c p 偏导为0,也就是说不排水试验中硬化参数同体积塑性应变无关,屈服面不变化,而若引入硬化法则就同屈服面推导过程中的假定矛盾,因此计算时将模型处理为理想塑性模型。 2、显式和隐式两种积分格式 考虑应变增量ε?驱动下,第n 增量步到第n+1增量步之间的应力积分格式。显式积分格式的推导参考文献[1],其中弹塑性矩阵中的塑性硬化模量H=0。 隐式积分格式推导如下: 11()n n n p v v p p K εε++=+?-? (3) 1 11(2)n p n n v c p p ε+++?=Λ?- (4) 12()n n p ij ij ij ij s s G e e +=+?-? (5) 112 3n ij p n ij s e M ++?=Λ (6) 111112(,)()0n n n n n c q f q p p p p M +++++=+-= (7) 在这一组方程中没有硬化规律方程表明为理想塑性,并将式(3)-(7)合并化简得到:

软土本构模型综述

《软土地基》课程论文 学院建工学院 姓名王洋 学号

软土本构模型综述 1 引言 土体具有复杂的变形特征,如剪胀性、各向异性、受应力路径影响等。土体变形的这种复杂性是在复杂受力状态下表现出来的。复杂应力状态存在 6 个应力分量,也有 6 个应变分量。其间的关系是一种多因素物理量与多因素物理量之间的关系,不能由试验直接建立。须在简化条件的试验基础上,做某些假定及合乎规律的推理,从而提出某种计算方法,把应力应变关系推广到复杂应力状态。这种计算方法叫本构模型。 1.1 土的本构模型 发展到现在,土的本构模型数目众多,大致可以分为以下几大类: ( 1) 非线性模型; ( 2) 弹塑性模型; ( 3) 粘弹塑性模型; ( 4) 结构性模型。 对于软土而言,比较适用的一般为弹塑性模型。弹塑性模型是把总的变形分成弹性变形和塑性变形两部分,用虎克定律计算弹性变形部分,用塑性理论来解塑性变形部分。 1.2 变形假定 对于塑性变形,要作三方面的假定: ( 1) 破坏准则和屈服准则; ( 2) 硬化准则; ( 3) 流动法则。 不同的弹塑性模型,这三个假定的具体形式也不同。最常用的弹塑性模型为剑桥模型及其扩展模型。 2 剑桥模型与修正剑桥模型 1958 年,Roscoe 等发现了散粒体材料在孔隙比-平均有效应力-剪应力的三维空间里存在状态面的事实,1963 年,提出了著名的剑桥模型,1968 年,

形成了以状态面理论为基础的剑桥模型的完整理论体系。 Roscoe 等人将“帽子”屈服准则、正交流动准则和加工硬化规律系统地应用于Cam 模型之中,并提出了临界状态线、状态边界面、弹性墙等一系列物理概念,构成了第一个比较完整的土塑性模型。剑桥模型又被称为临界状态模型,是一个非常经典的弹塑性模型,它是第一个全面考虑重塑正常固结或弱超固结粘土的压硬性和剪胀性的模型,标志着土的本构理论发展新阶段的开始。 1968 年,Roscoe 等人在剑桥模型的基础上提出了修正剑桥模型,将原来的屈服面在p',q 平面上修正为椭圆,并认为在状态边界面内土体变形是完全弹性的。在状态边界面内,增加的剪应力虽不产生塑性体积变形,但可产生塑性剪切变形。修正剑桥模型是一种“帽子”型模型,在许多情况下能更好地反映土的变形特性。修正剑桥模型至今仍在工程中广泛应用,是因为它具有很多优点: 形式简单,模型参数少,参数确定方法简单( 只需常规三轴试验即可) ,参数有明确的物理意义,能够很好的反映重塑正常固结或弱超固结粘土的压硬性和剪缩性,因此修正剑桥模型是土力学中比较成熟而且应用广泛的弹塑性本构模型。同时,修正剑桥模型也有一定的局限性: 屈服面只是塑性体积应变的等值面,只采用塑性体积应变作硬化参量,因而没有充分考虑剪切变形; 只能反映土体剪缩,不能反映土体剪胀; 没有考虑土的结构性这一根本内在因素的影响; 假定的弹性墙内加载仍会产生塑性变形等。修正剑桥模型对实际情况进行了一系列假定: ①屈服只与应力球量p 和应力偏量q 两个应力分量有关,与第三应力不变量无关; ②采用塑性体应变硬化规律,以为硬化参数; ③假定塑性变形符合相关联的流动法则,即g( σ) = f( σ) ; ④假定变形消耗的功,即塑性功为: 剑桥模型是当前在土力学领域内应用最广的模型之一,其主要特点有: 基本概念明确; 较好地适宜于正常固结粘土和弱超固结粘土; 仅有3个参数,都可以通过常规三轴试验求出,在岩土工程实际工作中便于推广; 考虑了岩土材料静水压力屈服特性、剪缩性和压硬性。王清等分析了修正剑桥模型的应力应变关系,以其为基础引进了接触单元和杆单元,运用修正合格模型,用有限元程序模拟了

用修正剑桥模型研究超固结土的变形特性

基金项目 作者简介 浙江东阳人博士 教授 主要从事岩土本构理论及其应用研究 用修正剑桥模型研究超固结土的变形特性 徐连民祁德庆 高云开 三峡大学三峡库区地质灾害教育部重点实验室湖北 宜昌同济大学土木工程学院 上海摘要 在原有的塑性体积应变状态量外对修正剑桥模型的屈服函数引入描述超固结黏土变形和强度特性的状态量 通过对各种不同超固结比的三轴压缩和伸长剪切试验结果的验证表明本文改进的三维修正剑桥模型能合理地反映不同超固结比黏土在三轴压缩和伸长条件下的变形及强度特性同时本文预测结果和中井子负荷面模型的预测结果基本 关键词 等发现了散粒体材料在孔隙比平均有效应力 提出了著名的剑桥模型 其一是用光滑的椭圆型屈服函数代替原始剑桥模型 一阶导数不连续的屈服函数 文献用松冈 中井准则 本文进一步尝试用最新三维修正剑桥模型 再通过这个状态量的演化来反映 经过这样扩展后的三维修正剑桥模型不仅可以模拟正常固结 的藤森黏土在平均有效应力一定条件下的三轴压缩和伸长试验结果验证三维修正剑桥模型在各种应力路径下对超固结黏土的变形和强度预测能力 修正剑桥模型 修正剑桥模型也是建立在状态面理论基础上的其所用强度理论为扩张 研究结果将应力空间中的松冈使变换后的松冈中井准则 准则一样的形状准则和修正的剑桥 文献

图 松冈 为第一应力不变量 其中 和 分别为 应力空间中的屈服函数可以表示为 式中 为 为塑性体积应变是该模型 的一个状态量 下面根据子负荷面的研究成果 修正剑桥模型中追加一个反映超固结土变形特性的状 态量 式中 状态量 式中 和 式中 为超固结比的函数 塑性应变速率可以表 示为   式中 为弹性常数 当 应变增量为

考研高等土力学复习

一(b)、《高等土力学》研究的主要内容。 二、与上部结构工程相比,岩土工程的研究和计算分析有什么特点? 三、归纳和分析土的特性。 四、简述土的结构性与成因,比较原状土与重塑土结构性强弱,并说明原因? 五/0、叙述土工试验的目的和意义。 五/1、静三轴试验基本原理(即确定土抗剪强度参数的方法)与优点简介 五/2、叙述土体原位测试(既岩土工程现场试验)的主要用途,并介绍3种原位测试方法 五/3、粘土和砂土的各向异性是由于什么原因引起的?什么是诱发各向异性? 五/4、介绍确定土抗剪强度参数的两种不同方法(包括设备名称),并分析其优缺点? 五/5、什么叫材料的本构关系?在土的本构关系中,土的强度和应力-应变有什么联系? 五/6、什么是加工硬化?什么是加工软化?请绘出他们的典型的应力应变关系曲线。 五/7、渗透破坏的主要类型?渗透变形的主要防治方法? 五/8、沉降计算中通常区分几种沉降分量?它们的机理是什么?按什么原理对它们进行计算? 六、阐述土工参数不确定性的主要来源和产生原因? 七、岩土工程模型试验要尽可能遵守的原则? 八、何谓土的剪胀特性?产生剪胀的原因? 九、影响饱和无粘性土液化的主要因素有哪些?举出4种判断液化的方法。 十、刚性直剪试验的缺点并提出解决建议? 十一、列举一个土工试验在工程应用中的实例,并用土力学理论解释之。 十二、叙述土工试验的目的和意义和岩土工程模型试验要尽可能遵守的原则? 十三、土的本构模型主要可分为哪几类?邓肯-张本构模型的本质?并写出邓肯-张本构模型应力应变表达式,并在应力应变座标轴中表示。 十四、广义地讲,什么是土的本构关系?与其他金属材料比,它有什么变形特征? 十五、在土的弹塑性本构关系中,屈服准则、硬化定理、流动法则起什么作用? 十六、剑桥模型的试验基础及基本假定是什么?说明该模型各参数的意义及确定方法。 十七、给出应变硬化条件下,加载条件。为什么该条件在应变软化条件下不能使用 十八、土的本构模型主要可分为哪几类?何为非关联流动法则?写出基于非关联流动法则的弹塑性本构关系。

excel计算剑桥模型柔性加载

p′q p 0′λκμM V K=p′V/κG= 3(1-2μ)K/2(1+μ)δp′ δq=3δp′ f=q2-M2[p′(p 0′-p′)]δεp e = δp′/K δεq e =δq/3G η=q/p′A=(λ-κ)/(Vp′(M2+η2))δεp p =A*[ (M2-η2)δP′+2ηAδq]δεq p =2Aηδp′+4Aη2δq/(M2-η2)δp 0′=Vp 0′δεp p /(λ-κ) δεp δεq εp εq 10001800.02480.0060.3 1.475 2.037533958 1567351500105151800.02480.0060.3 1.475 2.03753565616457515-169080.000140.000300.000140.000300.000140.00030110301800.02480.0060.3 1.475 2.03753735417240515-158520.000130.000290.000130.000290.000270.00059115451800.02480.0060.3 1.475 2.03753905218024515-142380.000130.000280.000130.000280.000400.00087120601800.02480.0060.3 1.475 2.03754075018808515-120650.000120.000270.000120.000270.000520.00114125751800.02480.0060.3 1.475 2.03754244819591515-93320.000120.000260.000120.000260.000640.00139130901800.02480.0060.3 1.475 2.03754414620375515-60420.000110.000250.000110.000250.000760.001641351051800.02480.0060.3 1.475 2.03754584421159515-21920.000110.000240.000110.000240.000860.001871401201800.02480.0060.3 1.475 2.0375475422194251522170.000110.000230.85710.000020.000160.00089 3.183110.000270.001110.001130.002991451351830.02480.0060.3 1.475 2.0375492402272651561800.000100.000220.93100.000020.000140.00103 2.717540.000240.001250.001370.004231501501860.02480.0060.3 1.475 2.03755093823510515107840.000100.00021 1.00000.000020.000110.00118 2.294260.000210.001390.001580.005631551651880.02480.0060.3 1.475 2.03755263524293515160310.000090.00021 1.06450.000020.000090.00136 1.912790.000190.001570.001770.007201601801900.02480.0060.3 1.475 2.03755433325077515219200.000090.00020 1.12500.000020.000080.00159 1.571190.000170.001790.001940.008991651951920.02480.0060.3 1.475 2.03755603125861515284480.000090.00019 1.18180.000020.000060.00187 1.266690.000150.002060.002090.011051702101930.02480.0060.3 1.475 2.03755772926644515356130.000090.00019 1.23530.000010.000050.002250.996180.000130.002440.002230.013481752251940.02480.0060.3 1.475 2.03755942727428515434130.000080.00018 1.28570.000010.000040.002790.756450.000120.002970.002350.016461802401950.02480.0060.3 1.475 2.03756112528212515518440.000080.00018 1.33330.000010.000030.003650.544400.000110.003830.002450.020281852551950.02480.0060.3 1.475 2.03756282328995515609020.000080.00017 1.37840.000010.000020.005230.357090.000100.005400.002550.025691902701960.02480.0060.3 1.475 2.03756452129779515705850.000080.00017 1.42110.000010.000010.009140.191820.000090.009310.002640.03500195 285 196 0.0248 0.006 0.3 1.475 2.0375 66219 30563 5 15 80889 0.00008 0.00016 1.46150.000010.000000.035740.04614 0.000080.03590 0.00271 0.07090 050 100 150200250 300 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 q εq q-εq 0.0005 0.001 0.0015 0.002 0.0025 0.003 00.010.020.030.040.050.060.070.08 εp εq εp-εq

土力学考题

考题2 一.解释名词或回答问题:(每题4分,共40分) 1.在土的弹塑性模型中, 屈服面和破坏面有何不同和有何联系?. 2‘绘出剑桥模型(Cam-Clay)的物态边界面,并标出临界状态线。 3.解释砂土的临界孔隙比e cr , 一种砂土的e cr 与哪一因素有关? 4.何谓饱和粘土的真强度指标c e 、和φe ?其中哪一个是基本不变的? 5.在实际的一维固结的过程中,三个总主应力之和(σ1+σ2+σ3)=Θ是否为常数?在太沙基的一维固结理论中,是否需要在整个一维固结过程中假设Θ为常数? 6.两相邻的粘土层的土的参数和固结系数不同(分别为 k 1 、 k 2、 m v1、 m v2)如何近似将其按均质土进行一维固结计算? v v w k C m γ= 7.解释何谓非饱和土的基质吸力。 8.在高于和低于土的最优含水量情况下击实到同样干密度的击实粘土,哪一种的渗透系数大些? 9.如何表示土在周期荷载下的动强度?对一种饱和砂土,其在周期荷载下的动强度与哪些因素有关? 10. 饱和砂土的振动液化与哪些土性条件有关? 二.有人用Duncan-Chang 模型与比奥固结理论耦合的有限元程序来分析基坑开挖的应力变形问题。为了反映这种应力路径,用原状的地基土试样进行三轴减压的不排水压缩试验(即σ1=常数,σ3逐渐减少,直到破坏)来确定Duncan-Chang 模型的参数。试验结果表明(σ1-σ3)--ε1之间呈良好的双曲线关系,问是否可以用这组双曲线直接确定模型的切线模量Et 的参数?写出(σ1-σ3)--ε1曲线之切线斜率的数学表达式。(15分) 三.一种砂土的真三轴试验破坏时的结果如下: σ3=300kPa,(σ1-σ3)f =1100kPa, b=(σ2-σ3)/(σ1-σ3)=0.5 试用摩尔-库仑理论、广义Tresca 理论(σ1-σ3=KI 1), 广义Misess 理论 (√J 2=KI 1),Lade-Duncan 理论(I 13/I 3=K f )来计算(或试算)σ3=300kPa 的常规三轴试验情况下(b=0)的(σ1-σ3)f =? 并根据用不同模型计算得到的破坏时的σ1与σ3计算土的内摩擦角φ(15分)。 四.试用水流的连续性原理,达西定律和土骨架的应力与体应变的线弹性关系,推导太沙基-伦多立克的拟三维固结微分方程: 23v u C u t ??=? 其中 33(12) v w kE C γν' = '-

10分钟认识剑桥模型

10分钟认识剑桥模型 王川 第一节:认识“临界状态” 首先,大家一定接受以下两张图(无数实验已经证明过): 图1 摩尔库伦强度理论 图2 土的压实曲线(e为孔隙比,p’为有效应力)那么,如果把τ换成偏应力q(其中q=σ1-σ3),把σ换成平均主应力p(其中p=(σ1+2σ3)/3,p’表示其有效应力),就得到三轴实验中的p-q曲线: 图3 p-q曲线 土样的体积由固体颗粒和空隙组成,由于固体颗粒不可压缩,故土样体积的变化完全取决于空隙的变化,即土样体积v和孔隙率e描述的物理意义等价。那么,将图2中e替换为v,就得到v-logp曲线:

图4 v-logp曲线 与图1和图2一样,图3和图4同样经历了无数实验的验证,属于“事实”。 基于图3和图4的定量分析以及实验观察,可以得出一个结论,这个结论就是临界状态(critical state):无论土样的初始状态和经历的应力路径如何,在剪切的最终阶段,只有剪应变在持续增加,而土样所受的有效应力和体积趋于不变。临界状态由图3和图4同时确定,因此图3和图4中的曲线也叫临界状态线CSL (Critical State Line)。 将临界状态现象翻译成数学语言: (1)体积不变对应于,为p’引起的体积的改变; (2)剪应变在变对应于,为q引起的剪应变; (3)有效应力不变等价于q与p’的比值为常量。若令在一般情况下,有(被叫做应力比),则可以定义临界状态下的应力比:(被叫做临界状态应力比)。从图3中能看出,M为常量,即“有效应力不变”。 ◆第二节:剑桥模型假设 (1)所有的剪应变都不可恢复,即(为弹性剪应变),( 为塑性剪应变)。 (2)假定塑性变性能增量可表示为:(这一假设看不懂没关系,继续往后看)。 (3)相关联流动法则:(与塑性力学中关联流动一致)。 ◆第三节:剑桥模型推导 从能量角度推导屈服函数:

李广信版高等土力学课后习题测验答案第二三四章

第二章 习题与思考题 17、在邓肯-张的非线性双曲线模型中,参数a 、b 、i E 、t E 、13-ult σσ()以及f R 各 代表什么意思? 答:参数i E 代表三轴试验中的起始变形模量,a 代表i E 的倒数;ult )(31σσ-代表双曲 线的渐近线对应的极限偏差应力,b 代表ult )(31σσ-的倒数;t E 为切线变形模量;f R 为破 坏比。 18、饱和粘土的常规三轴固结不排水实验的应力应变关系可以用双曲线模拟,是 否可以用这种实验确定邓肯-张模型的参数?这时泊松比ν为多少?这种模型用 于什么情况的土工数值分析? 答:可以,这时ν=0.49,,用以确定总应力分析时候的邓肯-张模型的参数。 19、是否可以用饱和粘土的常规三轴固结不排水试验来直接确定用有效应力表示 的邓肯-张模型的参数?对于有效应力,上述的131()/d d σσε-是否就是土的切线 模量t E ?用有效应力的广义胡克定律来推导131()/d d σσε-的表达式。 答:不能用饱和粘土的常规三轴固结不排水试验来直接确定用有效应力表示 的邓肯-张模型的参数;在有效应力分析时,邓肯-张模型中的131()/d d σσε-不 再是土的切线模量,而需做以下修正: 131()/=1-(1-2) t t E d d A σσευ- 具体推导如下: ' ' ' 11231231231231=[-(d +d )]1=[(-du)-(d +d -2du)]1=[(-du)-(d +d )-2du)]1=[-(d +d )-(1-2)du)]d d E d E d E d E εσυσσσυσσσυσσυσυσσυ 又由于23=d =0d σσ;且B=1.0时,13=(-)u A σσ?,则:13=(-)du Ad σσ,代入 上式,可得:

完整的土工实验报告书

土工测试 实验报告书 1.分级连续加载条件下的粘性土蠕变试验 2.三轴压缩实验测土的抗剪强度参数 3.Duncan-Chang模型参数的确定 4.通过标准固结试验测固结系数 5.剑桥模型的推导

1分级连续加载条件下的粘性土蠕变试验 实验目的: 通过测定试样在分级连续加载条件下固结引起的变形随时间的变化,分析试样得蠕变特性及相应的模型。 实验器材:(试样采用非饱和的细粒土) 固结容器:由刚性底座、护环、环刀、上环、透水板、加压上盖和密封圈组成。(1)环刀:直径61.8mm,高度20mm,一端有刀刃,应具有一定刚度,内壁应保持较高的光洁度,宜涂一薄层硅脂和聚四氟乙烯。 (2)透水板:由氧化铝或不受腐蚀的金属材料制成。渗透系数应大于试样的渗透系数。试样上部透水板直径宜小于环刀内径0.2~0.5mm,厚度5mm。 (3)变形量测设备:量表,单位为0.1mm。 (4)加荷设备:砝码、杠杆加压设备。 实验步骤: 1.制备土样将土块加水饱和,尽量搅拌至各处含水率均匀,备用。用电子秤秤环刀的 重量。 2.取土样用环刀切取已准备好的土样,用工具沿环刀高度切平土面,去掉多余的土、 用水浸湿,将滤纸盖在土样的两边,再次称量重量。 3.安装土样将环刀和土样一起放入固结盒,在土样上下各放置一块透水石,盖上加压 盖,安装到加载装置上。 4.调平将加压杠杆调平,装好量表,调至零点。 5.分级加载分为4个荷载等级加载:60KPa,120KPa,180KPa,240KPa,分别为并在每 级荷载下记录0s,15s,2min15s,4min,6min15s,9min,12min15s,16min2 20min15s时的量表读数。 6.实验结束清理仪器,整理数据。 数据整理及实验分析: 室内分级加载固结蠕变实验结果如表1及图1所示: 表1 各级荷载下土的应变(mm)

剑桥模型推导讲课稿

比容的定义: 1t s v v v v v e v v += ==+ (1) '=-)ln 正常固结线(方程: NCL v N p λ (2) '=-)ln 临界状态线(方程: CSL v p Γλ (3) )ln SL swell v v p κκ'-=-回弹线( line 方程: (4) 注意: 在lnp ’-v 平面上,回弹线SL 尽管穿过了CSL 线,但并不意味等压卸载过程中应力点曾达到CSL 线上,因为此坐标系中CSL 为空间CSL 曲线的投影,而SL 始终在lnp ’-v 平面上,并不能达到空间的CSL 线上的应力状态。 q v 图1 土的物态全界面

无拉力墙 归一化后土的物态全界面 在上图2-34中AR 为卸载回弹线(其方程如式(4)),过其作的竖直曲面,此曲面位于物态全界面(Roscoe 面、 Hvorslev 面及无拉力墙构成)以下的阴影部分,即为一弹性墙,此弹性墙交物态边界面Roscoe 面于AF ,在AR 线上荷载变化时,无塑性体积变化,亦即在弹性墙上,塑性体应变p v 保持为常数。如果选择塑性体应变为硬化参数,那么等塑性体应变面就是屈服面,等塑性体应变线AF 就是屈服轨迹。AF 在p ’-q ’平面上的投影A ’F ’为屈服面在p ’-q ’平面上的屈服轨迹。在图2-35中回弹曲线与比容轴截距代表其塑性比容0p v ,在同一弹性墙上, R

或同一屈服线上,弹性墙的塑性比容0const p p v v ==,也就是说其塑性体应变p v ε为常数。 剑桥模型基于传统塑性位势理论,采用单屈服面和相关联流动法则。屈服面形式(方程) A ’F ’不是基于试验而提出的,上面已根据物理意义在几何上表示出屈服面A ’F ’ ,但还无法用数学表达式表示,剑桥模型是依据能量理论得出的其屈服面方程,实质上是一种假设。 依据能量方程,外力(荷载)做功dW 一部分转化为变形体的弹性变形能e dW (可储存在变形体内,外力或荷载卸除时,可完全释放出来),另一部分转化为耗散能(或称塑性变形能,外力或荷载卸除时,不能再释放出来)p dW ,因而有 e p dW dW dW =+ (5) 两种变形能可表示如下: e e e v s dW p d q d εε''=+ (6) p p p v s dW p d q d εε''=+ (7) 关于弹塑性变形能,Roscoe 作了如下的假设: (1) 假定一切剪切应变都是不可恢复的, 亦即无弹性剪应变, 只有不可恢复的塑性剪应变(总 剪应变等于塑性剪应变) 0e s d ε= (8) p s s d d εε= (9) (2)假定弹性体应变可从各向等压固结试验中所得的回弹曲线求取,即由式(4)可得 e dp dv p κ ' =-' (10) 11e e v dv dp d e e p κε' =-=' ++ (11) 1e e v dW p d dp e κ ε''== + (12) 故: 1p e v v v v dp d d d d e p κεεεε' =-=- ' + (13) (3)假定全部耗散能(塑性变形能)等于由摩擦产生的能量耗散, 即: p p p s s dW p d Mp d μεε''== (14) 式中 μ为内摩擦系数, 其值等于p ’-q ’平面上临界状态线CSL 的斜率M

超大深基坑分隔桩施工变形机理分析及优化

超大深基坑分隔桩施工变形机理分析及优化 发表时间:2017-09-26T11:02:23.247Z 来源:《建筑学研究前沿》2017年第10期作者:刘关虎龚毅 [导读] 本文将依托苏州轨道交通四号线支线溪霞路站配套地下空间的基坑开挖工程进行分析。 广州瀚阳工程咨询有限公司广东广州 510620 摘要:以苏州轨道交通四号线配套地下空间开发的超大深基坑开挖工程为例,用Midas gts软件为主要工具,采用修正剑桥模型对初步选定的三种基坑开挖以及换撑施工方案进行计算分析。同时比选三种施工方案,讨论不同施工顺序对以上规律的影响。此研究对该工程以及类似大型基坑工程有指导和借鉴意义。 关键词:大型基坑;分隔桩;有限元;修正剑桥模型;变形机理 Analysis of Deformation Mechanism of Separate Pile and Construction Optimization in Super Large and Deep Foundation Pit Excavation Liu Guanhu,Gong Yi Guangzhou Han Yang Engineering Consulting Co,Ltd. Guangdong Guangzhou 510620 Abstract:In the case of super large and deep foundation pit excavation of Suzhou no. 4 Metro Line,Midas gts is used to analyze three kinds of foundation pit excavation scheme considering the modified Cam-Clay model. Meanwhile,the conclusion how different construction sequences influence the behavior of piles and soil is given by comparing three kinds of excavation scheme. Finally,the research can give valuable guidance and a case in similar large foundation pit excavation. Key words:super large and deep foundation pit;separate pile;finite element;Modified Cam-Clay Model;deformation mechanism 引言 本文将依托苏州轨道交通四号线支线溪霞路站配套地下空间的基坑开挖工程进行分析,此工程项目由于基坑面积较大,需将其分为几个区域进行开挖施工,那么两相邻基坑间将设置分隔桩。该工程项目的难点在于,南区基坑开挖到基底以后,考虑怎样的施工顺序和方案来施做南区主体结构以及中区预留土台开挖能使得施工过程既高效又经济安全,分析分隔桩的受力变形状态来考虑是否可以在南区施工完主体结构以后直接拆除分隔桩。基于以上内容,本文将针对本工程的特殊工况进行分析,充分借鉴文献[1-2]分析讨论数值模拟中模型建立、参数选取、施工方案比选分析和结论的提出。 1 工程概况 本文依托苏州轨道交通四号线支线溪霞路站配套地下空间工程,是目前全国规模最大,理念最新,结构最复杂的地下空间项目。中、南区围护结构:中区C坑支护结构型式为灌注桩和两道混凝土支撑,南区E坑支护结构型式为灌注桩和三道混凝土支撑。 2 数值模拟 2.1 计算模型基本假定 本文采用Midas软件来进行数值模拟计算,在进行数值模拟计算时进行了如下的假定:土体都视为各向同性的均匀材料;由于工程过于复杂,将混凝土和钢筋作为整体考虑;计算时不考虑和时间有关的物理量。 2.2 三维计算模型的范围选择与单元划分 三维模型[3]共划分52986个单元,43515个节点。灌注桩简化成地连墙,其中灌注桩、止水帷幕和拉森钢板桩均采用板单元模拟,内支撑采用线单元模拟,定义x正向为向南,计算模型如图1所示。 图1 中区和南区基坑开挖计算模型 2.3 模拟参数选取 本文土体采用修正剑桥模型,围护结果采用弹性模型。土层参数按指标选取,其中粉喷桩和水泥加固区的土体参数采用等效估计的办法计算,修正剑桥模型参数中的正常固结坡度、超固结先坡度和临界状态先斜率无法从工程数据中直接得到,因此,可以通过塑性指数求得正常固结坡度和超固结先坡度,即 由于、可以通过地质勘查报告得到,因此以上参数均能求得。 钻孔灌注桩采用等效刚度的原则等效厚度为830mm的地下连续墙。主体结构简化为由侧墙、楼板、顶底板、结构立柱和主纵梁组成的结构体系,其中结构柱是按照南区地下空间主体结构设计图为依据确定的。

高等土力学考试思考题20160517

《高等土力学》思考题 1.试述土应力变形的特性。 2.邓肯-张模型的基本假定?模型依据什么试验结果建立的?含有哪 些参数?模型反映了土的哪些特性? 3.简述邓肯-张模型的优、缺点。 4.修正剑桥模型对初始剑桥模型做了哪些修正?修正剑桥模型采用的基本假定?采用了何种流动法则?硬化参数为何?屈服面种类与不同应力坐标下的形状? 5. 修正剑桥模型反映土的哪些特性?有哪些模型参数?要得到模型参数需要做哪些试验?试对修正剑桥模型做出评价。 6.初始拉德-邓肯模型采用了何种流动法则?硬化参数为何?屈服面性质?不同应力坐标下的形状?试对该模型做出评价。 7.修正拉德-邓肯模型如何对初始拉德-邓肯模型进行修正的?采用了何种流动法则?硬化参数为何?屈服面性质与不同应力坐标下的形状?试对该模型做出评价。 8.双屈服面模型与单屈服面模型相比特点有哪些?如何确定弹塑性矩阵? 9.试述粘土颗粒表面净负电荷来源、结合水形成机理、结合水的性质及对土工程性质的影响。

10.试分析影响无粘性土抗剪强度主要因素 11.写出摩尔-库仑强度准则公式并绘出其在主应力空间和π平面上的 图形,并对该准则作简要评价 12.试述中主应力对土体强度的影响 13.试述土体各向异性性质 14.试述粘性土三轴试验剪切性状 15.分析传统一维分层总和法(e-p曲线法)计算地基沉降误差较大的原因. 16.比较e-p曲线法和e-lgp曲线法计算沉降的优缺点,对e-p法计算精度进行评价 17.比奥(Biot)固结理论与太沙基-伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同? 19.何为曼德尔-克雷尔效应?发生曼德尔-克雷尔效应的机理是什么?为什么拟三维固结理论(扩散方程)不能描述这一效应? 20.何为土的次固结?土的次固结系数与荷载和应力历史关系如何? 21. 简述土坡稳定性分析条分法的基本原理(解题步骤),指出学过的条分法对条间力做出的假设。

用修正剑桥模型研究超固结土的变形特性

2008年3月 水 利 学 报SH UI LI X UE BAO 第39卷 第3期 收稿日期:2007203209 基金项目:国家自然科学基金资助项目(50679092) 作者简介:徐连民(1963-),男,浙江东阳人,博士,教授,主要从事岩土本构理论及其应用研究。E 2mail :xu 2lianm in @https://www.sodocs.net/doc/0f17957422.html, 文章编号:055929350(2008)0320313205用修正剑桥模型研究超固结土的变形特性 徐连民1,2,祁德庆2,高云开2 (11三峡大学三峡库区地质灾害教育部重点实验室,湖北宜昌 443002;21同济大学土木工程学院,上海 200092) 摘要:在原有的塑性体积应变状态量外,对修正剑桥模型的屈服函数引入描述超固结黏土变形和强度特性的状态量,以进一步改进修正的剑桥模型以应用于超固结土的变形特性研究。并给出该状态量的演化规则。通过对各种不同超固结比的三轴压缩和伸长剪切试验结果的验证表明,本文改进的三维修正剑桥模型能合理地反映不同超固结比黏土在三轴压缩和伸长条件下的变形及强度特性,同时,本文预测结果和中井子负荷面模型的预测结果基本一致。 关键词:修正剑桥模型;子负荷面模型;土的变形和强度;超固结土 中图分类号:T U43文献标识码:A 1958年,R oscoe 等[1]发现了散粒体材料在孔隙比2平均有效应力2剪应力的三维空间里存在状态面 的事实,1963年,提出了著名的剑桥模型[2],1968年,形成了以状态面理论为基础的剑桥模型的完整理 论体系[3]。此后剑桥模型经历了两次主要的修正。其一是用光滑的椭圆型屈服函数代替原始剑桥模型 一阶导数不连续的屈服函数[4];其二是采用更加合理的强度准则代替剑桥模型所用的强度准则。文献 [5~7]用松冈2中井准则[8]替代了剑桥模型所用的扩张Mises 准则,分别将修正剑桥模型用于正常固结 黏土和非饱和土的研究,明显提高了修正剑桥模型在各种应力路径下的预测能力。本文进一步尝试用最新三维修正剑桥模型[5~7]研究超固结土的变形和强度特性,根据文献[9,10]所用的方法将土的超固结比引入到修正剑桥模型中,将超固结比作为屈服函数的一个状态量,再通过这个状态量的演化来反映超固结土的变形和强度特性的变化规律。经过这样扩展后的三维修正剑桥模型不仅可以模拟正常固结土的体积剪缩特性,而且还可以模拟三轴压缩和伸长条件下超固结土的体积剪胀特性,而本构模型仅增加一个和超固结比有关的材料参数。最后,采用超固结比OCR (Over C ons olidated Ratio )分别等于1、2、4、8的藤森黏土在平均有效应力一定条件下的三轴压缩和伸长试验结果验证三维修正剑桥模型在各种应力路径下对超固结黏土的变形和强度预测能力,中井的子负荷面模型的预测结果进行比较。1 修正剑桥模型 修正剑桥模型也是建立在状态面理论基础上的,其所用强度理论为扩张Mises 准则。但是,大量的 研究结果[7,11,12]表明,一般的岩土材料并不服从扩张Mises 准则。文献[5~7]通过应力变换的方法,将σ应力空间中的松冈-中井准则(如图1)变换到 σ应力空间中,使变换后的松冈2中井准则(S MP 准则)在 σ的主应力空间中具有和剑桥模型的广义Mises 准则一样的形状,从而,可以使S MP 准则和修正的剑桥模型有机地融为一体,这种通过应力变换方法得到的融合修正剑桥模型称为S MP 修正剑桥模型。文献 [5~7]所用的应力空间变换关系为 — 313—

相关主题