搜档网
当前位置:搜档网 › 基础_巩固练习_空间向量的数量积

基础_巩固练习_空间向量的数量积

基础_巩固练习_空间向量的数量积
基础_巩固练习_空间向量的数量积

【巩固练习】 一、选择题:

1.(2014秋 文登市期末)已知长方体ABCD —A 1B 1C 1D 1,下列向量的数量积一定不为0的是( )

A .11AD

B

C ? B .1B

D BC ? C .1AB AD ? D .1BD AC ?

2.已知向量a 、b 是平面α的两个不相等的非零向量,非零向量c 是直线l 的一个方向向量,则c·a =0且c·b =0是l ⊥α的( )

A .充分不必要条件

B .必要不充分条件 C. 充要条件

D .既不充分也不必要条件

3.(2015年海淀区高三年级第二学期期中练习)已知向量a 与向量b 的夹角为60°,

||=||=1a b ,则||a b - =( )

A .3

B .

C .2

D .1

4.(2014秋 城区校级月考) 若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( )

A.cos ||||n a n a θ?=

B.||

cos ||||n a n a θ?=

C.sin ||||n a n a θ?=

D.||

sin ||||

n a n a θ?=

5.已知空间中非零向量a 、b ,且|a|=2,|b|=3,〈a ,b 〉=60°,则|2a -3b|的值为( ).

A B .97 C D .61

6.已知a 、b 是异面直线,e 1、e 2分别为取自直线a 、b 上的单位向量,且a=2e 1+3e 2,

b=ke 1-4e 2,a ⊥b ,则实数k 的值为( ). A .-6 B .6 C .3 D .-3

7.已知在平行六面体ABCD —A 1B 1C 1D 1中,同一顶点为端点的三条棱长都等于1,且彼此

的夹角都是60°,则此平行六面体的对角线AC 1的长为( ). A .6 B

C .3 D

二、填空题:

8.已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=__________. 9.已知a ,b 是空间两个向量,若|a|=2,|b|=2

,||a b -=

cos 〈a ,b 〉=________.

10.已知线段AB

的长度为,AB 与直线l 的正方向的夹角为120°,则AB 在l 上的射

影的长度为______。

11

.已知||=a ||4=b ,=+m a b ,λ=+n a b ,,135??=?a b ,⊥m n ,则λ=

________。 三、解答题

12.如图,已知空间四边形ABCD 的每条边和对角线长都等于a ,点E 、F ,G 分别是AB 、AD 、DC 的中点。求下列向量的数量积:

(1)AB AC ?;(2)AD BD ?;(3)GF AC ?;(4)EF BC ?。 13.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,求〈a ,b 〉.

14.已知a 、b 是异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b ,且AB=2,CD=1,求a 、b 所成的角.

15.如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===,,.

(1)试用c b a ,,表示出向量BM ; (2)求BM 的长.

【答案与解析】

1.【答案】 B

【解析】对于A ,如果长方体为正方体,则线段AD 1⊥B 1C ,此时11

0AD BC ?=成立; M

P

D

C

B

A

对于D ,如果长方体的底面ABCD 是正方形,则AC ⊥BD ,由三垂线定理可得AC ⊥BD 1,所以此时10BD AC ?=。

2.【答案】 B

【解析】 当a 与b 不共线...时,由c ·a =0,c ·b =0,可推出l ⊥α;当a 与b 为共线向量时,由c·a =0,c·b =0,不能够推出l ⊥α;l ⊥α一定有c ·a =0且c ·b =0,故选B.

3.【答案】 D

【解析】 |a -b |2=(a -b )2=a 2-2a·b +b 2

=|a |2-2|a ||b |cos+|b |2, ∵|a |=|b |=1,〈a ,b 〉=60°, ∴|a -b |2=1, ∴|a -b |=1

4.【答案】D 【解析】

若直线与平面所成的角为θ,直线的方向向量与该平面的法向量所成的角为β,则

90θβ=-或90θβ=-, cos ||||

n a

n a β?=

||

sin |cos |||||

n a n a θβ?∴==

,故选:D 。

5.【答案】C

【解析】 ∵|2a―3b|2=4a 2+9b 2―12a·b=4×4+9×9-12|a|·|b|cos60°=97-12×2×3×

1

2

=61,

∴|2a -,故选C 。

6.【答案】B

【解析】 由a ⊥b ,得a·b=0,∴(2e 1+3e 2)·(ke 1-4e 2)=0,∴2k -12=0,∴k=6。故选B 。 7.【答案】B 【解析】 ∵11AC AB AD AA =++,

∴2

2

2

2

211111()222AC AB AD AA AB AD AA AB AD AB AA AD AA =++=+++?+?+?

1112(cos60cos60cos60)6=+++?+?+?=

∴1||6AC =AC 1

8.

【解析】|2e -e 2|2=421e -4e 1e 2+2

2e =4-4×1×1×cos60°+1=3,

∴|2e 1-e 2|.

9.【答案】

1

8

【解析】 将||a b -=

(a -b)2=7,求得1

2

a b ?=

,再由||||cos ,a b a b a b ?=??求得1

cos ,8

a b ??=

10.【答案】

【解析】AB 在l 上的射影的长度为1

|||cos120|2

AB ?==。 11.【答案】32

-

【解析】由⊥m n 得,()()0λ+?+=a b a b ,2

2

0λλ+?+?+=a a b a b b ,

184cos1354cos135160λλ+???+??+=,

460λ+=,3

2

λ=-。

12. 【解析】

(1)在空间四边形ABCD 中||||AB AC a ==,且,60AB AC ??=?,

∴2

1cos602

AB AC a a a ?=??=

。 (2)||AD a =,||BD a =,,60AD BD ??=?, ∴22

1cos602

AD BD a a ?=?=。 (3)1

||2

GF a =

,||AC a =, 又//GF AC ,,GF AC π??=,

∴2211

cos 22GF AC a a π?=

=-。 (4)∵1

||2

EF a =,||BC a =,//EF BD ,

∴,,60EF BC BC BD ??=??=?。 ∴2211

cos6024

EF BC a a ?=

?=。 13.【解析】 (a +3b )·(7a -5b )

=7|a |2-15|b |2+16a ·b =0,

(a -4b )(7a -2b )

=7|a |2+8|b |2-30a ·b =0, 解之得,|b |2=2a ·b =|a |2, ∴cos 〈a ,b 〉=

a b a b ??=1

2

,∴〈a ,b 〉=60°. 14.【解析】如图所示,在封闭四边形ABDC 中,AC ⊥CD ,BD ⊥CD ,

∵AB AC CD DB =++,

∴()AB CD AC CD DB CD ?=++?

2

21AC CD CD DB CD CD =?++?==。

又||2AB =,||1CD =,

∴1

cos ,2

||||AB CD AB CD AB CD ???=

=。

又,[0,]AB CD π??∈,∴,3

AB CD π

??=。

∴异面直线a 、b 所成的角是

3

π。 15.解:(1)∵M 是PC 的中点,∴)]([2

1

)(21-+=+=

c b a a c b 2

1

2121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于

160cos 12,0,60,00=??=?=?=?∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于

),(2

1

c b a ++-=

由于

2

3)]110(2211[41)](2[41)(412222222=+-+++=?+?-?-+++=++-=

c b c a b a c b a c b a

2

626的长为,BM ∴=

.

向量公式大全

向量公式大全 『ps.加粗字母表示向量』1.向量加法 羈AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 罿AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积

定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

向量公式大全83635

向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b

《空间向量数量积的运算》的教学反思

《空间向量数量积的运算》教学反思 本节课我讲了选修2-1第三章《空间向量的数量积运算》这个节,这是本章第三节的内容,主要学习的是空间向量的数量积的运算及应用。根据大纲,要求学生能熟练应用空间向量的运算解决简单的立体几何问题,这也是本节课的难点。突破难点的方法是让学生会用已知向量表示相关向量,就是利用三角形法则或多边形法则把未知向量表示出来,进而再求两个向量的数量积、夹角、距离等。 三方面实行整体设计,注重与学生已有知识的联系及相关学科知识的联系(物理学:功),因为本节知识是向量由二维向三维的推广,所以预习平面向量的运算起了一定的作用,使学生体会知识的形成过程和数学中的类比学习方法。在整个教学过程中,我还是沿用知识复习、学生探究、教师例题分析、师生合作归纳小结的主线实行教学,符合学生的认知规律,也易于学生对知识的掌握,在教学方法上,我注重多媒体演示和传统板书教学有效结合,较好地辅助了教学。同时,结合新高考的要求,我注重了数学核心素养的培养,在教学中例题分析与归纳时,我注重了数学思想方法的渗透,如本节课我就渗透了数形结合思想、类比思想等,本节课的核心理念是体现学生在学习中的主体性。但我注重调动学生的主观能动性,最大限度的发挥学生的主体作用,在教学过程中,学生的思维活跃,积极讨论问题,自主解决相关例题。精彩处在于学生积极参与互动,学生评判,教师引导,学生积极归纳知识点,整个课堂热烈有序,张而有驰,整体课多次出现教学高潮,博得了学生与听课专家的热烈掌声,从课后反馈来看,本堂课普片反应学懂了,掌握了知识和解决问题的水平,正在学有所用。 不足之处:在创设情境时,我用的是知识性引课,不够引人入胜,要是能想出更好的引课方式或动画设计,在一开始就抓住学生的眼球,调动起学生学习的积极性,应该效果会更好。其次,在课堂中没有充分发挥学生的主体性,老师由引导者又逐步变成了主导者。另外,难点突破应该在两个例题上,不过前边耽误了时间,导致重点地方没有充足的时间解决,没达到最初的意图。对问题的探究需要时间,课上让学生放开去探究,减少了课堂容量,影响到了例题的分析讲解。应

空间向量的数量积(人教A版)(含答案)

空间向量的数量积(人教A版) 一、单选题(共10道,每道10分) 1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),,若向量分别与,垂直,则向量的坐标为( ) A.(1,1,1) B.(-2,-1,1) C.(1,-3,1) D.(1,-1,1) 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 2.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设,则与夹角的余弦值为( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 3.(上接试题2)若向量与互相垂直,则实数k的值为( ) A.或2 B.或2 C.2 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 4.向量,若,且,则的值为( ) A.-2 B.2 C.-1 D.1

答案:C 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 5.已知空间向量,若与垂直,则( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 6.若向量,且与夹角的余弦值为,则λ等于( ) A.4 B.−4 C. D. 答案:C 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 7.如图,在长方体ABCD-A1B1C1D1中,设AD=AA1=1,AB=2,则( ) A.1 B.2 C.3 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的数量积 8.如图,棱长为a的正四面体ABCD中,( )

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

向量公式大全

向量公式 设a= (x, y), b=(x' , y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则 AB+BC=AC a+b=(x+x' ,y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y')则a-b=(x-x',y-y'). 4、数乘向量 实数入和向量a的乘积是一个向量,记作入a,且I入a l =1X1 ? I a l。 当入〉0时,入a与a同方向; 当XV 0时,入a与a反方向; 当入=0时,X a=0,方向任意。 当a=0时,对于任意实数X,都有X a=0。 注:按定义知,如果X a=0,那么X =0或a=0。 实数X叫做向量a的系数,乘数向量X a的几何意义就是将表示向量a的有向线段伸长或压缩。 当IXI> 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上伸长为原来的IXI倍; 当IXI V 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上缩 短为原来的IXI倍。 数与向量的乘法满足下面的运算律 结合律:(X a)?b= X (a ?b)=(a ?X b)。 向量对于数的分配律(第一分配律):(X +卩)a= X a+卩a. 数对于向量的分配律(第二分配律):X (a+b)= X a+X b. 数乘向量的消去律:① 如果实数入工0且X a=X b,那么a=b。②如果a^0 .且X a=(1 a,那么X =卩。 3、向量的的数量积

平面向量数量积运算的解题方法与策略

平面向量数量积运算的解题方法与策略 平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。 1.利用数量积运算公式求解 在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛,即(a +b ) 2 =a 2+2a 2b +b 2,(a -b )2=a 2-2a 2b +b 2 上述两公式以及(a +b )(a -b )=a 2 -b 2 这一类似于实数平方差的公式在解题过程中 可以直接应用. 例1 已知|a |=2,|b |=5,a 2b =-3,求|a +b |,|a -b |. 解析:∵|a +b |2=(a +b )2=a 2+2a 2b +b 2=22+23(-3)+52 =23 ∴|a +b |=23,∵(|a -b |)2 =(a -b )2 =a 2 -2a 2b +b 2 =22 -23(-3) 352 =35, ∴|a -b |=35. 例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°). 解析:∵(|a +b |)2=(a +b )2=a 2+2a 2b +b 2=|a |2 +2|a |2|b |co sθ+|b | 2 ∴162=82+238310cosθ+102 , ∴cosθ= 40 23 ,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1. 分析:这里两个条件互相制约,注意体现方程组思想. 解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y ) 又(xa +yb )⊥a ?(xa +yb )2a =0?3(3x +4y )+4(4x +3y )=0 即25x +24y =0 ① 又|xa +yb |=1?|xa +yb |2=1?(3x +4y )2+(4x +3y )2 =1 整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2 =1 ② 由①②有24xy +25y 2 =1 ③ 将①变形代入③可得:y =± 7 5 再代回①得:??? ????=-=???????-==7535 24753524y x y x 和

空间向量的数量积运算练习题

课时作业(十五) [学业水平层次] 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14. 【答案】 D 3.已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连结AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) A.PC →与BD → B.DA →与PB → C.PD →与AB → D.P A →与CD →

【解析】 用排除法,因为P A ⊥平面ABCD ,所以P A ⊥CD ,故P A →·CD → =0,排除D ;因为AD ⊥AB ,P A ⊥AD ,又P A ∩AB =A ,所以AD ⊥平面P AB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C. 【答案】 A 4. 如图3-1-21,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( ) 图3-1-21 A .2BA →·AC → B .2AD →·DB → C .2FG →·AC → D .2EF →·CB → 【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2 ,故D 错;2FG →·AC →=AC →2=a 2,故只有C 正确.

平面向量的所有公式

平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。

两个向量的数量积(教案)

高二数学教学案 一、预习提纲: 1.空间向量的夹角及其表示、异面直线 2.向量的数量积 3.空间向量数量积的性质 4.空间向量数量积运算律 二、预习达标: 1、=++ ,2 =3,4=,则,a b <>r r =______ A 、3π B 、 4π C 、2π D 、32π 2、空间向量a 、b =8,,a b <>r r =3 2π,求 (1)(+2)?=_____________, (2)(+2)?(2?)=__________________ 三、学案导学: 1.空间向量的夹角及其表示: 已知两非零向量,a b r r ,在空间任取一点O ,作,OA a OB b ==u u u r u u u r r r ,则AOB ∠叫做向量a r 与b r 的夹角,记作,a b <>r r ;且规定0,a b π≤<>≤r r ,显然有,,a b b a <>=<>r r r r ; 若,2 a b π<>=r r ,则称a r 与b r 互相垂直,记作:a b ⊥r r ; ﹡ 异面直线:_______________________________

2.向量的模: 设OA a =u u u r r ,则有向线段OA u u u r 的长度叫做向量a r 的长度或模,记作:||a r ; 3.向量的数量积: 已知向量,a b r r ,则||||cos ,a b a b ??<>r r r r 叫做,a b r r 的数量积,记作a b ?r r ,即a b ?=r r ||||cos ,a b a b ??<>r r r r . 已知向量AB a =u u u r r 和轴l ,e r 是l 上与l 同方向的单位向 量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''u u u u r 叫做向量AB u u u r 在轴l 上或在e r 上的正射影;可以证明A B ''u u u u r 的长度||||cos ,||A B AB a e a e ''=<>=?u u u u r u u u r r r r r . 4.空间向量数量积的性质: (1)||cos ,a e a a e ?=<>r r r r r . (2)0a b a b ⊥??=r r r r . (3)2||a a a =?r r r . 5.空间向量数量积运算律: (1)()()()a b a b a b λλλ?=?=?r r r r r r . (2)a b b a ?=?r r r r (交换律). (3)()a b c a b a c ?+=?+?r r r r r r r (分配律). 四、典例剖析: 例1.用向量方法证明:直线和平面垂直的判定定理。 已知:,m n 是平面α内的两条相交直线,直线l 与平面α的交点为B ,且,l m l n ⊥⊥ 求证:l α⊥. 证明:在α内作不与,m n 重合的任一直线g , 在,,,l m n g 上取非零向量,,,l m n g r r r r ,∵,m n 相交, ∴向量,m n r r 不平行,由共面定理可知,存在 唯一有序实数对(,)x y ,使g xm yn =+r r r , ∴l g xl m yl n ?=?+?r r r r r r ,又∵0,0l m l n ?=?=r r r r , ∴0l g ?=r r ,∴l g ⊥r r ,∴l g ⊥, 所以,直线l 垂直于平面内的任意一条直线,即得l α⊥. 例2.已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥. 证明:(法一)()()AD BC AB BD AC AB ?=+?-u u u r u u u r u u u r u u u r u u u r u u u r 2AB AC BD AC AB AB BD =?+?--?u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()0AB AC AB BD AB DC =?--=?=u u u r u u u r u u u r u u u r u u u r u u u r . l m n m n g g l

空间向量的数量积运算练习题

空间向量的数量积运算 练习题 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

课时作业(十五) 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2 +2a ·b =|c |2 ,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=1 4 . 【答案】 D 3.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连结AC ,BD , PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) A.PC →与BD → B.DA →与PB → C.PD →与AB → D.PA →与CD → 【解析】 用排除法,因为PA ⊥平面ABCD ,所以PA ⊥CD ,故PA →·CD → =0,排除D ;因为AD ⊥AB ,PA ⊥AD ,又PA ∩AB =A ,所以AD

向量公式汇总

向量公式汇总 平面向量 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 5、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

向量公式大全

向量公式大全 向量公式大全 1.向量加法 AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 AB-AC=CB 即“共同起点,指向被减” 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0

『ps.按定义知,如果λa=0,那么λ=0或a=0』 实数λ 向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b ②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积 定义:已知两个非零向量a,b 作OA=a,OB=b,则∠AOB称作a和b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b 若a、b 不共线,则a?b=|a|?|b|?cos〈a,b〉若a、b共线,则a?b=+-∣a ∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律

高二数学空间向量教案(一_两个向量的数量积)

空间向量教案 一:两个向量的数量积(关键要设基底,把要求的量用基底表示) 考点一:空间向量数量积的定义、运算律及性质 例1:已知向量,,,,,3 6 a b a c b c π π ⊥<>= <>= 且||1,||2,||3a b c ===,求向量a b c ++的模 解:依题意22||()17a b c a b c ++=++=+,所以||176a b c ++=+。 考点二:垂直问题 例1:已知空间四边形OABC 中,M 、N 、P 、Q 分别为BC 、AC 、OA 、OB 的中点,若AB=OC,求证: .PM QN ⊥ 证明:如图,设,,,OA a OB b OC c ===又P 、M 分别为OA 、BC 的中点, 221 [()]. 21 [()].21 [||||] 4 PM OM OP b a c QN b a c PM QN b a c ∴=-=-+=---∴?=---同理, 又AB=OC ,即||||,b a c -= 0,,.PM QN PM QN PM QN ∴?=∴⊥⊥即 考点三:夹角问题 例1:如图,已知E 是正方体111111ABCD A B C D C D -的棱的中点,试求向量11AC 与DE 所成的角。 解:设正方体的棱长为m, 1,,,AB a AD b AA c === ||||||,0a b c m a b b c a c ===?=?=?=则 又111111111 ,2AC A B B C a b DE DD D E C a =+=+=+=+ 221111 115 ,||2,||22AC DE a m AC m DE m ∴?====又 1111111110cos ,10|||| cos 10 AC DE AC DE AC DE AC DE arc ?∴<>= = ?∴与所成的角为 考点四:长度问题 例1:如图(1),在60ABC C CD C ? ?∠∠中,=,为的平分线,AC=4,BC =2.过B 点作,BN CD ⊥ 垂足为N ,BN 的延长线交CA 于点E,将图形沿CD 折起,使120,BNE ? ∠=求折后所得线段AB 的长度。 解:如图(2),s i n 302A A M C D M A M A C ? ⊥= ?=过点作,垂足为,则 4cos302cos302sin301MN MC CN NB ???=-=-=== O P A M B N Q C A B D C A 1 E C 1 B 1 D 1

平面向量数量积的坐标表示

§5.7平面向量数量积的坐标表示 教学目的:要求学生掌握平面向量数量积的坐标表示,掌握向量垂直的坐标表示的充要条件。 教学重点:平面向量数量积的坐标表示及由其推出的重要公式 教学难点:向量数量积坐标表示在处理有关长度、角度、垂直问题中的应用 教学方法; 启发式 教学过程: 一、复习引入 1.两平面向量垂直的充要条件。2.两向量共线的坐标表示: 二、新课讲解: 1.x 轴上单位向量i ,y 轴上单位向量j ,则:i ?i = 1,j ?j = 1,i ?j = j ?i = 0 2.设a = (x 1, y 1),b = (x 2, y 2) 则 ∵a = x 1i + y 1j , b = x 2i + y 2j ∴a ?b = (x 1i + y 1j )(x 2i + y 2j ) = x 1x 2i 2 + x 1y 1i ?j + x 2y 1i ?j + y 1y 2j 2 = x 1x 2 + y 1y 2.从而获得公式:a ?b = x 1x 2 + y 1y 2 3.长度、夹角、垂直的坐标表示 1?长度:a = (x , y ) ? |a|2 = x 2 + y 2 ? |a | =22y x + 2?两点间的距离公式:若A = (x 1, y 1),B = (x 2, y 2),则=221221)()(y y x x -+- 3? 夹角:co s θ =||||b a b a ??222221212 121y x y x y y x x +++= 4?垂直的充要条件:∵a ⊥b ? a ?b =0即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示的区别) 4、阅读课本120页例1与例2.完成课本121页练习。 三、例与练习 例1、如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90?, 求点B 和向量的坐标。

向量地内积-向量地内积公式

【课题】7.3 平面向量的积 【教学目标】 知识目标: (1)了解平面向量积的概念及其几何意义. (2)了解平面向量积的计算公式.为利用向量的积研究有关问题奠定基础. 能力目标: 通过实例引出向量积的定义,培养学生观察和归纳的能力. 【教学重点】 平面向量数量积的概念及计算公式. 【教学难点】 数量积的概念及利用数量积来计算两个非零向量的夹角. 【教学设计】 教材从某人拉小车做功出发,引入两个向量积的概念.需要强调力与位移都是向量,而功是数量.因此,向量的积又叫做数量积. 在讲述向量积时要注意: (1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定; (2)向量数量积的正确书写方法是用实心圆点连接两个向量. 教材中利用定义得到积的性质后面的学习中会经常遇到,其中: (1)当=0时,a ·b =|a ||b |;当=180时,a ·b =-|a ||b |.可以记忆为:两个共线向量,方向相同时积为这两个向量模的积;方向相反时积为这两个向量模的积的相反数. (2)|a |显示出向量与向量的模的关系,是得到利用向量的坐标计算向量模的 公式的基础; (3)cos=|||| ?a b a b ,是得到利用两个向量的坐标计算两个向量所成角的公式的基础; (4)“a ·b =0?a ⊥b ”经常用来研究向量垂直问题,是推出两个向量积坐标表示的

重要基础. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟) 【教学过程】

+ F cos30 是水平方向的力与垂直方向的力的和,垂直方向上没有

(重点)平面向量数量积公式的应用

平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1.长度问题 例1:设AC 是平行四边形ABCD 的长对角线,从C 引AB 、AD 的垂线CE 、CF ,垂足分别为E 、F ,如图所示,求证:2 AC AF AD AE AB =?+?。 2.垂直问题 例2:如图所示,四边形ADCB 是正方形,P 是对角线DB 上一点,PFCE 是矩形,证明: ⊥。 3.夹角问题 例3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1.证明一些公式: 例 4:对于任意实数α ,β ,求证: βαβαβαsin sin cos cos )cos(-=+。 F E D C B A P F y x E D C B A O y x E D C B A O α β -a b A B X O Y 1 A 1 B

2.证明三角恒等式: 例5:已知α、β为锐角,且1sin 2sin 32 2 =+βα, 02sin 22sin 3=-βα,求证:2 2π βα= +。 3.求三角函数值: 例6:求值:7 6cos 74cos 72cos πππ++。 4.解与三角形有关的问题: 例7:在锐角△ABC 中,已知2 3 )cos(cos cos =+-+B A B A ,求角C 的值。 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例8:设2 2 2 2 2 )())((by ax b a y x +=++(0≠ab ),求证:b y a x = A A A A A A A e 1 2 3 4 5 6 7

相关主题