搜档网
当前位置:搜档网 › 偶极矩介电常数的测定-物理化学实验

偶极矩介电常数的测定-物理化学实验

偶极矩介电常数的测定-物理化学实验
偶极矩介电常数的测定-物理化学实验

一、实验目的

(1) 了解分子偶极矩与电性质的关系;

(2) 掌握测定液体电容的基本原理和技术;

(3) 学习测定液体电容的基本原理与技术;

(4) 用溶液法测定乙酸乙酯的介电常数和偶极矩。

二、实验仪器

试剂:乙酸乙酯、环己烷;仪器:阿贝折射仪、PGM-Ⅱ数字小电容测试仪-介电常数实验装置、比重管、电吹风、25cm3容量瓶。

三、实验原理

1、偶极矩与摩尔极化度的关系

分子中正、负电荷中心有重合的两种情况,一种是非极性分子,另一种是极性分子。用偶极矩表示极性分子的大小,定义为:μ=q·d

极化分为电子极化、原子极化和转向极化,极化程度可用摩尔极化度P来表示。在静电场或低频电场中,摩尔极化度为三者之和:摩尔极化度P=P e + P a + Pμ

在高频电场中极化分子的转向运动和分子骨架变形跟不上电场频率的变化,P转向=0,P原子的值约只有P电子的5%-10%,可略去,所以P高频=P电子,则:P低频=P高频+P转向。

由波尔兹曼分布证明:P转向=4/3πN A(P2/3kT)=4/9πN A(P2/kT)

其中,P为分子的永久偶极矩;k为玻尔兹曼常数;T为热力学温度。

2、低频与高频电场下摩尔极化度的测定

在实验测定中,为避免气态下进行实验,常以非极性溶液为溶剂,在无限稀的溶液中,极性溶质的摩尔极化度P∞B表示P低频,溶液的介电场数ε、密度ρ与溶质摩尔分数X B关系可近似用直线方程表示。

实验报告内容:一实验目的二实验仪器三实验原理四实验步骤五、实验数据和数据处理六

实验结果七.分析讨论八.思考题

再考虑到溶液的加和性,可导得:

式中,εA、ρA、M A、分别表示溶剂的介电常数、密度和摩尔质量;M B为溶质的摩尔质量;K1和K2分别是上面两式的ε对X B和ρ对X B所得直线斜率有关的常数。

在稀溶液中,n与X B之间成直线关系:n=n A(1+K3X B)

由此可得:

式中,R∞B为无限稀溶液中溶质的摩尔折射度;nA为溶剂的折射率;K3为与P低频=limP B直线斜率有关的常数。

由以上各式可得:

可见,只要通过介电常数、密度、折射率等物质宏观性质的测定即可求得微观性质摩尔极化度P∞B 和摩尔折射度R∞B以及分子偶极矩P。

3、介电常数的测定

测得电容池中不放样品时空气的电容及及系统分布电容之和C`空为:C`空=C空+C d

式中:C空为空气电容;C d为系统分布电容。

C空=(C`环- C`空)/(ε环-1)

C`环为加入环己烷样品时的电容及系统分布电容之和;ε环为环己烷介电常数。

上两式合并可得Cd,根据此求得待测溶液介电常数(C`+ C d)/ C空。

定义式:ε=C/ C空

以环己烷为标准物质,其介电常数与温度的关系如下:ε环=2.052-1.55×10-3t;其中,t为温度,℃。实验装置图如下:

4.溶液密度的测定

密度(p)是物质单位体积(V)的质量(m),是物质的基本特性常数。密度测定需要测量质量与体积。定量可在电子天平上称量而得;精确地测量体积,则用比重瓶在恒温槽中进行。

测定液体密度的公式是:ρ2=ρ1(m2-m0)(m1-m0)

式中, m o为空比重瓶的质量; m1为充满密度为ρ1参比液体的比重瓶质量; m2为充满密度为ρ2待测液体的比重瓶质量。

五、实验数据记录与处理

实验温度:25℃大气压:101kPa 试剂用量:乙酸乙酯:20ml 环己烷:20ml

乙酸乙酯 (mol%) 电容1(pF) 电容2(pF) 电容3(pF) 平均值

(pF)

εr

ε/εA

空气 4.82 4.81 4.815 4.815 -- --

0 6.82 6.79 6.85 6.82 3.39 1.001

5 7.25 7.23 7.2

6 7.25 3.61 1.064

10 7.72 7.75 7.69 7.72 3.84 1.133

15 8.17 8.23 8.09 8.16 4.06 1.198

ε环=2.052-1.55×10-3×25=2.013 C空=(C`环- C`空)/(ε环-1)=(6.85-4.815)/(2.013-1)=2.01 根据上表数据作图如下:

如图,可求得K1=0.0132

查数据可知ρ环己烷=0.78g/mol

乙酸乙酯(mol%) 20ml质量g ρ(g/cm3) ρ/ρA

0 15.62 0.7800 1.0000

5 15.71 0.7845 1.0058

10 15.82 0.7900 1.0128

15 15.93 0.7955 1.0198

根据公式:ρ2=ρ1(m2-m0)(m1-m0)分别计算不同X下的ρ填入表格,计算ρ/ρA的值,并根据此数值作图如下:

由图表可知,K2=0.0013;

乙酸乙酯 (mol%) 折射率1 折射率2 平均值n/n A

0 1.4232 1.4229 1.4231 0.999965

5 1.420

6 1.4208 1.420

7 0.998314

10 1.4179 1.4178 1.4179 0.996311

15 1.4161 1.4163 1.4162 0.995151

根据以上数据,作X- n/n A图如下:

由表中数据可知:K3=-0.0003

查询数据可得:M环己烷=84.16g/mol M乙酸乙酯=88.11g/mol

根据数据计算:

P低频=3×0.0132× 6.75×84.16/(6.75+2)2/0.78+(6.75-1) ×(88.11-0.0013×84.16)/(6.75+2)/0.78=76.68

P高频=(1.422-1)/(1.422+2)*(88.11-0.0013×84.16)/0.78+6×1.422×84.16×(-0.0003)/0.78/(1.42+2)2=28.52

μ = 0.0128×((P低频?R D)T)1/2=0.0128×((76.68?28.52)×298)1/2=1.53

六、实验结果

实验测得:K1=0.0132 K2=0.0013 K3=-0.0003 P低频=76.68 P高频=28.52 μ =1.53

实验误差χ=∣(1.53-1.78)∣/1.78×100%=14%

七、分析讨论

1、打开电容池盖子的时候记得要先将“外电机C1”插座相连的测试线拔下;

2、加入溶液介质之后,必须立马快速将盖子盖上,以防止溶液挥发;

3、在计算C空的时候记得使用公式将系统分布电容C d去掉。

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

接触角的测定实验报告

—、实验目的 1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。 2. 掌握用JC2000C1静滴接触角/界面张力测量仪测定接触角和表面张力的方 法。 二、实验原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固?液界面所取 代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来, 有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润 湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不 粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。 此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类 型示于图仁 图1各种类型的润湿 当液体与固体接触后,体系的自山能降低。因此,液体在固体上润湿程度的 大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固 体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角 的液滴存在,如图2所示。 图2接触角 铺展润湿 粘附湿润 不银润 浸湿

假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即 yso- ySL= yLG-COS0 (1) 式中ysG, yi_G,ysi.分别为固?气、液?气和固?液界面张力;8是在固、气、液三 相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0°-180°之间。接触角是反应物质与液体润湿性关系的重要尺度。 在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是: 粘附润湿Wa = ySG - ySL + yLG zO (2) 铺展润湿S = ysG?ysL?yLG >0 (3) 式中Wa, S分别为粘附润湿、铺展润湿过程的粘附功、铺展系数。 若将(1)式代入公式(2)、(3),得到下面结果: Wa二ysG+yLG -ySL=yLG(1+COS0) (4) S=ySG-ySL-yLG=yLG(COS0-1) (5) 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把8=90。作为润湿与否的界限,当8>90°,称为不润湿,当0<90°时,称为润湿,8越小润湿性能越好;当8角等于零时,液体在固体表面上铺展,固体被完全润湿。 接触角是表征液体在固体表面润湿性的重要参数之一,由它可了解液体在一定固体表面的润湿程度。接触角测定在矿物浮选、注水采油、洗涤、印染、焊接等方面

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

介电常数的测量

《大学物理》实验报告 学院: 专业: 姓名: 学号: 实验题目:介电常数的测量 实验目的:1.掌握固体、液体电介质相对介电常数的测量原理及方法 2.学习减小系统误差的实验方法 3.学习用线性回归处理数据的方法。 实验原理:用两块平行放置的金属电极构成一个平行板电容器,其电容量为: D S C ε= D 为极板间距,S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0ε,m F /1085.8120-?=ε。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值r ε。 如能测出平行板电容器在真空里的电容量C 1及充满介质时的电容量C 2,则介质的相对介电常数即为 1 2 r C C ε= 然而C 1、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C 1和放入固体电介质后的电容C 2。 1101C C C C 分边++= 222C C C C 分边串++= 其中C 0是电极间以空气为介质、样品的面积为S 而计算出的电容量: D S C 00ε= C 边为样品面积以外电极间的电容量和边界电容之和,C 分为测量引线及测量系统等引起的分

布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串,根据电容串联公式有: (D-t) εt S εεt S εεt D S εt S ε εD-t S εC r r r r +=+-? =0 0000串 当两次测量中电极间距D 为一定值,系统状态保持不变,则有21C C 边边=、21C C 分分=。 得:012C C C C +-=串 最终得固体介质相对介电常数:t) (D C S εt C ε r --?= 串0串 该结果中不再包含分布电容和边缘电容,也就是说运用该实验方法消除了由分布电容和边缘效应引入的系统误差。 2. 线性回归法测真空介电常数0ε 上述测量装置在不考虑边界效应的情况下,系统的总电容为:分0 0C D S εC += 保持系统分布电容不变,改变电容器的极板间距D ,不同的D 值,对应测出两极板间充满空气时的电容量C 。与线性函数的标准式BX A Y +=对比可得:C Y =,分C A =, 00S B ε=,D 1 X = ,其中S 0为平行板电容极板面积。用最小二乘法进行线性回归,求得分布电容C 分和真空介电常数0ε(空εε≈0)。 3.用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为C 01和C 02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感L 与电极电容和分布电容等构成LC 振荡回路。振荡频率为: LC 2π1 f =,或 22 2 241f k Lf C ==π 其中分C C C 0+=。测试仪中电感L 一定,即式中k 为常数,则频率仅随电容C 的变 化而变化。当电极在空气中时接入电容C 01,相应的振荡频率为f 01 ,得:2012 01f k C C =+分, 接入电容C 02,相应的振荡频率为f 02 ,得:202 2 02f k C C =+分

固体表面动态接触角的测定

固体表面动态接触角的测定 一.目的与要求 1.了解固体表面接触角的测量及表面能的计算原理。 2.掌握润湿周长、接触角、表面能的实验测试方法及实验操作。 二.仪器与药品 DCA-150界面分析仪 正己烷(A.R.);无水乙醇(A.R.);二次蒸馏水;聚苯乙烯(Pst)样品 三.基本原理 接触角是表征固体物质润湿性最基本的参数之一,据测量的原理的不同,接触角又可分成平衡接触角和动态接触角(dynamic contact angle),动态接触角(包括前进接触角(advancing contact angle)和后退接触角(receding contact angle)两种。 早在20世纪初期,Wilhelmy测试液体表面张力及接触角的方法:将一定的待测液体装在特定容器中,尽可能垂直固定悬挂的铂金板,升起液面至刚好与铂金板的下边缘相接触,此时铂金板受到液面向下的拉力即为液体的表面张力r r = F w / (L·cosθ) (1) r-液体表面张力(Dyn /cm);F w —吊片所受的力(Dyn);L—润湿周长(cm);θ—接触角(°); 由于绝大多数的液体对于°铂金是完全润湿的,即接触角θ为0°,所以只要知道润湿周长,就可从(1)式很方便计算得到液体的表面张力 1.平衡接触角 又叫静态接触角,根据Wilhelmy理论,只要将待测固体加工成规定尺寸的片状样品,然后垂直悬挂与已知表面张力的液面接触,同样可以依据(1)计算得到液体在固体表面的平衡接触角。 2.动态接触角 Wilhelmy法:如图2依据Wilhelmy理论,把样品板插入到液体中然后抽出来,通过测量样品板受力变化计算得到液体在固体表面的动态接触角的大小。

介电常数测试仪的设计与制作实验报告

实验题目: 简易介电常数测试仪的设计与制作 实验目的: 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法, 比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。 介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为 样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为kHz 1时的电容量C 。 一、替代法 替代法电路图如下所示,将待测电容X C (图中X R 是待测电容的介电损耗电

阻),限流电阻0R (取Ωk 1)、安培计与信号源组成一简单串联电路。合上开关1K ,调节信号源的频率和电压及限流电阻0R ,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数X I 。将开关2K 打到B 点,让标准电容箱S C 和交流电阻箱S R 替代X C ,调节S C 和S R 值,使S I 接近X I 。多次变换开关2K 的位置(A , B 位),反复调节S C 和S R ,使X S I I =。假定X C 上的介电损耗电阻X R 与标准电容箱的介电损耗电阻S R 相接近(S X R R ≈),则有S X C C =。 二、比较法 比较法的电路图如下所示,假定S C 上的S R 与X R 接近(S X R R ≈),则测量X C 和S C 上的电压比 X S V V 即可求得X C : X S S X V V C C ?=(此时X V 可以不等于S V ) 三、谐振法

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

介电常数的测定 (4)

介电常数的测定 0419 PB04204051 刘畅畅 实验目的 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 数据处理与分析 (一)原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: 00r Cd S εεεε= = 式中ε为绝对介电常数,0ε为真空介电常数,12 08.8510/F m ε-=?,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 (二)实验过程及数据处理 压电陶瓷尺寸: 直径: 0.9524.7840.063D mm v mm == 厚度: 0.950.2720.043H mm v mm == 一.根据所给仪器、元件和用具,采用替代法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在实验中采用预习报告中的图()a 连接电路,该电路为待测电容Cx 、限流电阻0R 、安培计与信号源组成的简单串联电路。接入Cx ,调节信号源频率和电压及限流电阻0R ,使安培计读数在毫安范围内恒定(并保持仪器最高的有效位数),记下Ix 。再换接入Cs ,调节Cs 与Rs ,使Is 接近Ix 。若Cx 上的介电损耗电阻Rx 与标准电容箱的介电损耗电阻Rs 相接近,即Rx Rs ≈,则Cx Cs =。 测得的数据如下: 输出频率 1.0002~1.0003kHz 输出电压 20V

Ix=1.5860mA Is=1.5872mA Cs=0.0367F R=1000μΩ Is Ix ≈。此时Rx Rs ≈,有Cx Cs ≈。所以Cx = Cs = 0.0367 F μ。 63 212 2 2 30012 00.0367100.272102339.264024.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????????? ? ? ?? ?? 二.用比较法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在Rx Rs ≈的条件下,测量Cx 与Cs 上的电压比Vs Vx 即可求得Cx : Vs Cx Cs Vx =? (Vs 可以不等于Vx ) 测得的数据如下: 输出频率 1.0003~1.0004kHz 输出电压 20V Vx = 3.527V Vs = 3.531V Cs = 0.0367F R = 1000μΩ Rx Rs ≈。Cx 与Cs 上的电压比 3.5270.9988673.531 Vs Vx == 683.527 0.036710 3.6658103.531 Vs Cx Cs F Vx --∴=?=??=? 83 212 2 2 30012 0 3.6658100.272102336.586924.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????? ???? ? ? ?? ?? 三.用谐振法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 由已知电感L (取1H ),电阻R (取1k Ω)和待测电容Cx 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: 22 14Cx f L π= 式中f 为频率,L 为已知电感,Cx 为待测电容。

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

大学物理实验-介电常数的测量

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较 法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样 品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为样 品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有

s x C C =。 另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若s x R R ≈,则有 s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到 X S V V =,所以用比较法只能部分修正电压差带来的误 差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号 源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小 误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

大学物理实验介电常数的测量的讲义

固体与液体介电常数的测量 一、实验目的: 运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。 二、实验原理: 介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120 -?=ε,S 为样品的有 效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 替代法: 替代法的电路图如下图所示。此时电路测量精度与标准电容箱的精度密切相关。实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法: 1、交流谐振电路: 在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。RLC 串联谐振电路如下图所示: 图一:RLC 串联谐振电路 其中电源和电阻两端接双踪示波器。 电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电 容C 两端的电压2π ,落后于电感两端的电压2π ,如图二。 图二:电阻R 、电容C 和电感L 的电压矢量图 电路总阻抗:Z = = L V → -R V →

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比 较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量 样品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数, m F /1085.8120-?=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测 样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有s x C C =。

另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若 s x R R ≈,则有s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到X S V V =,所以用比较法只能部分修正电压差带来的误差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取 1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出:L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

测接触角实验方案

测试接触角实验申请 实验内容:主要测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角。 实验目的:通过测定水在石墨、绢云母、石英的接触角,以表征石墨、绢云母、石英的疏水亲水性;通过测定水、乙二醇、二碘甲烷在石墨、石英、绢云母、柴油上的接触角,可以用来石墨、石英、绢云母的表面能的计算和隐石墨浮选体系中矿物与水、捕收剂与水、矿物与气泡、矿物与捕收剂之间等一系列界面相互作用自由能的计算,进而对各界面之间的范德华力、疏水引力、水化斥力等界面热力学行为进行研究。 样品加工:采用压片机对辉钼矿样品进行压片,制各样品。压片时样品质量为10g,压片压力为2.45×104kPa,压片直径为20mm,压片表面平整光滑。采用“浸渍法”制备捕收剂表面膜,剪取尺寸为20mmx20mm的空白铜板纸,浸入捕收剂纯液中,浸渍时间1min,置于硅胶干燥器内干燥24h,备用。 采用GBX润湿角测量仪测量液体在崮体表面上的接触角。测量时,按照测量接触角的步骤、小心地滴加在固体表面,形成液滴,取10次读数的接触角平均值作为该座滴的接触角。所有测量均在室温(25℃)进行。 实验方法 测量接触角步骤( 自动滴管, 自动平台) 1. 打开计算机 2. 打开接触角仪器的开关 3. 在计算机“桌面”上, 点选GBX digidrop 的快捷方式, 打开接触角的测量与分析软件 4. 选择新的测试选单 5. 选择“Surface Energy Menu” 6. 将滴管针头申到镜头所能看到的范围之内 7. 利用仪器上左下角的旋钮, 将镜头聚焦在滴管之上(通常是滴管最清析, 最大的位置) 8. 在操作软件上的右上角, 点选MVT, 叫出操作选单 9. 选择液滴的大小(VOL) 10. 选择连续摄影模式 11. 将开始拍照录像的时间改成0ms 12. 请点选使用自动成滴系统 13. 请点选“single”, 开始一次的测试 14. 等待仪器自动滴水, 桌面自动升降, 自动在桌面上形成液滴 15. 选择左方的分析功能, 得到你的接触角角度(一共有七种方法, 根据需要选择) 16. 得到你所需要的接触角值 分析表面/界面自由能步骤 ( 在进行本实验之前?Zisman 至少必需准备两种以上的液体, 其它公式必需准备三种以上的液体, 需要极性还是非极性的液体, 请参考)

3.静电实验研究 实验报告

静电实验研究实验报告 【实验目的】 1、掌握静电的特点分析静电演示实验成功的关键。 2、掌握静电学的主要实验的演示方法掌握韦氏起电机和范德格拉夫起电机的构 造及使用方法。 3、加深对静电现象及其原理的理解。 【实验器材】静电计 韦氏起电机、范德格拉夫起电机、验电器、验电羽、金属网、尖形布电器、平行板电容器、枕形导体、球形导体、起点盘及静电除尘装置、绝缘体等。 【仪器介绍】一、验电器 验电器是用来检验物质是否带电的仪器。验 电器的结构如图1所示 验电器的工作原理是当带电物质接触金属球 时就会有很少的带电粒子传到验电器上面金属箔 就会张开。验电器金属箔张开的角度和物质带电 量的大小成正比。 利用验电器判断物质所带电量正负的方法很简单先将一个物体与球接触再将另一个物体与 球接触张角变大表明两物体带同种电荷张角变小或张角先变小后变大表明两物体带异号电荷。 二、静电计 将验电器装上刻度盘与金属底座就构成了一个静电计静电计的示意图如右图 静电计可以测量

带点物质的电势。将带点物质连接到小球上显示的就是对于地面的电势。将两个物体分别接于金属球和底座测得的就是两物体的电势差。 三、 起电机 1、 韦氏起电机韦氏起电机是实验室常用的起电 机示意图如下 图 1 验电器示意图 图 2 静电计 图 3 韦氏起电机示意图

韦氏起电机是利用静电感应原理制作的它靠莱顿瓶积累电荷。当积累的电荷达到一定的数量两个金属球就会放电。 2、范德格拉夫起电机 图4 范德格拉夫起电机 范德格拉夫起电机是利用橡胶皮带将负电荷从内部不断的运送到电极上使电机所带的电荷越来越多电势也越来越高。理论上对地电位可以达到无穷大。 【实验内容】 实验一演示感应起电 1、摩擦起电 两种物质相互摩擦电子在力的作用下会从一个物体转移到另一个物体两个物体就会带异号电荷。 丝绸摩擦玻璃棒带正电。毛皮摩擦橡胶棒带负电。 带电玻璃棒接触验电器验电器有张角。带电橡胶棒接触验电器张角闭合。 可见两个带异号电荷。 2、感应起电 将带电物体靠近导体由于同性相斥异性相吸导体靠近带点物质的部分会带异号电荷远离的部分带同种电荷。 将带电玻璃棒靠近验电器验电器有张角可见感应起电。将一个接地的导线接触验电器验电器的张角闭合。将导线离开验电器玻璃棒也远离验电器验电器又有张角表明验电器带电。接地的导线使验电器上与玻璃棒同号的电荷传到地上验电器上就只有与玻璃棒异号的电荷。这时拿带电橡胶棒接触验电器验电器张角闭合。

介电常数的测量

实验七 介电常数的测量 ε和损耗角tgδ的温度和频率特性,可以获取物质内部 测量物质在交变电场中介电常数 r 结构的重要信息。DP—5型介电谱仪内置带有锁相环(PLL)的宽范围正弦频率合成信号源和由乘法器、同步积分器、移相器等组成的锁定放大测量电路,具有弱信号检测和网络分析的功能。对填充介质的平行板电容器的激励信号的正交分量(实部和虚部)进行比较、分离、测量,检测介电频率谱和温度谱。作为大学物理实验的内容,具有测量精度高、方法新颖、知识性和实用性强等特点。 [目的要求] ε和损耗角tgδ的温度和频率特性。 1.学习用介电谱仪测量物质在交变电场中介电常数 r 2.了解带有锁相环(PLL)的正弦频率合成信号源和锁定放大测量电路的原理和结构。 3.掌握对信号的正交分量(实部和虚部)进行比较、分离、测量的方法。 [实验原理] 图1测量原理图 原理如图1所示.置于平板电极之间的样品,在正弦型信号的激励下,等效于电阻R和电容C的并联网络。其中电阻R是用来模拟样品在极化过程中由于极化滞后于外场的变化所引起的能量损失。若极板的面积为A,间距为d,则: R=d/Aσ, C=εA/d, tgδ=1/ωRC=σ/ωε 式中ε=εoεr,εo为真空介电常量,σ为与介电极化机制有关的交流电导率。设网络的复阻抗为Z,其实部为Z’,虚部为Z″,样品上激励电压为Vs(基准信号),通过样品的电流由运放ICl转化为电压Vz:(样品信号),用V’s,V″s和V″z分别表示其实部和虚部,则有:Vz=RnVs/Z, σ=K(V’sV’z+V″sV″z), ωε=K(V’sV″z-V″sV’z) tgδ=(V’sV’z+V″sV″z)/ (V’sV″z-V″sV’z) 式中K=d/ARn(V’sV’s+V″sV″s)。 电压的实部和虚部通过开关型乘法器IC2和π/2移相器IC3实现分离后测量。IC2的作用是将被测正弦信号Vz(或Vs)与同频率的相关参考方波Vr相乘。本系统测量时通过移相微调电路使Vr和vs同相位,即Vs的虚部V″s=O,测量公式简化为: σ=K’V’z, ωε=K’V″z, tgδ=V’z/V″z

介电常数测量

测量介电常数的方法探究 班级: 姓名: 序号: 学号: 学院:

测量介电常数的方法探究 介电常数应用在科技的方方面面,但是如何测得介电常数以保证需要呢,本文就几种主流测量方法进行了探究。 主流的测量介电常数的方法即空间波法和探针法。 空间波法:空间波法是一种介电常数的实地检测法。用该方法测量介电常数时,可以将测量仪器拿到被测物所在位置进行无损的实地测量,可获得最接近微波遥感真实值的介电常数。 微波遥感的典型目标,如土壤、沙地岩石、水体、冰雪、各类作物、各类草地、森林等,当其表面统计粗糙度远远小于所使用的波长时可用菲涅尔反射系数描述其介电常数与观测角之间的关系: R ∥ =(cosθ- εr?sin2θ)/(cosθ+ εr?sin2θ)(1) R ⊥ =(εr cosθ- εr?sin2θ)/(εr cosθ+ εr?sin2θ)(2) 其中εr为目标物的相对介电常数,R ∥为水平极化反射系数,R ⊥ 为垂直极化反 射系数,θ为入射角。只要测得以上参数,经过绝对定标或者相对定标后,通过数学运算就可以反演得到介电常数。 空间波测量介电常数是利用菲涅尔反射定律进行的,要求所用波长大于被测目标的统计粗糙度,在粗糙度大时会影响精度,这时必须引入粗糙度修正量。可以利用加大观测角以提高粗糙表面物的测量精度,从实际中,对土壤、草丛、冰的测量结果看是比较好的。 探针法:在探针法实地测量介质介电常数时,探针的位置一般有两种:即全部没入待测介质中和探针位于空气和介质构成的接触面上。在两种情况下,样品的介电常数都可以通过在非谐振时测量的反射波、传输波或者谐振时测量的谐振频率和3dB带宽等参数来反演得到。 探针法测量介电常数,可以使用的探针有:单极振子、波导和同轴线等。相对于其他探针,单极振子的结构简单,测量方便,且可以获得相对比较精确地测量结果,是目前探针法实地测量介电常数研究中的一个热点。 单极振子:用单极振子探针法测量介电常数主要是通过测量反射系数ρ、 天线的输入阻抗Z n (或导纳Y)、S参数、天线谐振长度h r 和激励电阻抗R r 或谐 振频率f s 和3dB带宽的变化等来反眼。这些放发根据原理和测量值的不同可以 分为反射法、传输发和谐振法。 波导探针:微波可以穿透介质并且在不连续点产生的反射波与介质的电特性有关,由此发展了许多使用微波非破坏性技术来测量材料在微波频率的电磁性质。现有一种在8-12GHz频率范围内使用一个边缘开端矩形波导探针同时测材料的复介电常数和导磁率的技术。在该技术中,由非连续接触面的边界条件,得到了关于未知孔径电厂的两个积分等式(EFLE`s)。假定探针孔径中的总电场不仅包 括TE 10 模,而且还有无限的高阶模式,由矩量法可以解决EFLE`s。当孔径的电厂精确决定之后,其他相关的系数如主模下探针的输入导纳和反射系数等,都可以计算出来,从而很容易得到介质的介电常数。

介电常数实验报告

基础实验物理报告 学院专业: 实验名称 介电常数实验报告姓名班级 学号 一、实验原理 二、实验设备 三、实验内容 四、实验结果

一、实验原理 介电常数是电介质的一个材料特征参数。 用两块平行放置的金属电极构成一个平行板电容器,其电容量为: S C D D 为极板间距, S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0 ,08. 851012 F / m 。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值 r 。 如能测出平行板电容器在真空里的电容量C1及充满介质时的电容量C2,则介质的相对介电常数即为 ε r C 2 C 1 然而 C1、 C2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可 忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1.用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C1和放入固体电介质后的电容C2。 C 1 C 0 C 边1 C 分1 C 2 C 串C 边 2 C 分 2 其中 C0是电极间以空气为介质、样品的面积为S 而计算出的电容量: C 00 S D C 边为样品面积以外电极间的电容量和边界电容之和, C 分为测量引线及测量系统等引起的分 布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串 ,根据电容串联公式有: ε0 Sεrε0S C 串D-t t εrε0 S ε0 Sεrε0S t εr(D-t) D t t

相关主题