搜档网
当前位置:搜档网 › 等差等比数列知识点总结和练习题(含答案)

等差等比数列知识点总结和练习题(含答案)

等差等比数列知识点总结和练习题(含答案)
等差等比数列知识点总结和练习题(含答案)

(一)知识归纳: 1.概念与公式:

①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;

2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2

)

1(2)(11d n n na a a n S n n -+=+=

②等比数列:1°.定义若数列q a a a n

n n =+1

}{满足

(常数)

,则}{n a 称等比数列;2°.通项公式:;1

1k

n k n n q

a q

a a --==3°.前n 项和公式:),1(1)

1(111≠--=--=

q q

q a q q a a S n n n 当q=1时.1na S n = 2.简单性质:

①首尾项性质:设数列,,,,,:}{321n n a a a a a

1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质:

1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2

b

a A +=

2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质:

1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n

n k k

k

k

a

a a 1

2131

2,,则

组成公差为n 2d 的等差数列;

2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=n

k n

n k n

n k k

k

k

a

a a 1

21

31

2,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为

偶数时这个结论不成立)

⑤若}{n a 是等比数列,

则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2

n q 的等比数列. ⑥若}{n a 是公差为d 的等差数列,

1°.若n 为奇数,则,,:(2

1+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶

数项的和);

2°.若n 为偶数,则.2

nd

S S =

-奇偶 (二)学习要点:

1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.

2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.

3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或

q

a

,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3

3

3

2

aq aq q a q

a aq aq aq a ±±或

”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:

(Ⅰ)已知

c

b a 1

,1,1成等差数列,求证: (1)c b

a b a c a c b +++,,成等差数列; (2)2

,2,2b

c b b a ---成等比数列.

[解析]该问题应该选择“中项”的知识解决,

.

2,2,2,

)2(4)(2)2)(2)(2(;

,,.)(2)()(2)()1(),(222112222

22

2成等比数列成等差数列b

c b b a b

b c a b ac b c b a c b a b a c a c b b

c a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac b ac c a b c a ---∴-=++-=--+++∴+=++=+++=

+++=++++=?=+?=+

[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,.

(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为 2128,求项数n. ① ②

[解析]设公比为242

1281024

,142531==-n n a a a a a a a q

)1(242

11=??-n q

a

.7,2

35

25,2)2()1(,2)(2

)1(2212810242

352

52

35

2

1

12

353

211235321==∴

==??=-+??=?=-++n n q a n q

a a a a a n

n n n 得代入得将而

(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:

,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列

求数列.}{项和的前n k n

[解析],,,,1712

51751a a a a a a ?=∴成等比数列

.

131

31

32}{,

132)1(2)1(323,34}{,2,00)2()16()4(111

111

115111121--=---?=-?=-+=-+=?=?=∴=+==

∴=∴≠=-?+?=+?---n n S n k k d k d d k a a d a a a d

a a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列

[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:

(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.

[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有

.

9

338

,926,9250,10,2,9

26

10,388,0643231680

3232))(()4()32)((22

2

22或原三数为或得或∴===∴=+-??????+==-+??????+-=-=++-a d d d d d

a a d d d a d a a a d a d a

(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,

①②

①,②

??

?=+=-????=+=-∴+<-+-?=?==+-?=+?∈=++++-+-∴*25

21251,,,

2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与

解得∴==),(1262不合或a a 所求四数为47,57,67,77

[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.

二、等差等比数列练习题

一、 选择题

1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )

(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列

{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )

(A )13+=n a n

(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a

3、已知c b a ,,成等比数列,且y x ,

分别为a 与b 、b 与c 的等差中项,则

y

c

x a +的值为 ( ) (A )

2

1 (B )2- (C )

2 (D ) 不确定

4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,

y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )

(A )成等差数列不成等比数列 (B )成等比数列不成等差数列

(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列

5、已知数列

{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )

(A )22-=n a n

(B )28-=n a n (C )12-=n n a (D )n n a n -=2

6、已知))((4)

(2

z y y x x z --=-,则 ( )

(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )

z y x 1,1,1成等差数列 (D )z

y x 1

,1,1成等比数列 7、数列

{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )

①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列

(A )4 (B )3 (C )2 (D )1

8、数列1

?,16

1

7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212

112

+--+n n n

9、若两个等差数列

{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足

5

524-+=

n n B A n n ,则

13

5135b b a a ++的值为 ( )

(A )

9

7 (B )

7

8

(C )

20

19 (D )

8

7

10、已知数列

{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )

(A )56 (B )58 (C )62 (D )60

11、已知数列

{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n

, …项,按原来的顺序排成一个新的数列,则此数列

的前n 项和为 ( )

(A )2)133(+n n (B )53+n

(C )23103-+n n (D )2

31031-++n n

12、下列命题中是真命题的是 ( )

A .数列

{}n a 是等差数列的充要条件是q pn a n +=(0≠p )

B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列

C .数列

{}n a 是等比数列的充要条件1

-=n n ab a

D .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a

二、填空题

13、各项都是正数的等比数列

{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =

14、已知等差数列

{}n a ,公差0≠d ,1751,,a a a 成等比数列,则

18

6217

51a a a a a a ++++=

15、已知数列

{}n a 满足n n a S 4

11+=,则n a =

16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n

b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。

18、已知等差数列{}n a 的公差与等比数列{}n b 的公比相等,且都等于d

)1,0(≠>d d ,11b a = ,333b a =,555b a =,求n n b a ,。

19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。

20、已知{}n a 为等比数列,324202,3

a a a =+=,求{}n a 的通项式。

21、数列

{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥ (Ⅰ)求

{}n a 的通项公式;

(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T

22、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列

{}n a 的通项公式;

(II )若数列

{}n b 满足1

2

1114.4...4(1)()n

n

b b b b n a n N ---*=+∈,证明:{}n b 是等差数列;

数列综合题

二、 填空题 13.

2

5

1+ 14. 2926 15. n )31(34- 16. ±63

三、解答题

17.a 1b =a 1,a 2b =a 10=a 1+9d ,a 3b =a 46=a 1+45d

由{a bn }为等比数例,得(a 1+9d )2=a 1(a 1+45d )得a 1=3d ,即a b 1=3d ,a b 2=12d ,a b 3=48d . ∴q =4 又由{a bn }是{a n }中的第b n a 项,及a bn =a b 1·4n -1=3d ·4n -1,a 1+(b n -1)d =3d ·4n -1 ∴b n =3·4n -1-2

18.∴ a 3=3b 3 , ∴a 1+2d =3a 1d 2 , ∴a 1(1-3d 2)=-2d ① a 5=5b 5, ∴a 1+4d =5a 1d 4 , ∴a 1(1-5d 4)=-4d ②

②① ,得24

3151d d --=2,∴ d 2=1或d 2=51,由题意,d =55,a 1=-5。∴a n =a 1+(n -1)d =55(n -6) b n =a 1d n -1=-5·(55)n -1 19.设这四个数为

a aq aq a q

a

-2,,, 则??

???=-++=?36)3(216·a aq aq a aq a q a

②① 由①,得a 3=216,a =6 ③ ③代入②,得3aq =36,q =2 ∴这四个数为3,6,12,18

20.解: 设等比数列{a n }的公比为q , 则q ≠0, a 2=a 3q = 2

q , a 4=a 3q =2q

所以 2q + 2q =203 , 解得q 1=1

3

, q 2= 3,

当q 1=13, a 1=18.所以 a n =18×(13)n -1=183n -1 = 2×33-

n .

当q =3时, a 1= 29 , 所以a n =29

×3n -1=2×3n -

3.

21.解:(I)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得

()112,32n n n n n a a a a a n ++-==≥

又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=

(Ⅱ)设{}n b 的公差为d

由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+ 又1231,3,9a a a ===

由题意可得()()()2

515953d d -+++=+ 解得122,10d d ==

∵等差数列{}n b 的各项为正,∴0d > ∴2d =

∴()

213222

n n n T n n n -=+

?=+ 22(I ):*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+

{}1n a ∴+是以112a +=为首项,2为公比的等比数列。

12.n n a ∴+=

即 2*21().n a n N =-∈

(II )证法一:1211144...4(1).n n b b b b n a ---=+

12(...)42.n n b b b n nb +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+= ③

21(1)20.n n nb n b ++-++= ④

④-③,得 2120,n n n nb nb nb ++-+= 即 2120,n n n b b b ++-+=

*211(),n n n n b b b b n N +++∴-=-∈

{}n b ∴是等差数列。

2.2等差数列练习题

一、选择题:

1.2005是数列7,13,19,25,31,, 中的第( C )项. A. 332 B. 333 C. 334 D. 335

()D a a a n 项为,则数列的第,中,、已知等差数列1082}{252==

A .12

B .14

C .16

D .18

3.已知等差数列首项为2,末项为62,公差为4,则这个数列共有 ( D ) A .13项 B .14项 C .15项 D .16项

4.已知等差数列的通项公式为为常数,a a n a n ,3+-=则公差d=( A )

()

B a a a a a n 是这个数列

,则,中,、已知等差数列30218}{56521-=+-=+

A .第22项

B .第21项

C .第20项

D .第19项

6. 已知数列a ,-15,b ,c ,45是等差数列,则a+b+c 的值是( A )

A .-5

B .0

C .5

D .10

()A a a a a a n n n 等于,则,中,、已知等差数列5111)12(2

1

20}{7+=

=+ A .45 B .48 C .52 D .55

8. 已知等差数列的首项1a 和公差d 是方程x 2-2x-3=0的两根,且知d >1a ,则这个数列的第30项是( A ) A .86 B .85 C .84 D .83

()B a a a a a a n =+=++425313}{9,中,、已知等差数列

A .3

B .2

C .1

D .-1

10、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--3

1b y x

a ( B ) (A)

43 (B)34 (C)3

2

(D)值不确定 11.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第七项等于( D ) A .22 B .21 C .19 D .18 12.首项为24-的等差数列从第10项起开始为正数,则公差d 的取值范围是( D )

A. 8

3

d > B. 3d < C. 833d ≤< D. 833d <≤

13.已知等差数列的首项为31,若此数列从第16项开始小于1,则此数列的公差d 的取值范围是 ( B )

A .(-∞,-2)

B .[-715, -2]

C .(-2, +∞)

D .(—715

,-2)

14.设函数f (x )满足f (n +1)=2 f (n )+n 2

(n ∈N *

)且f (1)=2,则f (20)为( B )

A.95

B.97

C.105

D.192 二、填空题:

1.等差数列{}n a 中,3524a a +=,23a =,则6a = 21 .

2.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -= 24 . 3.在首项为31,公差为-4的等差数列中,与零最接近的项是 -1

4.如果等差数列{}n a 的第5项为5,第10项为5-,则此数列的第1个负数项是第 8 项.

5.已知}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k = 8 .

6.在△ABC 中,A ,B ,C 成等差数列,则=++2tan 2tan 32tan 2tan C

A C A 3.

7.已知f (n +1)=f (n )-14 (n ∈N *)且f (2)=2,则f (101)= 4

91

-

8.已知关于x 的方程x 2-3x +a =0和x 2-3x +b =0(a ≠b )的四个根组成首项为4

3

的等差数列,求a +b 的值. a +b =8

31=

三、解答题:

1.判断数52,27()k k N ++∈是否是等差数列{}n a :5,3,1,1,,--- 中的项,若是,是第几项? 解:由题意知2)5(3,51=---=-=d a ,即27n a n =-,由27

52n -=,得29.5n N *=?,∴52不是

该数列中的项.又由2727n k -=+解得7n k N *

=+∈,∴27k +是数列{}n a 中的第7k +项.

2.己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:

(1)原数列的第12项是新数列的第几项? (2)新数列的第29项是原数列的第几项? 分析:应找到原数列的第n 项是新数列的第几项,即找出新、旧数列的对应关系。 解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则

即3=2+4d ,∴14

d =,∴17

2(1)44n n b n +=+-?=

1(43)7(1)114

n n a a n n -+=+-?=+= 又,∴43n n a b -=

即原数列的第n 项为新数列的第4n -3项.

(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项; (2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。

说明:一般地,在公差为d 的等差数列每相邻两项之间插入m 个数,构成一个新的等差数列,则新数列的公差为.1

+m d

原数列的第n 项是新数列的第n+(n -1)m=(m+1)n -m 项.

3.已知(1)2f =,2()1

(1)()2f n f n n N +++=

∈,求(101)f . 解:∵(1)2f =,2()1(1)2f n f n ++=,∴1(1)()2f n f n +-=,∴{}()f n 是以2为首项,1

2

为公差的等差

数列,∴13

()22

f n n =+,∴(101)52f =.

4.数列通项公式为a n =n 2-5n +4,问

(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. 考查数列通项及二次函数性质.

【解】 (1)由a n 为负数,得n 2-5n +4<0,解得1

∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项.

(2)∵a n =n 2-5n +4=(n -52 )2-94 ,∴对称轴为n =5

2 =2.5

又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2.

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

等差等比数列基础练习题

针对练习A1:等差数列 一、填空题 1. 等差数列8,5,2,…的第20项为___________. 2. 在等差数列中已知a 1=12, a 6=27,则d=___________ 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________ 8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。 二、选择题 1. 一架飞机起飞时,第一秒滑跑 2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米, 则滑跑的时间一共是( ) A. 15秒 B.16秒 C.17秒 D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( c ) A.84 B.72 C.60 D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为(A ) A.6 B.3 C.12 D.4 4. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于( ) A.160 B.180 C.200 D.220 5. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.300 6. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32 7. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,且是等比数列 D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( ) A. 41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在

高二等差等比数列练习题及答案

等差 、 等比数列练习 一、选择题 1、等差数列{}n a 中,10120S =,那么110a a +=( ) A. 12 B. 24 C. 36 D. 48 2、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 3、已知等差数列{}n a 的公差1 2 d =,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )

A. 130 B. 170 C. 210 D. 260 7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S = 8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( ) A .)1(32+-n n B .)34(2-n n C .23n - D .32 1n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( ) A .6 B .8 C .10 D .12 二.填空题 1、等差数列{}n a 中,若638a a a =+,则9s = . 2、等差数列{}n a 中,若232n S n n =+,则公差d = .

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

二-等差等比数列性质练习题(含答案)以及基础知识点

一、等差等比数列基础知识点 (一)知识归纳: 1.概念与公式: ①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列; 2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a n n n =+1 }{满足 (常数),则}{n a 称等比数列;2°.通项公式:;11k n k n n q a q a a --==3°.前n 项和公式:),1(1) 1(111≠--=--= q q q a q q a a S n n n 当q=1时.1na S n = 2.简单性质: ①首尾项性质:设数列,,,,,:}{321n n a a a a a 1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质: 1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2 b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质: 1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n n k k k k a a a 1 21 31 2,,则 组成公差为n 2d 的等差数列;

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

(完整版)高二等差、等比数列基础练习题及答案

等差、等比数列基础练习题及答案 一、选择题 1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为() A. 2013 B. 671 C. -671 D. 2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=() A. B. C. D. 3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为() A. 2 B. 3 C. 2017 D. 3033 4.已知正项数列{a n}满足,若a1=1,则a10=() A. 27 B. 28 C. 26 D. 29 5.若数列{a n}满足:a1=2,a n+1=,则a7等于() A. 2 B. C. -1 D. 2018 6.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=() A. 49 B. 42 C. 35 D. 28 7.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则 a2+a1007+a2012=() A. 10 B. 15 C. 20 D. 40 8.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=() A. 2 B. 3 C. 4 D. 5

9.在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a10,则k=() A. 45 B. 46 C. 47 D. 48 10.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=() A. 66 B. 55 C. 44 D. 33 二、填空题 1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式 a n=______. 2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么 a n=______. 3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______. 4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______. 5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ . 6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ . 7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.

等差等比数列专项练习题精较版

等差数列、等比数列同步练习题 等差数列 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、-101 C、101 D、-89 2、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n 为 A、4 B、5 C、6 D、不存在 4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于() A、720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么a:b等于() A、1 4 B、 1 3 C、 1 3 或1 D、 1 2 6、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新 数列{ C n },其通项公式为()

A、C n= 4n - 3 B、C n= 8n - 1 C、C n= 4n - 5 D、C n= 8n - 9 7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有() A、6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100, 则数列{a n + b n}的前100项和为() A、0 B、100 C、10000 D、505000 二、填空题 9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。 10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。 11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30, 则从a15到a30的和是______ 。 12、已知等差数列110,116,122,……,则大于450而不大于602的各项 之和为______ 。 13、在等差数列{a n}中,已知a1=2,a2 + a3 = 13,则a4 + a5 +a6 = 14、如果等差数列{a n}中,a3 +a4 + a5 = 12,那么a1 + a2 +…+ a7 = 15、设S n是等差数列{a n}的前n项和,已知a1 = 3,a5 = 11,S7 =

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:

等差等比数列基础练习题一

等差数列练习题 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、 -101 C、101 D、-89 2.等差数列{a n}中,a15=33, a45=153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为() A、4 B、5 C、 6 D、不存在 4、等差数列{a n}中,a1+a7=42, a10-a3=21,则前10项的S10等于() A、 720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于() A、 B、 C、或 1 D、 6、已知数列{a n}的前n项和S n=2n2-3n,而a1,a3,a5,a7,……组成一新数 列{C n},其通项公式为() A、 C n=4n-3 B、 C n=8n-1 C、C n=4n-5 D、C n=8n-9 7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30 若此数列的最后一项比第-10项为10,则这个数列共有() A、 6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1=25, b1=75,且a100+b100=100,则数列{a n+b n}的前100项和为() A、 0 B、 100 C、10000 D、505000

二、填空题 9、在等差数列{a n}中,a n=m,a n+m=0,则a m= ______。 10、在等差数列{a n}中,a4+a7+a10+a13=20,则S16= ______ 。 11.在等差数列{a n}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到 a30的和是 ______ 。 12.已知等差数列 110, 116, 122,……,则大于450而不大于602的各 项之和为 ______ 。 三、解答题 13.已知等差数列{a n}的公差d=,前100项的和S100=145 求: a1+a3+a5+……+a99的值。 14.已知等差数列{a n}的首项为a,记 (1)求证:{b n}是等差数列 (2)已知{a n}的前13项的和与{b n}的前13的和之比为 3 :2,求{b n}的公差。

等差数列题型总结、知识点

等差数列题型总结、知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列 一.等差数列知识点: 1等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 3等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或 b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是: =+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S , k k S S -2,k k S S 23-成等差数列如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 二、题型选析: 考试对等差数列的考察,侧重在求值、等差数列性质和前n 项和,求值的过程中,对首项和公差的把握是重中之重,其实很多的试题都是在围绕对首项和公差的应用在考察。性质的题要求学生对性质的熟练应用,题目一般在简单难度。 题型一、计算求值(等差数列基本概念的应用)

等差数列、等比数列基础题

等差、等比数列 一、选择题: 1.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d = A.-2 B.-12 C.12 D.2 2、在等比数列{n a }中,44a =,则26a a ?等于( ) A. 4 B. 8 C. 16 D. 32 3、在等比数列{n a }中,333S a =,则其公比q 的值为( ) A. 12- B. 12 C. 1或12- D.1-或12 4.已知为等差数列,,则等于 A. -1 B. 1 C. 3 D.7 5、如果-1,a,b,c,-9成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9 6、设{}n a 是公比为正数的等比数列,若a 1=1,a 5=16,则数列{}n a 的前7项的和为( ) A.63 B.64 C.127 D.128 7.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B 53 C.- 2 D 3 8、设等比数列{}n a 的公比q=2,前n 项和为n S ,则24a S 等于( ) A.2 B.4 C.215 D.2 17 9、设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( ) A.3 B.4 C.5 D.6 10、已知各项均为正数的等比数列{}n a ,123a a a =5,789a a a =10,则456a a a =( ) A. 52 B. 7 C. 6 D. 42 二、填空题: 11、已知{}n a 是等比数列,22=a ,434=-a a ,则此数列的公比=q _________; 12、设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则=k _________; 13、若数列{}n a 的前n 项和n S a n -=3,数列{}n a 为等比数列,则实数a 的值是_________;

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

(完整版)高二等差、等比数列基础练习题及答案.doc

等差、等比数列基础练习题及答案 一、选择题 1. 数列 { a n } 满足 a 1=a 2=1, ,若数列 { a n } 的前 n 项和为 S n 2013 ) ,则 S 的值为( A. 2013 B. 671 C. -671 D. 2.已知数列 { a n } 满足递推关系: a n+1= , a 1= ,则 a 2017=( ) A. B. C. D. 3.数列 { a n } 的前 n 项和为 S n ,若 S n =2n-1(n ∈N +),则 a 2017 的值为 ( ) A. 2 B. 3 C. 2017 D. 3033 4. 已知正项数列 { a n } 满足 ,若 a 1=1,则 a 10= ( ) A. 27 B. 28 C. 26 D. 29 5. 若数列 {a n } 满足: a 1=2 ,a n+1= ,则 a 7 等于( ) A. 2 B. C. -1 D. 2018 6. 已知等差数列 { a n n 6 3 7 ) } 的前 n 项和为 S ,若 2a =a +6,则 S =( A. 49 B. 42 C. 35 D. 28 7. 等差数列 { a n } 中,若 a 1,a 2013 为方程 x 2 -10x+16=0 两根,则 a 2+a 1007+a 2012=( ) A. 10 B. 15 C. 20 D. 40 8. 已知数列 { a n } 的前 n 项和 ,若它的第 k 项满足 2<a k <5, 则 k=() A.2 B.3 C.4 D.5

9.在等差数列 { a n} 中,首项 a1=0,公差 d≠0,若 a k=a1+a2+a3+ +a10,则 k=() A. 45 B. 46 C. 47 D. 48 10.已知 S n是等差数列 { a n} 的前 n 项和,则 2(a1+a3+a5)+3(a8+a10)=36,则 S11=() A. 66 B. 55 C. 44 D. 33 二、填空题 1.已知数列 { a n} 的前 n 项和 S n=n2+n,则该数列的通项公式 a n=______. 2.正项数列 { a n} 中,满足 a1=1,a2= , = (n∈N*),那么 a n=______. 3.若数列 {a n} 满足 a1=-2,且对于任意的 m,n∈N*,都有 a m+n=a m+a n,则 a3=______;数列 { a n} 前 10 项的和 S10=______. 4. 数列 { a n} 中,已知 a1=1,若,则 a n=______,若,则 a n =______. 5.已知数列{ a n 1 n+1 n *,则通项公式a n = } 满足 a =-1 ,a =a + ,n∈N ______ . 6. 数列 { a n} 满足 a1=5,- =5(n∈N+),则 a n= ______ . 7. 等差数列 { a n} 中, a1+a4+a7=33,a3+a6+a9=21,则数列 { a n} 前 9 项的和 S9等于 ______.

相关主题