搜档网
当前位置:搜档网 › 三重积分的计算方法

三重积分的计算方法

三重积分的计算方法
三重积分的计算方法

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计 算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 ?-=b a a F b F x f ) ()()( 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法

二重积分及三重积分的计算

第一部分 定积分的计算 一、定积分的计算 例1 用定积分定义求极限. )0(21lim 1>++++∞→a n n a a a a n . 解 原式=?∑=??? ? ??=∞→1011lim a a n i n x n n i dx = a a x a += ++11 11 1. 例2 求极限 ? +∞→10 2 1lim x x n n dx . 解法1 由10≤≤x ,知n n x x x ≤+≤ 2 10,于是? +≤1 2 10x x n ?≤1 n x dx dx . 而?1 0n x ()∞→→+=+= +n n n x dx n 01111 01,由夹逼准则得?+∞→1021lim x x n n dx =0. 解法2 利用广义积分中值定理 ()()x g x f b a ? ()()?=b a x g f dx ξdx (其中()x g 在区间[]b a ,上不变号) , ().101111 2 1 02 ≤≤+= +? ? n n n n dx x dx x x ξξ 由于11102≤+≤ n ξ ,即 211n ξ +有界, ()∞→→+=?n n dx x n 0111 0,故?+∞→1021lim x x n n dx =0. 注 (1)当被积函数为( )22,x a x R +或() 22,a x x R -型可作相应变换. 如对积分() ?++3 1 2 2 112x x dx ,可设t x tan =; 对积分 ()0220 2>-? a dx x ax x a ,由于 () 2 222a x a x ax --=-,可设 t a a x s i n =-. 对积分dx e x ? --2 ln 0 21,可设.sin t e x =- (2)()0,cos sin cos sin 2 ≠++=?d c dt t d t c t b t a I π 的积分一般方法如下:

三重积分及其计算和多重积分72254

第四节 三重积分及其计算和多重积分 在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去. 类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例 设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W WQ d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设 },...,,m ax {21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小 区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ?,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即 ()i i i i n i V z y x f M ?≈∑=,,1 . 当0→λ时,这个和式的极限存在,就是物体的质量.即 ()i i i i n i V z y x f M ?=∑=→,,lim 1 λ. 从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义 设()z y x f ,,是空间3 R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割 为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=?o o j i V V (空, j i ≠), 其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21.设 },...,,m ax {21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和 ()i i i i n i V z y x f ?∑=,,1 (称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极

[整理]三重积分的计算方法小结与例题76202

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

(精选)三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

二、三重积分的计算技巧

二、三重积分的计算技巧 重积分的计算中,对积分区域的熟悉非常重要,以下关于重积分的几种计算技巧均是基于积分区域的特点分析归纳得出。 一、积分区域为圆(二重积分)或球(三重积分) 1、 在闭区域D 为2 2 2 a y x ≤+的圆,区域关于原点,坐标轴均对称,则有 (1) dxdy y dxdy x a y x a y x ????≤+≤+= 2 222222 2 (2)若n m ,中有一个为奇数有 .02 22=??≤+dxdy y x a y x m n 例1.求 dxdy y x a y x ?? ≤++2 22)3(2 2 解:根据对称性, 原式=dxdy y x a y x ??≤++2 22)(2 2 2 =.24 200 3a dr r d a πθπ =?? 例2.求 dxdy y x a y x 2 2 22)3(??≤++ 解:原式= .2 5)(5)69(4 2 22 22 22222a dxdy y x dxdy xy y x a y x a y x π=+=++?? ?? ≤+≤+ 例3.求 .)53(2 2222 dxdydz z y x a z y x ??? ≤++++(积分区域为球) 解:原式= .)10306259(2 222222dxdydz xz yz xy z y x a z y x ??? ≤+++++++ = .32854.335.)(335552222 22 2a a dxdydz z y x a z y x ππ==++???≤++ 2、 在闭区域D 为2 2 2 )(a y a x ≤+-的圆上 例4.求 dxdy x a y a x ??≤+-2 22)( 解:原式= .)(3 2 )(2 22a dxdy a a x a y a x π=+-??≤+-

计算方法讲义:七 数值积分

第七章 数值积分 如果函数f(x)在区间[a,b]上连续,且原函数为F(x),则可用牛顿―莱布尼兹 公式:)()()(a F b F dx x f b a -=?来求得定积分。然而很多函数无法用牛顿―莱布尼兹公式求积分。 一个简单被积函数,例如,其不定积分可能很 复杂,见下面的MA TLAB 实例: >> syms a b c x >> int(sqrt(a+b*x+c*x*x),x) ans=1/4*(2*c*x+b)/c*(a+b*x+c*x^2)^(1/2)+1/2/c^(1/2)*log((1/2*b+c*x )/c^(1/2)+(a+b*x+c*x^2)^(1/2))*a-1/8/c^(3/2)*log((1/2*b+c*x)/c^(1/2)+(a+b*x+c*x^2)^(1/2))*b^2 所以有必要研究简单、高效的计算定积分的方法(即数值积分方法)。数值积分的基本思想是构造一个简单函数P n (x )来近似代替被积分函数f (x ),然后通过求?b a n dx x P )(得?b a dx x f )(的近似值。 7.1 插值型求积公式 设?=b a dx x f I )(*,插值型求积公式就是构造插值多项式P n (x ),使 ?=≈b a n dx x P I I )(* 。 构造以a ,b 为结点的线性插值多项式)()()(1b f a b a x a f b a b x x P --+--= ,[])()()(21)()()(1b f a f a b dx b f a b a x a f b a b x dx x P T b a b a +-=?? ? ???--+--==??称为梯形公式。

(初稿)三重积分计算方法小结

江西师范大学数学与信息科学学院 学士学位论文 三重积分的计算方法小结Methods of Calculation of Triple Integral 姓名:蒋晓颖 学号: 1007012048 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:蒋新荣(副教授) 完成时间:2014年1月23日

三重积分的计算方法小结 蒋晓颖 【摘要】三重积分的计算是数学分析中的难点,本文结合教材以及相关资料较全面地给出了三重积分计算中的四种处理方法。第一,利用降低三重积分重数的思想,将其化为累次积分;第二,采用坐标变换的方法,将积分体表示成适当的形式;第三,充分运用被积函数的奇偶性和积分区域的对称性,简化计算;第四,利用高斯公式将三重积分的计算转化成曲面积分计算。希望这几种方法能对学习者具有一定的指导意义。 【关键词】三重积分累次积分坐标变换对称性高斯公式

Methods of Calculation of Triple Integral Jiang Xiaoying 【Abstract】The calculation of triple integral is the difficulty in Mathematics analysis.In this paper,unifying the teaching and related materials ,we give four instructive methods of the calculation of triple integral for learner.The four methods are as follows:the first,lower the multiplicity of triple integral and replace it with iterated integral;the second,with the method of coordinate alternate,we can transform the integral volume into appropriate form;the third,fully use the parity of integrand and symmetry of integral area to simplify calculation;finally,we can calculate the triple integral with the Gauss formula that could transform triple integral into a surface integral. 【Key words】triple integral iterated integral coordinate alternate symmetry Gauss formula

三重积分概念及其计算

§5 三重积分 教学目的 掌握三重积分的定义和性质. 教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可 积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2) 对较好学生可布置这节的广义极坐标的习题. 一、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ

则()z y x f ,,必在V 上可积. 二、化三重积分为累次积分 定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,??上的三重积分存在,且对任何x ∈[]b a ,,二重积分 ()x I =()dydz z y x f D ??,, 存在,其中D =[][]f e d c ,,?,则积分 ?b a dx ()??D d z y x f σ ,, 也存在,且 ()???V dxdydz z y x f ,,=?b a dx ()??D d z y x f σ ,,. (1) 为了方便有时也可采用其他的计算顺序.若简单区域V 由集合 ()()()()(){} b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121 所确定,V 在xy 平面上的投影区域为 D =()()(){ }b x a x y y x y y x ≤≤≤≤,,21 是一个x 型区域,设()z y x f ,,在上连续, ()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则 ()???V dxdydz z y x f ,,= ()()???D z y x z dz z y x f dxdy 21,,,=()()()() ???b a x y x y z y x z dz z y x f dy dx 212 1,,,, 其他简单区域类似. 一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算. 例1 计算 ???+V dxdydz y x 221 ,其中V 为由

实验二数值方法计算积分

实验二数值方法计算积分 学号:姓名:指导教师:实验目的 1、了解并掌握matlab软件的基本编程、操作方法; 2、初步了解matlab中的部分函数,熟悉循环语句的使用; 3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积 方法计算积分的原理。 、用不同数值方法计算积分x In xdx=- 4 . 09 (1) 取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关 于h的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h,使得精度不能再被改善? (2) 用龙贝格求积计算完成问题(1)。 、实现实验 1、流程图: 复合辛普森磴程勒

下图是龙贝格算法框图:

开始

2、算法: h n 1 (1)复合梯形公式:Tn =—[f(a) f (b) 2 f (xk)]; 2 k i h n 1 n 1 (2)复合辛普森公式:Sn=— [f(a)+f(b)+2 f (xk)] +4 f (x 1/2)]; 6 k 1 k 0 以上两种算法都是将a-b之间分成多个小区间(n ),则 h=(b-a)/n, X k二a+kh, x k+1/2 =a+(k+1/2)h,利用梯形求积根据两公式便可。 ⑶龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式 4 1 1、S n= —T2n- — Tn 3 3 2、Cn= — S2n—Sn 15 15 64 1 3、Rn= — C2n- — Cn从而实现算法。 63 63 3、程序设计 (1)、复合梯形法: fun ctio n t=n atrapz(fname,a,b, n) h=(b-a)/n; fa=feval(f name,a);fb=feval(fname,b);f=feval(f name,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum (f)); (2 )、复合辛普森法: fun ctio n t=n atrapz(fname,a,b, n) h=(b-a)/n; fa=feval(f name,a);fb=feval(fname,b);f1=feval(f name,a+h:h:b-h+0.001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2)); (3)龙贝格法: function [l,step]=Roberg(f,a,b,eps) if(nargin==3) eps=1.0e-4; en d; M=1; tol=10; k=0; T=zeros(1,1); h=b-a; T(1,1)=(h/2)*(subs(sym(f),fi ndsym(sym(f)),a)+subs(sy m(f),fin dsym(sym(f)),b)); while tol>eps

数值计算方法教案_数值积分

第四章 数值积分 一.问题提出: (1)针对定积分()b a I f x dx =? ,若()5 f x x =,a=0,b=1,即有1 61 500166 x I x dx == =?,但当()sin x f x x = ,()2sin f x x =,……,时,很难找到其原函数。 (2)被积函数并没有具体的解析形式,即()f x 仅为一数表。 二.定积分的几何意义 定积分()b a I f x dx =?的几何意义为,在平面坐标系中I 的值即为四条曲线所围图形的面 积,这四条曲线分别是()y f x =,y=0,x=a ,x=b 。 x y 三.机械求积公式 1.中矩形公式 ()()2b a a b I f x dx b a f +?? =≈- ??? ?; 几何意义:用以下矩形面积替代曲边梯形面积。

x y 2 2.梯形公式 ()()()2b a b a I f x dx f a f b -=≈ +??? ?? 梯形公式的几何意义:用以下梯形面积替代曲边梯形的面积: x y 3.辛普生公式 ()()()462b a b a a b I f x dx f a f f b -? +??? =≈ ++ ? ?????? ? 辛普生公式的几何意义:阴影部分的面积为抛物线曲边梯形,该抛物线由 ()(),(),,,,()22a b a b a f a f b f b ?++? ?? ? ????? 三点构成。

x y a+b 2 4.求积公式的一般形式 ()()0 n b k k a k f x dx A f x =≈∑?,其中k x 称为节点,k A 称为求积系数,或权。 5.求积公式的代数精度(衡量求积公式准确度的一种方法) 含义:衡量一个积分公式的好坏,要用具体的函数来衡量,寻找怎样的函数来衡量呢?简单的多项式函数是一个理想的标准。 定义:若某积分公式对于()0,1,,k x k m = 均能准确成立,但对于1m x +不能准确成立。则称该公式具有m 次代数精度。 解释:代数精度只是衡量积分公式好坏的1种标准。 例1.研究中矩形公式()()2b a a b f x dx b a f +?? ≈- ??? ?的代数精度及几何意义。 解:当()01f x x ==时,公式左边()1b b a a f x dx dx b a ===-??,公式右边b a =-,左=右; 当()1 f x x =时,公式左边()2222 2 b b b a a a x b a f x dx x dx -=== =?? , 公式右边()22 22a b b a b a +-??=-= ??? ,左=右; 当()2f x x =时,公式左边()3332 33 b b b a a a x b a f x dx x dx -====?? , 公式右边()2 2a b b a +?? =- ??? ,左≠右;

高等数学三重积分计算方法总结

高等数学三重积分计算方法总结 1、利用直角坐标计算三重积分: (1)投影法(先一后二): 1)外层(二重积分):区域Ω在xoy 面上的投影区域Dxy 2)内层(定积分): 从区域Ω的底面上的z 值,到区域Ω的顶面上的z 值。 (2)截面法(先二后一): 1)外层(定积分): 区域Ω在z 轴上的投影区间。 2)内层(二重积分):Ω垂直于z 轴的截面区域。 2、利用柱坐标计算三重积分 3、利用球面坐标计算三重积分 定限方法: (1)转面定θ(2)转线定φ (3)线段定r 4、利用对称性化简三重积分计算 设积分区域Ω关于xoy 平面对称, (1)若被积函数 f (x,y,z ) 是关于z 的奇函数,则三重积分为零。 (2)若被积函数 f (x,y,z ) 是关于z 的偶函数,则三重积分等于:在xoy 平面上方的半个Ω,区域上的三重积分的两倍. 使用对称性时应注意: 1)积分区域关于坐标面的对称性; 2)被积函数关于变量的奇偶性。 (cos ,sin ,)f z d d dz ρθρθρρθΩ???(,,)f x y z dv Ω=??? (,,)f x y z dxdydz Ω??? (sin cos ,sin sin ,cos )f r r r φθφθφΩ=???2 sin r drd d φφθ

例 计算 ,其中Ω是由曲面z = x 2 + y 2和x 2 + y 2 + z 2 =2所围成的空间闭区域. 解: 是关于x 的奇函数,且Ω关于 yoz 面对称 故其积分为零。 2x 2 y 是关于y 的奇函数,且关于 zox 面对称 ???Ω++dxdydz z y x x 2)(2 )(z y x x ++ 22222222)(zx xyz y x z y x x +++++=xyz z y x x 2)(222+++ ,022???Ω=∴ydv x ???Ω++=∴dxdydz z y x x I 2)(,22???Ω=zdxdydz x ???Ωθρρ??θρ=dz d d z 22cos 2????θρρθ=zdz d d 23cos 2 ??πρρ-ρ-θρθ=20104 223)2(cos d d 245π=222ρ-ρπ20

三重积分概念及其计算

§ 5三重积分 教学目的掌握三重积分的定义和性质. 教学内容三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议⑴要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可积?由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2)对较好学生可布置这节的广义极坐标的习题. 、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果?一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1设f x, y,z是定义在三维空间可求体积的有界闭区域V上的函数,J是一个确定的数,若对任给 的正数「总存在某个正数:,使对于V 的任何分割T , 当它的细度T ::: '?时,属于T的所有积分和都有 N 瓦f Gl,q)眄-J o \=1 f x,y,z在V上的三重积分,记作 ill f x,y,z dvdydz J = V 其中f x,y,z称为三重积分的被积函数,x,y,z称为积则称f x,y,z在V上可积,数J称为函数 分变量,称为V积分区域. 可积函数类 (i) 有界闭区域V上的连续函数必可积. (ii) 有界闭区域V上的有界函数f x,y,z的间断点集中在有限多个零体积的曲面上, 则f x, y, Z必在v上可积? 二、化三重积分为累次积分

定理21.15若函数fx,y,z在长方体v=a," c,dl e,fl上的三重积分存在,且对任何x a,b I二重积分 H f(x,y,z dydz I x = D 存在,其中D =C,d 1 e,f】,则积分 b dx f x, y,zd r a D b in f x,y, z dxdydz . dx f x,y,zd二 也存在,且V =a D . (1) 为了方便有时也可采用其他的计算顺序?若简单区域v由集合 V J;X y, z|z x, y

二重积分计算方法

这里讨论的计算方法指的是利用现有的MATLAB函数来求解,而不是根据具体的数值计算方法来编写相应程序。目前最新版的2009a有关于一般区域二重积分的计算函数quad2d(详 细介绍见https://www.sodocs.net/doc/0f4384733.html,/viewthread.php?tid=873479),但没有一般区域三重 积分的计算函数,而NIT工具箱似乎也没有一般区域三重积分的计算函数。 本贴的目的是介绍一种在7.X版本MATLAB(不一定是2009a)里求解一般区域二重三重积 分的思路方法。需要说明的是,上述链接里已经讨论了一种求解一般区域二重三重积分的 思路方法,就是将被积函数“延拓”到矩形或者长方体区域,但是这种方法不可避免引入 很多乘0运算浪费时间。因此,新的思路将避免这些。由于是调用已有的MATLAB函数求解,在求一般区域二重积分时,效率和2009a的quad2d相比有一些差距,但是相对于"延拓"函数的做法,效率大大提高了。下面结合一些简单例子说明下计算方法。 譬如二元函数f(x,y) = x*y,y从sin(x)积分到cos(x),x从1积分到2,这个积分可以 很容易用符号积分算出结果 1.syms x y 2.int(int(x*y,y,sin(x),cos(x)),1,2) ] 3.结果是 -1/2*cos(1)*sin(1)-1/4*cos(1)^2+cos(2)*sin(2)+1/4*cos(2)^2 = -0.635412702399943 复制代码 如果你用的是2009a,你可以用 1.quad2d(@(x,y) x.*y,1,2,@(x)sin(x),@(x)cos(x),'AbsTol',1e-12) 复制代码 得到上述结果。 如果用的不是2009a,那么你可以利用NIT工具箱里的quad2dggen函数。 那么我们如果既没有NIT工具箱用的也不是2009a,怎么办呢? 答案是我们可以利用两次quadl函数,注意到quadl函数要求积分表达式必须写成向量化 形式,所以我们构造的函数必须能接受向量输入。见如下代码 1.function IntDemo 2.function f1 = myfun1(x) 3.f1 = zeros(size(x)); 4.for k = 1:length(x) 5.f1(k) = quadl(@(y) x(k)*y,sin(x(k)),cos(x(k))); 6.end 7.end 8.y = quadl(@myfun1,1,2) 9.end

若干数值积分的计算方法

若干数值积分的计算方法 黄海琼 (广西民族大学数计学院04数本1班 南宁 530006) 摘 要: 本文讨论了若干数值积分的计算方法。在一维情形下,介绍了Newton-Cotes 公式,Gauss 型等求积法则; 在二维情形下, 主要介绍了二元Newton-Cotes 积分方法。最后,对几类数值积分方法及其数值实验进行比较评述。 关键词: 牛顿-柯特斯公式;Gauss 型求积法则;二元数值积分;数值实验 Some Computational Methods of numerical integration Huang Haiqiong (College of Mathematics and Computer Science,Guangxi University for Nationalities, Nanning 530006) Abstract: In this paper, some computational methods about numerical integration are discussed. under the univariate situation, the quadrature rule of Newton-Cotes formula, Gauss formula and so on is introduced. Under the two-dimensional situation, it mainly introduced the dual Newton-Cotes integral method. Finally, the numerical integration methods and numerical experiment were discussed. Key word: Newton-Cotes formula; Gauss integration principle; dual numerical integration; numerical experiment. 1 引 言 数值积分是积分计算的重要方法,是数值逼近的重要内容,是函数插值的最直接应用,也是工程技 术计算中常常遇到的一个问题[1]。在应用上,人们常要求算出具体数值,因此数值积分就成了数值分析的一个重要内容。在更为复杂的计算问题中,数值积分也常常是一个基本组成部分。 在微积分理论中,我们知道了牛顿-莱布尼茨(Newton-Leibniz )公式 ()()()b a f x dx F b F a =-? 其中()F x 是被积函数()f x 的某个原函数。但是随着学习的深入,我们发现一个问题: 对很多实际问题,上述公式却无能为力。这主要是因为:它们或是被积函数没有解析形式的原函数,或是只知道被积函数在一些点上的值,而不知道函数的形式,对此,牛顿—莱布尼茨(Newton-Leibniz)公式就无能为力了。此外,即使被积函数存在原函数,但因找原函数很复杂,人们也不愿花费太多的时间在求原函数上,这些都促使人们寻找定积分近似计算方法的研究,特别是有了计算机后,人们希望这种定积分近似计算方法能在计算机上实现,并保证计算结果的精度,具有这种特性的定积分近似计算方法称为数值积分。

三重积分的计算方法

三重积分的计算方法 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积 分)和一个二重积分。从顺序看:如果先做定积分?21 z z dz )z ,y ,x (f ,再做二重积分 ??σD d )y ,x (F ,就是“投影法” ,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二” 这一步。σ=???Ω???d ]dz )z ,y ,x (f [dv )z ,y ,x (f D z z 21 如果先做二重积分??σz D d )z ,y ,x (f 再做定积分?21c c dz )z (F ,就是“截面法”,也 即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即]c ,c [z 21∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??σz D d )z ,y ,x (f ,完成了“先二”这一步(二重积分); 进而计算定积分?21 c c dz )z (F ,完成“后一”这一步。 dz ]d )z ,y ,x (f [dv )z ,y ,x (f 2 1z c c D σ=???Ω???。当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)z (σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲面中有较多的平面时,常用直角坐标系计算) D 是圆域(或其部分),且被积函数形如)x y (f ),y x (f 22+时,可选择柱面坐标系计算(当Ω为圆柱体或圆锥体时,常用柱面坐标计算) (3)Ω是球体或球顶锥体,且被积函数形如)z y x (f 222++时,可选择球

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域D 可用不等式 a x b x y x ≤≤≤≤??12()()表示, 其中?1()x , ?2()x 在[,]a b 上连续 这个先对 y , 后对x 的二次积分也常记作 f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12 如果积分区域D 可以用下述不等式 c y d y x y ≤≤≤≤,()()φφ12 表示,且函数φ1()y ,φ2()y 在[,]c d 上连续, f x y (,)在D 上连续,则 f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212 (2)

显然,(2)式是先对x ,后对 y 的二次积分. 几何法.画出积分区域D 的图形(假设的图形如下 ) 在],[b a 上任取一点x ,过x 作平行于y 轴的直线,该直线穿过区域D ,与区域D 的边界有两个交点))(,(1x x ?与))(,(2x x ?,这里的)(1x ?、)(2x ?就是将x ,看作常数而对 y 积分时的下限和上限;又因x 是在区间[,] a b ,所以再将x 看作变量而对x 积分时,积分的下限为a 、上限为b . 例1计算xyd D ?? σ, 其中D 是由抛物线 y x 2=及直线y x =-2所围成 的区域.

D y y x y :,-≤≤≤≤+1222 xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212 [] =+-=-?12245 8 2512y y y dy () 2.利用极坐标计算二重积分 1、rdrd θ就是极坐标中的面积元素. x r →cos θ y r →sin θdxdy rdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ?? 2、极坐标系中的二重积分, 可以化归为二次积分来计算. αθβ?θ?θ≤≤≤≤12()()r 其中函数?θ1(), ?θ2()在[,]αβ上连续. f r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() ()θθθθθθα β ?θ?θ????=12 注:本题不能利用直角坐标下二重积分计算法来求其精确值.

数值积分-计算方法

数值积分 第1章 理论依据 逼近论——构造一个简单函数p(x)近似表示f(x),然后对 p(x)求积分得到 f(x)的积分的近似值。基于插值原理,推导出数值积分的基本公式。 §1插值求积公式 为了用数值方法求 b a I(f)=f(x)dx ? ,对被积函数f(x)在给定的n+1个节点 上作Lagrange 插值,用插值函数Pn(x)代替f(x),就可用I (Pn(x))构造求积公式,近似地计算定积分I(f(x))。 §2Newton —Cotes 公式 §2.1Newton —Cotes 公式的推导 当§1.1插值求积公式的插值节点为等距节点时,就得到Newton —Cotes 公式。 将区间[a,b]n 等分, b a h n -= ,n+1个节点为 x k =a+kh (k=0,1,…,n) 在节点上对f(x)的Lagrange 插值多项式是: 0()()() n n j n k k j k j j k x x p x f x x x ==≠-=-∑∏ 用P n (x)代替f(x)构造求积公式: 0()()()n n b b j n n k a a k j k j j k x x I p x dx f x dx x x ==≠-==-∑∏?? 记,(k=0,1,…,n) 作代换x=a+th 带入上式,变为: () 00()n n n n k k j j k b a t j A dt b a C n k j =≠? --==--∏?

其中: (k=0,1,…,n) (1-1) 这个积分是有理多项式积分,它与被积函数f(x)和区间[a,b]无关。只要确定n 就能计算出系数。 于是得到称为Newton —Cotes 公式的求积公式: ()0 ()n n n k k k I b a C y ==-∑ (1-2) 其中称为Newton —Cotes 系数。如表1所示。 §2.2Newton —Cotes 公式误差和稳定性 在积分公式中用插值多项式Pn(x)代替f(x)的插值误差是 (1)0 ()()()()()(1)!n n n n k k f R x f x p x x x n ξ+==-=-+∏ 因此,Newton —Cotes 公式的截断误差是 (1)0 ()()()(1)!n n b k a k f R f x x dx n ξ+==-+∏? (1-3) 讨论舍入误差对计算结果产生的影响,设(1-2)式近似计算()b a f x dx ? 其中计算函数值f(xn)有误差值(k=0,1,2, …,n )。在(1-2)式中令 ? 设计算无误差,舍入误差也忽略,则,由(1-2)式 计算时引式的误差为 () ()()() 0000()[()(())()(...) n n n n n n n k k k k n n n k k e b a C f x C f x b a C C εεε===--+=--++∑∑ 如果皆为正,并设,则 ,故 有

相关主题