搜档网
当前位置:搜档网 › 三角形中位线在初中几何中的应用

三角形中位线在初中几何中的应用

三角形中位线在初中几何中的应用
三角形中位线在初中几何中的应用

1

初中几何中三角形中位线定理的应用

三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。

一、证明问题

1、证明角相等关系

例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON

分析:证明OM=ON 可转化成证明

∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要

取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH=

21BD ,HF=2

1

AC,因为AC=BD,从而得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN,

∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。

证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH=

21BD ,EH//BD ,HF=2

1

AC ,FH//AC (三角形中位线定理)而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵

EH//BD ,HF//AC ,∴∠HEF=∠DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON

例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证: ∠AEF=∠DFE

分析:欲证:∠AEF=∠DFE 。由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN=∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有

12GM AB ∥,1

2

GN CD ∥,由于AB=CD ,进而有GM=GN ,

∠GMN=∠GNM 然后再转化∠EPN=∠Q ,从而证出结论。

证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD ,

取BD 的中点G ,连结GM 、GN 。∵G 、M 分别为△ABD 的边BD 、AD 的中点∴

12GM AB ∥。同理可证:12

GN AB ∥,又∵AB=CD ,∴GM=GN ,∴∠GMN=∠GNM ,

∵GM//AB ,GN=CD ,∴∠GMN=∠EPN ,∠GNM=∠Q ,∴∠EPN=∠Q ,又 EF ⊥MN ,

2

∴∠AEF=∠DFE (等角的余角相等)

说明:添辅助线是证明几何题的难点。尤其像例2、要添多条辅助线,更为困难,掌握一般添辅助线的规律是必要的,更为重要的是分析中自由添加辅助线,添辅助线是分析问题过程的一个步骤,这是几何的证明的较高层次,要在实践中仔细体会,不断摸索,不断总结。

2、证明线段的倍分以及相等关系

F

B

C

例1、 如图,已知平行四边形ABCD 中,

BD 为对角线,点E 、F 分别是AB 、CD 的中点,连线EF ,交BD 于M 点。

求证:(1)BM=

1

4

BD (2)ME=MF 分析:欲证问题(1)由E 、F 分别为AB 、BC 中点想到连结AC ,由平行线等分线段定理可证得BM=MO 。又因为平行四边形的对角线互相平分,可得BO=OD ,即BM=4

1

BD 。欲证问题(2),由问题(1)中的辅助线,即连结AC ,由三角形中位线定理可得EM=1

2

AO ,MF=

1

2

OC ,又由平行四边形对角线互相平分即可得到问题(2)的结论。 证明:(1)连结AC ,交BD 于O 点,∵E 、F 分别为AB 、BC 中点,∴EF ∥AC , ∴BM=MO=

1

2

BO (平行线等分线段定理) 又∵四边形ABCD 是平行四边形

∴BO=OD=

12BD ,AO=OC=1

2AC , ∴BM=1124BO BD =,即BM=1

4

BD

(2)∵M 是BO 的中点,E 、F 分别是AB 、BC 中的中点. ∴12=

ME AD ,1

2

=MF OC ,又∵AO =OC ,∴ME =MF 小结:问题(1)看起来似乎与三角形中位线定理无关,其实这是从侧面的运用了三

角形中位线的位置关系,即三角形的中位线平行于底边,而问题(2)直接运用了三角形中位线的数量关系。

例2、 巳知:如图,在△ABC 中AB =AC ,

延长AB 到D ,使

BD =AB ,E 为AB 的中点,

求证:CD =2CE

分析:这是证明线段的倍半问题,证明一条 线段等于另一条线段的二倍或一半时,常常是先

找出短线段的二倍,或者取长线段的一半,设法把线段的倍半问

3

题转化为证明线段的相等问题,这就是通常所说的“加倍”、“折半”的方法,下面我们就把问题转化成证明线段的相等。

方法:1、找出CD 的一半,然后证明CD 的一半和CE 相等, 此重取CD 中点F ,证CF =CE

证明:取CD 的中点F 连结BF , ∴CD =2CF ,∵AB =BD ,∴BF 是 △ADC 的一条中位线,BF ∥AC , 1

2

=

BF AC ,∴∠2=∠ACB , ∵AB=AC, ∴∠1=∠ACB ,∴∠1=∠2,∴E 是AB 中 点,∴12=

BE AC ,∵12

=B F A C ,且AB=AC ,∴BE=BF ,

在△BCE 和△BCF 中,

??

???BE=BF 1=2BC=BC

∠∠,∴△BCE ≌△BCF(SAS), ∴CE=CF ,∵CD=CF ,∵CD=2CF , ∴CD=2CE 方法:2、找出CE 的2倍,然后证明CE 的2倍和CD 相等,因此,要延长CE 到使EF=CE ,证CF=CD

证明:延长CE 至F 使EF=CE ,连结FB ∴CF=2CE , ∠1=∠2,∵E 为AB 中点, ∴AE=BE ,在△AEC 和△BEF 中

??

???CE=EF 1=2AE=BE

∠∠,∴△AEC ≌△BEF(SAS), ∴AC=BF ,∠3=∠F ,∴AC ∥BF ,∴∠FBC+∠ACB=1800,

∵∠CBD+∠ABC=1800,又∵AB=AC ,∴∠ABC=∠ACB ,∴∠FBC=∠DBC ,∵AC=AB , AB=BC ,AC=BF ,∴BF=BD 。 在△CBF △CBD 中

??

???CB=CB FBC=DBC FB=DB

∠∠,∴△CBF ≌△CBD(SAS), ∴CD=CF ,∴CF=2CE ,∴CD=2CE

3、证明线段平行关系 例1、 如图,自△ABC 的顶点A ,向∠B 和∠C 的平分线作垂线,重足分别为D 、E 。 求证:DE ∥BC 分析:欲证ED//BC 我们可想到有关平行的判定,但要找到有关角的关系很难,这时只要通过延长AD 、AE ,交BC 与CB 的延长线于G 与H ,通过证明△ABD 与△GBD 全等易证

D 是AG 中点,同理

E 为AH 的中点,故,ED 是△AEG 的中位线,当然有DE ∥BC 。

4

证明:延长AD 、AE 交BC 、CB 的延长线于G 、H ,∵BD 平分∠ABC ,∴∠1=∠2,又∵BD ⊥AD ,∴∠ADB=∠BDG=900. 在△ABD 与△GBD 中

??

???1=2BD=BD

BDG= BDA

∠∠∠∠,∴△ABD ≌△GBD(ASA) ∴AD=DG ,同理可证,AE=GE ,∴D ,E 分别为AG ,AH 的中点, ∴ED ∥BC

小结:由此题我们可以知道证明直线或线段平行除了平行判定等,还可以用中位线定理来证明直线或线段平行。

二、比较大小 1、比较线段大小

例1、 如图,M 、N 是四边形ABCD 的边

BC 、AD 的中点,且AB 与CD 不平行。求证:MN <1

2

(AB +

CD)

分析:欲证MN <

1

2

(AB +CD),我们从表 面上看这个问题比较复杂,但由M 、N 分别为BC 、AD 中点我们可以联想到如何构造三角形中位线来证明问题,通过连结BD ,并取BD 中点P ,连结NP 、MP 这时分别为△DAB 、△DCB 的中位线,这时三条线段NP 、MP 、MN 都在一个三角形里,问题就迎刃而解了。

证明:连结BD 并取BD 中点P ,连结NP ,MP ∵N 为AD 中点,P 为BD 中点

∴NP 为△DAB 的中位线,∴NP =

12AB ,同理可得MP =1

2

CD 。∵AB 与CD 不平行,∴P 点不在MN 上。在△PMN 中,由于两边之和大于第三边,∴MN <PM+PN =1

2

(AB+CD)

小结:此类题型通过转化,把有关的线段或与之有联系的线段集中在一个三角形中,再应用三角形的有关知识,如:三角形中位线及两边之和大于第三边,两边之差小于第三边等知识,即可得出证明。

2、比较角的大小

例1、如图:AD 是△ABC 的中线,如果AB>AC ,那么∠

BAD<∠CAD 。 分析:因为D 为BC 中

点联想到,过点D 作中位线DE ,因为DE ∥AB 即△ABC 得到∠1=∠3,由AB>AC, 有12AB >1

2

AC ,所以就有∠3<∠2,即∠BAD<∠CAD

证明:过点D 作DE ∥AB 交AC 于E ,∴DE ∥AB 且 DE =1

2

AB ,E 为AC 中点。∴∠1=∠3,∵AB>AC ,∴

12AB>1

2

AC ,即在△AED 中,DE>AE ,∴∠3<∠2,∴∠1<∠2,即∠BAD<∠CAD

小结:本题证角不相等,因为要证的两个角不在同一

5

个三角形中,如果这两个角在同一个三角形中能应用:在同一个三角形中,大边对大角原理

这时就考虑到如何将这两个角放在一个三角形中,通过观察只要过D 作DE ∥AB 就可解决求证问题。

三、求值问题

例1, 如图所示,在梯形ABCD 中,

AD ∥BC ,AD+DC=8,且AD :BC=3:7,E , F 分别是BD ,AC 的中点,求EF 的长。

分析:欲求EF 的长,关键是如何建构三角形,使EF 成为这个三角形的中位线,所以,本题的突破口在于添作辅助线DH ,这也是解题中常用的方法。

解:AD+BC=8,AD :BC=3∶7 得 AD=2.4 BC=5.6 连结DF ,并延长交BC 于H ,在△ADF 与△CHF 中

AF=CF 1= 2DF=FH

??

???∠∠,∴△ADF ≌△CHF(SAS) ∴CH=AD ,DF=FH ,∴EF=12BH =1

2

(BC -AD)=1.6

例2、 如图,正方形ABCD 两对角线相交于

点E ,∠CAB 的平分线交BE 于G ,交BC 于F , 若GE =24 求FC 的长。

分析:求FC 的长,因为E 为对角线交点,就是AC 中点所

以作辅助线PE ∥BC 就有PE ∥FC 且有PE=2

1

FC 所以只要能求出

PE 的长即可,而PE 的长可由∠3=∠4求出,因为∠3为△APE 的外角所以有∠3=∠2+∠5同理有∠4=∠1+∠7因为AF 为∠BAC 的平分线所以∠1=∠2又因为所以∠5=∠6,而∠6=∠7所以有∠3=∠4即PE=GE=12

FC,这样问题就解决了。

解:过点E ,作EP ∥BC ,交AF 于点P ,则P 为AF 中点,

∵∠3=∠2+∠5=∠2+∠6,∠4=∠1+∠7,又∵AF 平分∠BAC ,

∴∠1=∠2,又∵∠6=∠7,∴∠3=∠4,∴EP =EG ,∵PE 是△AFC 的中位线,∴PE =12

FC=EG ,即FC=2EG=2PE=2×24=48

小结:求值问题,主要是如何添加辅助线,将比较难的问题转为容易的问题。

总之,三角形中位线定理的应用,这部分知识在初二几何第四章《四边形》中占有很重要的地位,它对《梯形中位线》、《平行等分线段定理》与第五章《相似形》的学习中起到辅助的作用,所以学好本课知识很有必要的,特别是如何正确添加辅助线构造三角形中位线对每个学生来说是一个重点也是一个难点。要求学生要善于觉察图形中的有关定理的基本图形,涉及到中点问题时要及时联想到有关定理。一条或一组合理地利用了题目条件的辅助线常见有一箭双雕甚至一箭多雕的效益,准确而理想的图形能有效地帮助我们迅速地捕捉到题意预定的目标。

北师大版八年级数学下册 三角形的中位线教学设计教案

《3三角形的中位线》教案 教学目标 知识与技能: 1、理解和领会三角形中位线的概念. 2、理解并掌握三角形中位线定理及其应用. 过程与方法: 经过探索三角形中位线定理的过程,理解它与平行四边形的内在联系,感悟几何学的推理方法. 情感态度与价值观: 培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点 重点:理解并应用三角形中位线定理. 难点:三角形中位线定理的探索与推导. 学习过程 一、复习引入 1、什么叫三角形的中线? 2、三角形的中线有几条? 二、合作交流,探究新知 1、问题引入: 接下来,我们就要来探究一个问题,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办? 连接三角形两边中点的线段叫做三角形的中位线. 2、用例题证明中位线的定理: 例:如图已知,在△ABC中,点D,E分别是△ABC的边AB、AC中线, 求证:DE∥BC,且DE=1/2BC. 证明:如图,延长DE到F,使EF=DE,连结CF. ∵DE=EF,AE=EC,∠AED=∠CEF,

∴△ADE ≌△CFE ∴AD=FC ,∠A=∠CEF ∴AB ∥FC 又AD=DB ∴BD //CF 所以,四边形BCFD 是平行四边形. ∴DE ∥BC 且DE=2 1BC . 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 3、解决引入问题: A 、 B 两点被池塘隔开,现在要测量出A 、B 两点间的距离,但又无法直接去测量,怎么办? 在A 、B 外选一点 C ,连结AC 和BC ,并分别找出AC 和BC 的中点 D 、 E ,如果能测量出DE 的长度,也就能知道AB 的距离了.(AB=2DE ) 三、应用迁移 已知:如图所示,在四边形ABCD 中,E 、F 、H 、M 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFHM 是平行四边形. 分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGM 对边的关系,从而证出四边形EFGH 是平行四边形. 证明:连结AC . ∵AM=MD ,CH=HD ∴HM //AC ,HM=1/2AC (三角形中位线定理). 同理,EF //AC ,EF=1/2AC ∴HM //EF ∴四边形EFGH 是平行四边形. 四、课堂检测,巩固提高: 1、△ABC 中,E 、F 分别为AB ,AC 的中点,若AB=8,AC=12,BC=18,那么EF=________. 2、顺次连结任意四边形各边中点所得的图形是______. 3、已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( ) A .3cm B .26cm C .24cm D .65cm

初中几何中三角形中位线定理的应用

初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系; (2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH=21BD ,HF=21AC,因为AC=BD,从而 得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH=21BD ,EH//BD ,HF=21AC ,FH//AC (三角形中位线定理) 而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵EH//BD ,HF//AC ,∴∠HEF=∠ DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN

《三角形的中位线》教学设计

《三角形的中位线》教学设计 [设计思路] (一)教材分析 本课时在教学中注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生经历“探索—发现—猜想—证明”这一过程,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线性质,不但能指出了三角形的中位线与第三边的位置关系和数量关系,而且还为证明线段之间的位置关系和数量关系提供了新的思路。 (二)学情分析 针对本班学生基础知识不够扎实,新知识接受能力不强,数学思想方法运用不够灵活的现状,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识渗透转化、类比、归纳的数学思想方法,使学生能充分参与到教学过程中去,从而提高本节课的教学效果。 (三)教学目标 1.知识目标 (1)理解三角形中位线的概念。 (2)掌握三角形中位线的性质。 (3)会运用性质进行论证和计算。 2.能力目标

通过性质证明,培养学生思维的广阔性,渗透对比转化的思想。 3.情感目标 通过学生动手操作、观察、实验、推理、猜想、论证等过程,让学生体验知识的发生和发展过程,培养学生的创新意识。 (四)教学重点与难点 教学重点:三角形中位线的概念与三角形中位线的性质. 教学难点:三角形中位线性质的证明。 (五)教学方法与学法指导 对于三角形中位线定义的引入采用类比法,在此基础上,教师引导学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,而对于定理的证明过程,则运用多媒体的优势,给予演示增强直观性,使学生易于理解和接受。 (六)教具和学具的准备 教具:多媒体、刻度尺、教学三角板。 学具:三角板、刻度尺。 [教学过程] 一、引入 谈话:同学们好,今天这节课我将与大家一起来学习三角形中位线的概念与性质。 二、新授 (1)对照图片,回顾三角形中线的概念及 特点:

三角形中线的阿波罗尼斯定理及其应用

三角形中线的阿波罗尼斯定理及其应用 阿波罗尼斯定理 三角形两边平方的和,等于所夹中线及第三边之半的平方和的2倍. 具体地说,就是:设AD 是△ABC 的中线,则)(22222BD AD AC AB +=+. 证明 如图1,作BC 边上的高AH . 由勾股定理,得 222DH AH AD +=,2 2 2BH AH AB +=, 2 2 2 CH AH AC +=. 所以222222CH BH AH AC AB ++=+. 由 CD BD =, 可 得 )(2)()(2 2 2 2 2 2 DH BD DH BD DH BD CH BH +=-++=+. 所以)(2)(22222222BD AD BD DH AH AC AB +=++=+. 该定理应用广泛,不但可以用来计算三角形中线的长度,而且对于多线段的平方和问题,尝试构造三角形的中线后运用它往往也能凑效.下面举例说明此定理的应用. 1.直接使用 当题设条件中出现三角形的中线时,可考虑使用阿波罗尼斯定理建立相关线段的联系,以助解题. 例 1 AD 、BE 、CF 是△ABC 的三条中线.若a BC =,b CA =,c AB =,则 = ++2 2 2 CF BE AD ______. (2005年山东省初中数学竞赛) 分析 AD 、BE 、CF 是△ABC 的三条中线,故可直接使用三角形中线的阿波罗尼斯定理进行计算. 解 如图2, AD 是BC 边上的中线,由阿波罗尼斯定理得 ?? ? ??+=+222 2 412BC AD AC AB . 代入已知数据,变形得2 2 2 24 12 121a b c AD - + =. 同 理 2 2 2 2 4 12 12 1b a c BE - + = ,2 2 2 2 4 12 12 1c b a CF - + = . 故()2 2 2 2 224 3c b a CF BE AD ++= ++. 例2 如图3,△ABC 的内切圆⊙O 与边CA 上的中线BM 交于点G 、H ,并且 点G 在点B 和点H 之间.已知HM BG =,2=AB ,2>BC .那么,当BC 、CA 为何值 D C B E A 图2 F A B 图1

三角形的中位线教案 (2)

三角形的中位线 石棉县城北中学吴国平1、知识状况 本节课是在学生学习了全等三角形、平行四边形的性质与判定的基础上学习三角形中位线的概念和性质。三角形中位线是继三角形的角平分线、中线、高线后的第四种重要线段。三角形中位线定理为证明直线的平行和线段的倍分关系提供了新的方法和依据,也是后续研究梯形中位线的基础。三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述,在生活中有着广泛的应用。 2、教学任务 本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。 利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。 3、教学目标 认知目标 (1)知道三角形中位线的概念,明确三角形中位线与中线的不同。 (2)理解三角形中位线定理,并能运用它进行有关的论证和计算。 (3)通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力. 能力目标 引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生 观察问题、分析问题和解决问题的能力。 德育目标

对学生进行事物之间相互转化的辩证的观点的教育。 情感目标 利用制作的Powerpoint 课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。 4、教学重难点 【重点】:三角形中位线定理 【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用. 5、教学过程 本节课设计了七个教学环节:第一环节:创设情景,导入课题;第二环节:教师讲授,传授新知;第三环节:师生共析,证明定理;第四环节:知识扩展,理解加固;第五环节:灵活运用,自我检测;第六环节:运用新知,攻克难关;第七环节:回顾小结,课后作业;第八环节:课后反思。 第一环节:创设情景,导入课题 1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形? 操作:(1)剪一个三角形,记为△ABC (2)分别取AB,AC 中点D,E ,连接DE (3) 沿DE 将△ABC 剪成两部分,并将△ABC 绕点E 旋转180°,得四边形BCFD. 2、思考:四边形ABCD 是平行四边形吗? 3、探索新结论:若四边形ABCD 是平行四边形,那么DE与BC有什么位置和数量关系呢? 目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE∥BC,DE=2 1BC. 由此引出课题.。 效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。 第二环节:教师讲授,传授新知 内容: 引入三角形中位线的定义和性质

三角形中位线定理的运用

教学案例:《三角形中位线定理教学设计》 ⒈创设问题情境,诱导学生发现结论 ⑴怎样测算操场中被一障碍物隔开的两点A、B的距离?小明测量的方法是:在AB外选一点C,连结AC、BC,取AC、BC的中点M、N。连结MN,量出MN=20m,这样能算出AB的长吗?AB与MN有何关系?经观察,你猜测 AB与MN的关系是:①②。 ⑵MN这条线段既特殊又重要,我们把它叫做△ABC的 中位线。即连结三角形两边点的线段叫三角 形的。 ⑶一个三角形有条中位线,画出图4的三角形的所有中位线,观察、测量发现: ( )∥( ),( )=( );( )∥( ),( )= ( );( )∥( ),( )= ( )。用语言叙述上述结论:三角形的中位 线并且 . ⑷再画出图2的△ABC的三条中线,它与中位线有何区别? 说明:⑴以上内容让学生按印发的学习提纲在课前完成。⑵三角形中位线定义的引入、定理的结论课本是直接给出的,这不符合过程性原则.我们①以“应用性问题”导入,揭示了数学知识在生产、生活中的广泛应用,强化学习动机,变“要我学”为“我要学”;②让学生通过实验操作、观察比较、估计猜测,自己发现结论,

这可培养学生对数学的内在兴趣,让学生认识到数学不是少数天才创造的,而是经过努力一般人都可以发现的,数学来源于现实世界,而又是解决实际问题的有力工具,符合从“感性到理性”的认识规律。 ⒉创设思维情境,启导学生发现证明结论的思路和方法 ⑴检查课前自学情况。教师提问有关问题,学生回答,并用多媒体展示答案。 ⑵教师指出:同学们观察发现的这些结论是否正确,还需严格证明。教师板书,学生在提纲上写已知、求证。 ⑶启导全班学生思考、讨论证法,教师巡视与学生一起研究,收集信息,了解情况。 ①本题与以前学过的哪些知识、方法有关?是什么关系?学生进行联想,回答。△ADE与△ABC有何关系?若过D作平行于BC的直线,发现什么(用多媒体演示)?②怎样证一条线段等于另一条的一半?学生回答:截(把长的平分)与补(把短的加倍)。经过探讨,学生不难发现以下三种证法:(过程略) 证法㈠:利用相似三角形证法㈡: 证法㈢: 说明:定理的证明,不拿现成的方法给学生,而是创设思维情境,启导学生“联想”到学过的有关知识和方法,使新旧知识得到顺利同化,并引导学生展开讨

三角形中位线在初中几何中的应用

1 初中几何中三角形中位线定理的应用 三角形中位线定理在初中教材体系中是一个很重要的定理,学好本节内容将有助于梯形中位线定理乃至整个平面几何知识的学习。它具有两个方面的特性:(1)平行于第三边,这是位置关系;(2)等于第三边的一半,这是数量关系。就第一个特性而言,中位线定理与平行线等分线段定理中的推论2(经过三角形一边的中点与另一边平行的直线,必平分第三边)存在着互逆关系。我们利用这两个特性,能证明(求解)许多几何问题,以下举例说明它的具体应用。 一、证明问题 1、证明角相等关系 例1、已知:如图在四边形ABCD 中 对角线AC=BD ,E 、F 分别为AB 、CD 中点,点O 为AC ,BD 的交点,M 、N 为EF 与BD ,AC 的交点。求证:OM=ON 分析:证明OM=ON 可转化成证明 ∠OMN=∠ONM ,由于E 、F 为AB 、CD 的中点这时只要 取AD 中点H 作出△ABD 与 △ACD 的中位线,即可得到EH= 21BD ,HF=2 1 AC,因为AC=BD,从而得到EH=HF 所以∠HEF=∠HFE,因为 EH//BD, FH//AC 所以∠HEF=∠OMN, ∠HFE=∠ANM 从而得到∠DMF=∠ANM 这样要求证问题就解决了。 证明:取AD 中点H 并分别连结EH 、HF ,即EF 与FH 分别为△ABD 与△DAC 的中位线。 ∴EH= 21BD ,EH//BD ,HF=2 1 AC ,FH//AC (三角形中位线定理)而 AC=BD ,∴EH=HF ,∴∠HEF=∠HFE 又∵ EH//BD ,HF//AC ,∴∠HEF=∠DMF ,∠HFE=∠ANM ∴∠DMF=∠ANM ,∴OM=ON 例2、如图、四边ABCD 中,AB=CD , M 、N 分别为AD 、BC 的中点,EF ⊥MN 交AB 于E ,交CD 于F ,求证: ∠AEF=∠DFE 分析:欲证:∠AEF=∠DFE 。由MN ⊥EF 想到延长BA ,CD 与MN 的延长线交于P 、Q 只需证明∠EPN=∠Q ,如何利用中点的条件? 想到三角形的中位线,连线BD ,取BD 的中点G ,则有 12GM AB ∥,1 2 GN CD ∥,由于AB=CD ,进而有GM=GN , ∠GMN=∠GNM 然后再转化∠EPN=∠Q ,从而证出结论。 证明:延长BA ,CD 分别与NM 的延长线交于P 、Q 连结BD , 取BD 的中点G ,连结GM 、GN 。∵G 、M 分别为△ABD 的边BD 、AD 的中点∴ 12GM AB ∥。同理可证:12 GN AB ∥,又∵AB=CD ,∴GM=GN ,∴∠GMN=∠GNM , ∵GM//AB ,GN=CD ,∴∠GMN=∠EPN ,∠GNM=∠Q ,∴∠EPN=∠Q ,又 EF ⊥MN ,

三角形的中位线定理教案公开课

18.1.2三角形的中位线 一、教学目标 1、知识与技能 理解三角形中位线的概念,会证明三角形中位线定理,理解三角形中位线定理。能较熟练地应用三角形中位线定理进行有关的证明和计算。 2、过程与方法 使学生经历三角形中位线性质的“探索-发现-猜想-证明”的过程,发展学生推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。从而培养学生分析问题、解决问题的能力。 3、情感态度价值观 通过情境引入,激发学生的求知欲,通过三角形中位线定理的证明,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。 二、教学重点难点 【重点】三角形中位线的定义和性质。 【难点】三角形中位线定理的证明。 三、教学方法 启发式教学法、谈话讨论法。 四、教具学具准备 电脑、投影仪和三角形卡片。 五、教学过程 (一)复习平行四边形的性质和判定 (二)情境引入 现有一块三角形的蛋糕,要把它分成4块大小、形状完全相同的三角形蛋糕,该怎么分?(三)新知探究,合作交流

1.三角形中位线的定义 连接三角形两边中点的线段叫做三角形的中位线. [问题1]一个三角形有几条中位线?(3条) [问题2]下列各图中的D、E是各边的中点,哪条是中线?哪条是中位线呢? [问题3]三角形中线与中位线有什么区别?(端点不同) 2.三角形的中位线的性质 (1).猜想:观察图形,猜想DE与BC有何位置关系,有何数量关系? (2).度量:度量一下你手中的三角形,看看是否有DE=1/2BC? (3).证明:(你是如何验证DE∥BC,DE=1/2BC?) 将△转化为(展示过程) (4).归纳总结:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.

三角形中位线定理模型应用的思维导图

三角形中位线定理模型应用的思维导图 三角形中位线定理是一个重要知识点,更是一种重要的解题工具,熟练掌握定理的两种模型,能助力数学解题效率,提升数学核心素养. 一、定理模型构建 1.双中点模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,点E 是边AC 的中点; 结论:12;2DE BC BC DE DE BC ?==????? ?数量关系:或位置关系:∥. 2.中点+平行线模型 如图1 条件:在△ABC 中,点D 是边AB 的中点,DE ∥BC ; 结论:12;2.DE BC BC DE E AC ?==????? ?数量关系:或位置关系:点是的中点 证明:如图2,过点C 作CF ∥AB ,交DE 的延长线于点F.∵DE ∥BC ,CF ∥AB, ∴四边形BDFC 是平行四边形,∴BD=CF. ∵AD=BD ,∴AD=CF. ∵CF ∥AB, ∴∠A=∠ACF ,∠ADE=∠EFC ,∴△ADE ≌△CFE ,∴AE=EC ,∴点E 是AC 的中点, DE 是△ABC 的中位线,∴DE=1 2BC. 二、定理常用模型 1.双中点模型 此条件下,完全具备定理的条件,可以直接使用. 2.构造托底平行线型 如图3,在△ABC 中,点D 是边AB 的中点,点E 为AC 上一点,连接DE ,过点B 作BF ∥DE ,则DE 是△ABF 的中位线,定理可用 .

3.构造中点平底线型 如图4,在△ABC 中,点D 是边AB 的中点,过点D 作DE ∥BC ,则DE 是△ABC 的中位线,定理可用. 三、应用剖析 1.平行四边形中构造使用定理 例1 (2020?陕西)如图5,在平行四边形ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是平行四边形ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G .若EF ∥AB ,则DG 的长为 ( ) A. 5 2 B .32 C . 3 D .2 解析:如图5,延长CD ,交BF 的延长线于点H ,∵E 是边BC 的中点,∠BFC=90°,∴EB=EF=EC=1 2BC=4,∵EF ∥AB ,CD ∥AB ,∴EF ∥CD ,∵E 是边BC 的中点,∴EF 是三角形BCH 的中位线, ∴CH=8,DH=5,易证△ABF ≌△GHF ,∴AB=GH=5,∴AH=CG=BH-BA=BC-BA=8-5=3, ∴DG=GH-DH=5-3=2,∴选D. 点评:解答时,把握三个关键,一是直角三角形斜边中线原理;二是三角形中位线定理;三是构造中点型全等三角形法,这些都是解题的核心要素. 例2(2020?凉山州)如图6,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交

《三角形中位线定理》教案

4.5三角形中位线定理 【教案背景】 1、面向学生:初二学生 2、课时:1课时 3、学科:数学 4、学生准备:提前预习本节课的内容,2张三角形纸,剪刀. 【教材分析】 1、教材的地位和作用: 本节教材是浙江教育出版社的八年级数学下册第四章第五节的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习等腰三角形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。 2、教学目标 (一)知识目标 (1)理解三角形中位线的概念 (2)会证明三角形的中位线定理 (3)能应用三角形中位线定理解决相关的问题; (二)过程与方法目标 进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。 (三)情感目标 通过拼图活动,来激发学生的求知欲,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。 3.重点与难点 重点:理解并应用三角形中位线定理。 难点:三角形中位线定理的证明和运用。 【教学方法】 学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学,我始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地参与教学全过程。

【教学过程】 本节课分为五个环节:设景激趣,引入新课概念学习,感悟新知拼图活动,探索定理巩固练习,强化新知小结归纳,作业布置 (一)设景激趣,导入新课 动手实践探索(请您做一做:让学生拿出自己预先准备好的三角形纸板) 1、找出三边的中点 2、连接6点中的任意两点 3、找找哪些线是你已经学过的,哪些是未曾学过的 设计意图: 在本环节,让学生经过动手操作,学生会发现有3条是已经学过的中线,有3条是没有学过的。最终给出三角形中位线的定义。也引出了本节课的课题:三角形的中位线。这样做,既让学生得出三角形中位线的概念又让学生在无形中区分了三角形的中线和三角形中位线 (二)概念学习,感悟新知 三角形中位线的定义: 连接三角形两边中点的线段,叫做三角形的中位线 如图,DE、EF、DF是三角形的3条中位线。 跟踪训练: ①如果D、E分别为AB、AC的中点,那么DE为△ABC的; ②如果DE为△ABC的中位线,那么D、E分别为AB、AC的。设计意图: 学以致用,为了及时的使学生加深三角形中位线的概念印象,为后面的探究打下基础,设立了以上两道简单的抢答题,让学生学会及时的从图中找出信息。 (三)拼图活动、探索定理 C B A F E D C B E D

九年级数学上册中位线应用三角形中位线定理“四会”素材新版华东师大版

应用三角形中位线定理“四会” 三角形中位线定理在一个题设下,有两个结论:一是线段的位置关系,另一个是线段之间的数量关系.这个定理在证明、计算、作图中都有广泛的应用,是三角形的最重要的性质之一,当三角形中有中点时,往往借助三角形中位线来解决相关问题.那么在学习了三角形中位线定理后,我们应该会解决哪些问题呢?本文所要阐述的就是这个问题. 一、会求值 例1:如图1,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果2EF =,那么ABCD 的周长是( ). A .4 B .8 C .12 D .16 析解:因为E 、F 分别是AB 、AC 的中点,所以EF 是 ABC ?的中位线,则12 EF BC =,24BC EF ==.故菱形ABCD 的周长为416BC =,选D . 二、会证明 例2:如图2,在ABC ?中,90BAC ∠=,延长BA 到点D ,使12 AD AB =,点E 、F 分别为边BC 、AC 的中点.求证DF BE =. 分析:由题意知点E 是Rt ABC ?斜边中点,作出斜边中线AE 后,有12AE BC = .另外,点F 又是AC 的中点,所以EF 是ABC ?的中位线,EF ∥AB 且12 EF AB =.这样,就可证得四边形AEFD 是平行四边形,从而有12 DF AE BC BE ===,问题得证. 证明:连接AE ,则12AE BC BE = =. ∵E 、F 分别为边BC 、AC 的中点, ∴EF 是ABC ?的中位线, ∴EF ∥AB ,12EF AB = . 又∵12 AD AB =, ∴EF AD =. 而EF ∥AD , ∴四边形AEFD 是平行四边形,

三角形中位线定理的应用2

三角形中位线定理的应用 三角形中位线定理是平面几何中十分重要的性质,它说明中位线的位置与第三边平行,长度是第三边的一半,应用它可解许多几何题,如:1.说明线段的倍分关系 例1如图1,AD是△ABC的中线,E为AD的中点,BE交AC于F, AF=1 3 AC.试说明EF= 1 4 BF. 解:取CF的中点H,联结DH,则DH为△CBF的中位线. 又因为AF=1 3 AC,即F为AH的中点,则EF为△ADH的中位线,故DH= 1 2BF,EF= 1 3 DH,所以EF= 1 4 BF. 2.说明两线平行 例2如图2,自△ABC的顶点A向∠B和∠C的平分线作垂线,D、E为 垂足.试说明DE∥BC. 解:延长AE、AD交BC与BC的延长线于N、M.由∠1=∠2,BD⊥AM,可得AD=DM.同理可得AE=EN.故DE为△ANM的中位线.所以DE∥MN,即DE∥BC.

3.说明线段相等 例3如图3,D、E分别是△ABC的边AB、AC上的点,且BD=CE,M、N分别为BE、CD的中点,直线MN分别交AB、AC于P、Q.试说明AP=AQ. 解:取BC中点F,联结MF与NF. 因为BM=ME,BF=FC. 所以MF∥CE,且MF=1 2 CE. 同理可得NF∥BD,且NF=1 2 BD.且又BD=CE,所以MF=NF,故∠3=∠4, 又∠1=∠4,∠2=∠3,所以∠1=∠2,故AP=AQ. 4.说明两角相等 例4如图4,在△ABC中,M、N分别在AB、AC上,且BM=CN,D、E 分别为MN与BC的中点,AP∥DE交BC于P.试说明∠BAP=∠CAP. 解:联结BN并取中点Q,联结DQ与EQ,则DQ∥BM,且DQ=1 2 BM, EQ∥CN,且EQ=1 2 CN,又BM=CN,所以DQ=EQ,故∠1=∠2,因为AB∥DQ, DE∥AP,所以∠1=∠BAP.因为QE∥NC,DE∥AP,所以∠2=∠CAP,所以∠BAP=∠CAP.

四边形中三角形的中位线的应用

四边形中三角形的中位线的应用 例1. 已知点E 、F 、G 、H 分别是四边形ABCD 四边的中点,试问四边形EFGH 是平行四边形吗? 分析:这是个引子问题,也是个基础问题。只要连结四边形ABCD 的一条对角线,再利用三角形中位线性质和平行四边形的判定定理“一组对边平行且相等的四边形是平行四边形”可解决问题。它也有许多引伸。如:当四边形ABCD 满足什么样条件时,连结它四边中点所得到的四边形是菱形?答案是对角线相等。想想为什么? 例3. 已知:如图,四边形ABCD ,点E 、F 分别是AB 、CD 的中点,试说明AD BC EF +>2。 分析:本题看条件很简单,如何得结论似乎无处入手。但只要想到三角形中位线,知道构造三角形,这问题也不难。 解:连结BD ,取BD 中点为H ,连结EH 、FH 。 因为点E 、F 分别是AB 、CD 的中点 所以EH AD FH BC = =1212, 又EH FH EF +>,所以1212AD BC EF +> 即AD BC EF +>2 例4. 已知:如图,四边形ABCD ,AC 、BD 交于点O ,且AC =BD ,点E 、F 分别是AB 、CD 中点,连结EF 交AC 、BD 于G 、H ,试说明OG =OH 。

分析:本题看条件比例3多了一个条件,但解题仍比较困难,这时经验与想象力就很重要了。 解:取BC 中点为M ,连结ME 、MF 因为点E 、F 分别是AB 、CD 的中点 所以ME AC MF BD ==1212, ME ∥AC ,MF ∥BD 又AC =BD ,所以ME =MF 则∠MEF =∠MFE 又ME ∥AC ,MF ∥BD 所以∠1=∠MEF ,∠2=∠MFE 所以∠1=∠2,OG =OH

三角形中位线性质的应用

三角形中位线性质的应用 三角形中位线平行于第三边,并且等于第三边的一半.三角形中位线性质,兼有位置和大小关系,可以用它判定平行,计算线段的长度. 例1如图1,已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中点.求证:PM =PN 证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F 因为△ABM 、△CAN 是等腰直角三角形 所以AE =EB =ME ,AF =FC =NF , 根据三角形中位线性质,可知, PE = 2 1AC =NF ,PF =2 1AB =ME PE ∥AC ,PF ∥AB 所以∠PEB =∠BAC =∠PFC 所以∠PEB+ ∠MEB =∠PFC+ ∠NFC 即∠PEM =∠PFN 所以△PEM ≌△PFN 所以PM =PN . 例2如图2,已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点.求证:MN ∥AD . 证明:连结EC ,取EC 的中点P ,连结PM 、PN 根据三角形中位线性质,可知, MP ∥AB ,MP = 2 1BE ,NP ∥AC ,NP =2 1CF 因为BE =CF ,所以MP =NP , 所以∠3=∠4= 1802 M PN -∠ , ∠MPN +∠BAC =180 (两边分平行的两个角相等或互补) 所以∠1=∠2=1802 M PN -∠ , 所以∠2=∠3. 因为NP ∥AC , 所以MN ∥AD . 练一练: 1.如图3,已知E 、F 、G 、H 是四边形ABCD 各边的中点. 则①四边形EFGH 是 形; ②当AC =BD 时,四边形EFGH 是 形; ③当AC ⊥BD 时,四边形EFGH 是 形; ④当AC 和BD 时,四边形EFGH 是正方形形. 2.如图4,已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC N P 图1 C M 图 2 图3

四边形——三角形的中位线在四边形中的常见应用

四边形——三角形的中位线在四边形中的常见应用 单纯的三角形中位线问题并不复杂,但把它放到四边形中就难多了。下面通过一些例子来有序地讨论这些问题。 例1.已知点E 、F 、G 、H 分别是四边形ABCD 四边的中点,试问四边形EFGH 是平行四边形吗? 分析:这是个引子问题,也是个基础问题。只要连结四边形ABCD 的一条对角线,再利用三角形中位线性质和平行四边形的判定定理“一组对边平行且相等的四边形是平行四边形”可解决问题。它也有许多引伸。如:当四边形ABCD 满足什么样条件时,连结它四边中点所得到的四边形是菱形?答案是对角线相等。想想为什么? 例2.已知:如图,四边形ABCD ,点E 、F 分别是AB 、CD 的中点,试说明AD+BC >2EF 。 分析:本题看条件很简单,如何得结论似乎无处入手。但只要想到三角形中位线,知道构造三角形,这问题也不难。 解:连结BD ,取BD 中点为H ,连结EH 、FH 。 因为点E 、F 分别是AB 、CD 的中点 所以EH= 21AD,FH=2 1 BC, 又EH+FH>EF ,所以21AD+2 1 BC>EF, 即AD+BC >2EF 。 例3.已知:如图,四边形ABCD ,AC 、BD 交于点O ,且AC =BD ,点E 、F 分别是AB 、CD 中点,连结EF 交AC 、BD 于G 、H ,试说明OG =OH 。 分析:本题看条件比例3多了一个条件,但解题仍比较困难,这时经验与想象力就很重要了。 解:取BC 中点为M ,连结ME 、MF

因为点E 、F 分别是AB 、CD 的中点,所以ME=21AC,MF=2 1 BD , ME ∥AC ,MF ∥BD , 又AC =BD ,所以ME =MF , 则∠MEF =∠MFE. 又ME ∥AC ,MF ∥BD ,所以∠1=∠MEF ,∠2=∠MFE , 所以∠1=∠2,OG =OH. 下面两道题留给同学们思考。 (1)已知:四边形ABCD ,点M 、N 分别是AD 、BC 的中点,点P 、Q 分别是AC 、BD 的中点,且AC =BD ,试说明MN ⊥PQ 。 (2)已知:如图,四边形ABCD ,AB =CD ,点E 、F 分别 是AD 、BC 的中点,BA 、CD 的延长线交EF 的延长线于点 G 、H ,试说明∠BGF =∠CHF 。 三角形中位线辅助线的应用 三角形的中位线定理是几何中一个重要定理,它不仅反映了图形间线段的位置关系,而且还揭示了线段间的数量关系,利用三角形中位线定理可以解决许多相关的问题. 一、借助中位线定理选择结论 例1如图1,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是( ). (A )线段EF 的长逐渐增大 (B )线段EF 的长逐渐减小 (C )线段EF 的长不变 (D )线段EF 的长与点P 的位置有关

“三角形的中位线”教学设计案例

“三角形的中位线”教学设计案例 发表时间:2009-10-23T13:24:57.607Z 来源:《中学课程辅导·教学研究》第19期供稿作者:王雪枫[导读] 本文从设计思路、教学过程、板书设计和课后反思四个方面介绍了“三角形的中位线”教学设计案例。 摘要:本文从设计思路、教学过程、板书设计和课后反思四个方面介绍了“三角形的中位线”教学设计案例。关键词:三角形中位线;设计思路;教学过程;板书设计;课后反思 作者简介:王雪枫,任教于甘肃省兰州市第四中学。 授课班级:甘肃省兰州市第四中学九年级(5)班 授课教材:义务教育课程标准实验教科书《数学》(北师大版)九年级上册第三章《证明(三)》第一节平行四边形(第三课时)。 一、设计思路 (一)教材分析 本课时所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历“探索—发现—猜想—证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。(二)学情分析 本班学生基础知识比较扎实,接受新知识的意识较强,对于本章有关平行四边形的性质和判定的内容掌握较好,但知识迁移能力较差,数学思想方法运用不够灵活。因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。 三)教学目标 1.知识目标 1)了解三角形中位线的概念。 2)掌握三角形中位线定理的证明和有关应用。 2.能力目标 1)经历“探索—发现—猜想—证明”的过程,进一步发展推理论证能力。 2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。 3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。 3.情感目标 通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。 (四)教学重点与难点 教学重点:三角形中位线的概念与三角形中位线定理的证明. 教学难点:三角形中位线定理的多种证明。 (五)教学方法与学法指导 对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。(六)教具和学具的准备 教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。 学具:三角形纸片、剪刀、刻度尺、量角器。 二、教学过程 1.一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.如图中,将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。 问题:你有办法验证吗? 2.一种实验——课堂因你而生动 学生的验证方法较多,其中较为典型的方法如下: 生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。 生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。 生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢? 3.一种探索——课堂因你而鲜活 师:把连接三角形两边中点的线段叫做三角形的中位线.(板书) 问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?

三角形中位线的定义及应用

中小学1对1课外辅导专家 三角形中位线的定义及应用 教学目标 三角形中位线的定义及应用。 教学重点和难点 三角形中位线的应用。 参考教材 教学流程及授课详案 例题精讲 例1如图1,D 、E 、F 分别是△ABC 三边的中点.G 是AE 的中点,BE 与DF 、DG 分别交于P 、Q 两点.求PQ:BE 的值.(平行线分线段成比例定理) 例2如图2,在△ABC 中,AC>AB ,M 为BC 的中点.AD 是∠BAC 的平分线,若CF ⊥AD 交AD 的延长线于F .求证:()12 MF AC AB =-. 例3如图3,在△ABC 中,AD 是△BAC 的角平分线,M 是BC 的中点,ME ⊥AD 交AC 的延长线于E .且12 CE CD =.求证:∠ACB =2∠B .

巩固基础练 1. 已知△ABC 周长为16,D 、E 分别是AB 、AC 的中点,则△ADE 的周长等于 ( ) A .1 B. 2 C. 4 D. 8 2. 在△ABC 中,D 、E 分别是AB 、AC 的中点,P 是BC 上任意一点,那么△PDE 面积是△ABC '面积 的 ( ) A .12 B. 13 C. 1 4 D. 18 3. 如图4,在四边形ABCD 中,E 、F 分别为AC 、BD 的中点,则EF 与AB +CD 的关系是 ( ) A .2EF A B CD =+ B. 2EF AB CD >+ C. 2EF AB CD <+ D. 不确定 F E D C B A 4. 如图5,AB ∥CD ,E 、F 分别是BC 、AD 的中点,且AB=a ,CD=b ,则EF 的长为 . 5. 如图6,四边形ABCD 中,AD=BC ,F 、E 、G 分别是AB 、CD 、AC 的中点,若∠DAC=200,∠ACB=600, 则∠FEG= . 6. (呼和浩特市中考题)如图7,△ABC 的周长为1,连接△ABC 三边的中点构成第二个三角,再连接 第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为 .

三角形中位线定理说课稿

三角形中位线定理说课稿 一.教材分析 1.地位和作用: 本节教材是初二几何§三角形、梯形的中位线定理第一课时的内容。三角形中位线是三角形中重要的线段,三角形中位线定理是三角形的一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形、中心对称等知识内容的应用和深化,对进一步学习非常有用,尤其是在判定两直线平行和论证线段倍分关系时常常用到,同时它也是下一节梯形中位线的基础。在三角形中位线定理的证明及应用中,处处渗透了化归思想,它是一种重要的思想方法,无论在今后的学习还是在科学研究中都有着重要的作用。另外,课本在三角形中位线定理的推理过程中应用了同一法思想,这是中学教材第一次出现同一法,要求学生了解这种思想,它对拓展学生的思维有着积极的意义。 2. 教材处理: 课本中三角形中位线定理是单刀直入地以探索式推理这种方法提出的,(所谓探索式推理是根据题设和已有知识,经过推理,得出结论,然后总结成定理)定理以这种方式出现,学生接受起来会感觉突然、生硬。在实际教学中,我采取先让学生经过实验、观察、猜想、归纳、得出结论,然后经推理论证,最后总结形成定理的方式,这样提出的知识具有亲和力,更容易为学生接受和认可,而且从中培养了学生的能力。在定理证明中,讲解了多种证法,除让学生了解应用同一法思想证明之外,还补充介绍了运用化归思想来证明,强化思维过程的教学,培养求异思维,开发学生的智力。在例1的教学中增加了变式训练,以培养学生的发散思维。 3. 教学重点和难点: 三角形中位线定理是解决有关线与线的平行及线段倍分问题的重要理论依据之一,在教材中占有重要地位,依据教学大纲的要求、教材内容以及学生的认知基础,我确定了本节课的重点是:三角形中位线定理及其应用;化归能力的培养。 从学生知识掌握的现状分析来看,如何适当添加辅助线、如何利用化归思想来解决问题,是学生学习的困难所在,因此本节教学中难点是:三角形中位线定理的证明及应用。 二.教学目标的确定 现代数学教学理论认为,数学教学的根本任务在于发展学生的数学思维,教学时,应注意知识的形成、发展过程、解题思路的探索过程、解题方法和规律的概括过程,使学生在这

相关主题