搜档网
当前位置:搜档网 › 二项式定理

二项式定理

二项式定理
二项式定理

二项式定理

主讲教师:刘杨

【知识概述】

1.二项式定理

二项式定理:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -

k b k +…+C n n b n (n ∈N *). 这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其

中的系数C k n (k =0,1,2,

…n )叫做二项式系数.式中的k k n k n b a C -叫做二项展开式的通项,用T k+1表示,即展开式的第 k+1项;T k+1=k k n k n b a C -.

2.二项式的项数与项

(1)二项式的展开式共有n +1项,C k n a n-k b k 是第k +1项.即k +1是项数,C k n a n -

k b k 是项. (2)通项是T k +1=C k n a n-k b k (k =0,1,2,……,n).其中含有T k +1,a ,b ,n ,k 五个元素,

只要知道其中四个即可求第五个元素.

3.二项式系数与展开式项的系数的异同

在T k +1=C k n a n -k b k 中,C k n 就是该项的二项式系数,它与a ,b 的值无关;T k+1项的系数指

化简后除字母以外的数,如a =2x ,b =3y ,T k+1=C k n 2n-k ·3k x n-k y k ,其中C k n 2n-k 3k 就是T k +1项

的系数.

4.赋值法:普遍适用于恒等式,是一种重要的方法,根据题目中所给的特点,对题目中的某一个值或者某两个值进行赋值,使题目得到简化,随之将题目的答案能够计算出来.对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R)的式子求其展开式各项系数之和,只需令x =y =1即可.

【学前诊断】

1. [难度]易 在1041??? ?

?+x x 的展开式中常数项是__45____(用数字作答).

2. [难度]易

若(x -1)4=a 0+a 1 x +a 2 x 2+a 3 x 3+a 4 x 4,则a 0+a 2+a 4的值为____8____.

3. [难度]中

(2-x )8展开式中不含x 4项的系数的和为( B )

A .-1

B .0

C .1

D .2

【经典例题】

例1.

在二项式n

的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.

例2. 已知n 为正偶数,且212n

x x ??+ ??

?的展开式中第4项的二项式系数最大,则第4项的系数是___________.(用数字作答)

例3. 在(2x -3y )10的展开式中,求:

(1)二项式系数的和;

(2)各项系数的和;

(3)奇数项的二项式系数和与偶数项的二项式系数和;

(4)奇数项系数和与偶数项系数和;

(5)x 的奇次项系数和与x 的偶次项系数和.

例4. 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.

求:(1)a 1+a 2+…+a 7;

(2)a 1+a 3+a 5+a 7;

(3)a 0+a 2+a 4+a 6;

(4)|a 0|+|a 1|+|a 2|+…+|a 7|.

例5. (1)已知n∈N*,求1+2+22+23+…+24n-1除以17的余数;

(2)求(1.999)5精确到0.001的近似值.

例6. (x y-y x)4的展开式中x3y3的系数是___6___,此项为第__3__项.

【本课总结】

1.通过本课的学习我们要掌握两个公式一个方法:

(1)二项展开式:(a+b)n=C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n n b n(n∈N*).

(2)二项式定理的通项公式是T k+1=C k n a n-k b k (k=0,1,2,……,n).

(3)赋值法.

2.本课中需要掌握的解题方法与技巧

(1)通项公式最常用,是解题的基础.

(2)对三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性.

(3)求常数项、有理项和系数最大的项时,要根据通项公式讨论对k的限制;求有理项时要注意到指数及项数的整数性.

(4)性质1是组合数公式C k n=C n-k

的再现,性质2是从函数的角度研究二项式系数的单调

n

性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和.

(5)因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.

(6)二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个分析,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用.

3. 本课中需要防范的失误

(1)要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来.

(2)根据通项公式时常用到根式与幂指数的互化,学生易出错.

(3)通项公式是第k+1项而不是第k项.

【活学活用】

1. [难度]易

若二项式(x -2x

)n 的展开式中第5项是常数项,则自然数n 的值可能为 ( ) A .6 B .10 C .12 D .15

2. [难度]中

在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )

A .74

B .121

C .-74

D .-121

3. [难度]难

已知???

?x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )

A .28

B .38

C .1或38

D .1或28

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

高中数学专题讲义-二项式定理的应用 证明整除或求余数

1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数 ()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示, 即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式 定理时,其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负. 知识内容 证明整除或求余数

④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这 里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念. ⑤设1,a b x ==,则得公式:()12211......n r r n n n n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r r n C a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素. ⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值. 2.二项式系数的性质 ⑴杨辉三角形: 对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算. 杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质: () n a b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自 变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图: 这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.

二项式定理练习题

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

高中数学2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2,,).r n r r r n T C a b r n -+==L 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C +++=L (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02213211 2.r r n n n n n n n C C C C C C +-++++=++++=L L L L (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

二项式定理习题精选精讲

例说二项式定理的常见题型及解法 二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式; 解:原式=4 )1 3( x x += 24)13(x x + = ])3()3()3()3([144342 243144042C C C C C x x x x x ++++ =)112548481(12 342++++x x x x x =54112848122 ++++x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 ) 2. “n b a )(-”型的展开式 例2.求4)13 (x x - 的展开式; 分析:解决此题,只需要把4)13 (x x - 改写成4)]1(3[x x - +的形式然后按照二项展开式的格式展开即可。本 题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 解:原式= n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 33 22 11 -=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2( x x a -的展开式中3x 的系数为4 9,常数a 的值为 】 解:923 92999 12)1()2 ()(----+???-=-=r r r r r r r r r x a C x x a C T 令 392 3 =-r ,即8=r 依题意,得 4 9 2)1(894889= ??---a C ,解得1-=a 2.确定二项展开式的常数项 例5.103 )1( x x -展开式中的常数项是 解:r r r r r r r x C x x C T 6 5510 3 1010 1 )1()1() (--+?-=-= 令06 5 5=- r ,即6=r 。 所以常数项是210 )1(6 106=-C

二项式定理

二项式定理 编写人:王超 审核人:高三数学组 时间:2019.3.14 典例1 的展开式中, 的系数为 A .60 B .-60 C .240 D .-240 典例2 若a =d x (e 为自然对数的底数),则二项式(x-)6的展开式中的常数项为 A .-160 B .160 C .20 D .-20 典例3 已知关于x 的二项式(ax- )n 展开式的二项式系数之和为256,常数项为112,则a 的值为 A .1 B .±1 C .2 D .±2 1.( -2x )6 的展开式中x 2 项的系数为 A .240 B .-240 C .160 D .-160 2.已知二项式 (n (a >0)的展开式的第五、六项的二项式系数相等且最大,展开式中x 2 项的系数为84,则a 的值为 A .1 B . C .2 D . 3 .在二项式n 的展开式中,前三项系数的绝对值成等差数列. (1)求展开式的第四项; (2)求展开式的常数项. 典例4 若(x 2+1)(x-3)9=a 0+a 1(x-2)+a 2(x-2)2+a 3(x-2)3+…+a 11(x-2)11,则a 1+a 2+…+a 11的值为 A .0 B .-5 C .5 D .255 典例5 已知(1-2x )n 的展开式中的二项式系数的和是64,则n = ;若(1-2x )n =a 0+a 1x+a 2x 2+a 3x 3+…+a n x n ,则|a 0|+|a 1|+|a 2|+|a 3|+…+|a n |= .

典例6 在二项式 n 的展开式中, (1)若所有二项式系数之和为,求展开式中二项式系数最大的项. (2)若前三项系数的绝对值成等差数列,求展开式中各项的系数和. 4.在的展开式中,各项系数和与二项式系数和之比为32,则的系数为A.50 B.70 C.90 D.120 5.已知(1-x)4+4(1-x)3+6(1-x)2-4x+5=a0+a1x+a2x2+a3x3+a4x4,那么a2+a4的值为A.9 B.18 C.25 D.41 6.已知二项式且. (1)若,展开式中含项的系数为960,求的值; (2)若展开式中各项系数和为,且,求展开式的所有二项式系数之和. 典例7 利用二项式定理证明2n+2·3n+5n-4(n* ∈N)能被25整除. 7.被49除所得的余数是 A.-14 B.0 C.14 D.35 1.(1+x)7的展开式中x2的系数是 A.42 B.35 C.28 D.21 2.二项式 6 2 x x ?? - ? ?? 的展开式的第二项是 A.6x4B.﹣6x4 C.12x4D.﹣12x4 3.若实数a=2-,则a10-2a9+22a8- (210) A.32 B.-32 C.1024 D.512 4.已知x (x-)5的展开式中含x4项的系数为30,则a= A.B.-C.-6 D.6

人教版高中数学二项式定理教学设计全国一等奖

二项式定理(第1课时) 一、容和容解析 容:二项式定理的发现与证明. 容解析:本节是高中数学人教A版选修2-3第一章第3节的容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此容安排在组合数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.另外,由于二项式系数是一些特殊的组合数,由二项式定理可以导出一些组合数的恒等式,这对深化组合数的认识有好处。 由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、学情分析 这一堂课是面对高二学生。学生已经初步具备了多项式乘法,同类项合并,排列计数原理,组合数计数原理以及归纳推理等知识储备。能够在教师的引导下理解并掌握本节课中的推理演绎过程。但是,学生的自我探究,归纳,分析的能力还有待提高。 三、课程学习目标 (1)知识目标:使学生掌握二项式定理及推导方法,二项式展开式、通项公式的特点,并能利用二项式定理计算或证明一些简单问题。 (2)能力目标:在学生对二项式定理形成的参与讨论过程中,培养学生观察、猜想、归纳的能力,以及学生的化归意识及知识迁移能力。 (3)情感目标:通过二项式定理的学习,培养学生解决数学问题的兴趣和信心,让学生感受数学在的和谐、对称美及数学符号应用的简洁美。 四、设计思想: 本课采用合作探究、自主学习、合作交流的研究性学习方式,重点放在定理的形成、证明的探究及定理基本应用上,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

二项式定理及数学归纳法

二项式定理及数学归纳法 【真题体验】 1.(2012·苏北四市调研)已知a n =(1+2)n (n ∈N *) (1)若a n =a +b 2(a ,b ∈Z ),求证:a 是奇数; (2)求证:对于任意n ∈N *都存在正整数k ,使得a n =k -1+k . 证明 (1)由二项式定理,得a n =C 0n +C 1n 2+C 2n (2)2+C 3n (2)3+…+C n n (2)n , 所以a =C 0n +C 2n (2)2+C 4n (2)4+…=1+2C 2n +22C 4n +…, 因为2C 2n +22C 4n +…为偶数,所以a 是奇数. (2)由(1)设a n =(1+2)n =a +b 2(a ,b ∈Z ),则(1-2)n =a -b 2, 所以a 2-2b 2=(a +b 2)(a -b 2)=(1+2)n (1-2)n =(1-2)n , 当n 为偶数时,a 2=2b 2+1,存在k =a 2,使得a n =a +b 2=a 2+2b 2=k +k -1, 当n 为奇数时,a 2=2b 2-1,存在k =2b 2,使得a n =a +b 2=a 2+2b 2=k -1+k , 综上,对于任意n ∈N *,都存在正整数k ,使得a n =k -1+k . 2.(2010·江苏,23)已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数. (1)证明 设三边长分别为a ,b ,c ,cos A =b 2+c 2-a 2 2bc , ∵a ,b ,c 是有理数, b 2+ c 2-a 2是有理数,分母2bc 为正有理数,又有理数集对于除法具有封闭性, ∴b 2+c 2-a 2 2bc 必为有理数,∴cos A 是有理数. (2)证明 ①当n =1时,显然cos A 是有理数; 当n =2时,∵cos 2A =2cos 2A -1,因为cos A 是有理数, ∴cos 2A 也是有理数; ②假设当n ≤k (k ≥2)时,结论成立,即cos k A 、cos(k -1)A 均是有理数. 当n =k +1时,cos(k +1)A =cos k A cos A -sin k Asin A =cos k A cos A -12 [cos(k A -A )-cos(k A +A )] =cos k A cos A -12cos(k -1)A +12 cos(k +1)A 解得:cos(k +1)A =2cos k A cos A -cos(k -1)A ∵cos A ,cos k A ,cos(k -1)A 均是有理数,

二项式定理2

1.3.1 二项式定理(第一课时) 教学设计 一、教学内容解析 “二项式定理”是人教A版《普通高中课程标准试验教科书数学(选修2-3)》第一章第三节知识内容,它是初中多项式乘法的继续和高中计数原理的应用,同时也是高中学习数学期望等内容的基础,因此二项式定理起着承上启下的作用。另外,二项式系数是一些特殊的组合数,利用二项式定理又可以进一步加深对组合数的认识。总之,二项式定理是综合性比较强的,具有联系不同知识内容的作用。 教学重点:利用计数原理分析二项展开式,归纳得到二项式定理。 本节课为概念教学课,可以使学生探究问题的过程中体验从特殊到一般、类比归纳、化归与转化等数学思想方法,也自然关注了学生数学抽象、逻辑推理等数学核心素养。 二、教学目标设置 1,学生在情境问题的解决过程中和情境问题下的一系列思考问题和追问问题的探究中体会到学习二项式定理的必要性和合理性。 2,学生经历了二项式定理的观察、分析、归纳、类比、猜想及证明的全部探究过程,提升了数学抽象、逻辑推理和数学建模等数学核心素养,并且学生在二项式定理的发现、推导过程中,掌握了二项式定理及其推导方法。 三、学情分析 学生初中学习过多项式乘法法则,并且刚刚学习了计数原理和排列组合知识,对本节课分析n ( 展开式结构以及利用计数原理分析项的系数提供了帮助,同时授课学生为高二学生,有着a) b 一定的归纳推理能力,分析转化问题的能力。 但是,本节课思维含量比较大,对思维的严谨性和逻辑推导能力以及分类讨论,归纳推理能力等有着很高的要求,需要学生利用多项式乘法法则归纳乘积项的结构,并能利用计数原理分析项的系数,学生学习起来有一定难度。而且学生在学数学过程中,往往只习惯于重视定理、公式的结论,而不重视推导过程,这都为本节课的教学带来了难度。 根据以上学情,制定如下教学难点: 教学难点:如何让学生想到利用计数原理去分析二项展开过程;如何发现二项式展开成单项式之和时各项系数的规律。 四、数学情境与学习问题的设置 根据本节课内容特征及学生特点,设计中强调创设出不仅能紧扣教学目标,又能靠近学生的最近发展区,同时又具有较丰富的数学信息的数学情境,以便于在此情境中提出数学问题和解决数学问题,使学生在获取数学知识的同时体验数学知识的形成过程。这样才能更有利于解决本节课数学

二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中, 前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4 324 121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1 C +-+==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)103)1()1(x x +-展开式中的5 x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5 x 项,可以得到5 510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

牛顿二项式定理的证明

编号0005、 设a [n]=a(a-h)……[a-(n-1)h]及a [0]=1,求证: (a +b)[n]=∑C n m a [n?m]b [m]n m=0 其中C n m 是由n 个元素中选取m 个元素的组合数, 由此推出牛顿二项式公式。 提示: 1、可以用数学归纳法; 2、h 为排列数的步长。 证:当n=1时,由于[a+b][1]=a+b 及∑C 1m a [1?m]b [m]1m=0=a+b,所以等式成立 设n=k 时,等式成立,即(a +b)[k]=∑C k m a [k?m]b [m]k m=0 (1) 则对于n=k+1时,有[a+b] [k+1]= [a+b][a+b-h][a+b-2h]……{a+b-[(k+1)-1]h}整理即, [a+b] [k+1]= [a+b] [k][a+b-kh] (2) 将式(1)代入式(2)得 (a +b)[k+1]=(a +b ?k?)∑C k m a [k?m]b [m]k m=0 展开得: =(a +b ?k?){C k 0a [k ]b [0]+C k 1a [k?1]b [1]+?+C k k a [0]b [k]} 凑式子: ={(a ?k?)+b}C k 0a [k ]b [0]+{[a ?(k ?1)?]+(b ??)}C k 1a [k?1]b [1]+?+{a +(b ?k?)}C k k a [0]b [k] 分开各自相乘,裂为两项: =C k 0a [k+1]b [0]+C k 0a [k ]b [1]+C k 1a [k ]b [1]+C k 1a [k+1]b [2]+?+C k k a [1]b [k ]+C k k a [0]b [k+1] 提取公因式: =C k+10a [k+1]b [0]+(C k 0+C k 1)a [k ]b [1]+?+(C k k?1+C k k )a [1]b [k ]+C k+1k+1a [0]b [k+1] 利用组合数的性质: =C k+10a [k+1]b [0]+C k+11a [k ]b [1]+?+C k+1k a [1]b [k ]+C k+1k+1a [0]b [k+1] 得出式子: =∑C k+1m a [k+1?m]b [m]k+1m=0 故由(a +b)[k]=∑C k m a [k?m]b [m]k m=0可推得下式成立: (a +b)[k+1]=∑C k+1m a [k+1?m]b [m]k+1 m=0 即对于n=k+1时,等式也成立。 于是,对于任何正整数n ,有(a +b)[n]=∑C n m a [n?m]b [m]n m=0 (3) 在式子a [n]=a(a-h)……[a-(n-1)h]中,令h=0,即得a [n]=a n (4) 将式(4)代入式(3),得牛顿二项式公式(a +b)n =∑C n m a n?m b m n m=0

二项式定理教案(绝对经典)

第3讲二项式定理 基础梳理 1.二项式定理 (a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式. 其中的C r n(r=0,1,…,n)叫二项式系数.数) (注意区别于该项的系 式中的C r n a n-r b r叫二项展开式的通项,用T r+1表示,即通项T r+1=C r n a n-r b r. 2.二项展开式形式上的特点 (1)项数为n+1. (2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n. (3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n. (4)二项式的系数从C0n,C1n,一直到C n-1 n ,C n n. 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n=C n-r n . (2)增减性与最大值: 二项式系数C k n,当k<n+1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的; 当n是偶数时,中间一项C n 2n取得最大值; 当n是奇数时,中间两项C n-1 2n,C n+1 2n取得最大值. (3)各二项式系数和:C0n+C1n+C2n+…+C r n+…+C n n=2n; C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1. 双基自测 1.(1+2x)5的展开式中,x2的系数等于(). A.80 B.40 C.20 D.10 2.若(1+2)5=a+b2(a,b为有理数),则a+b=().A.45 B.55 C.70 D.80 3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a2+a4的值为().

二项式定理

二项式定理 学习目标:能利用计数原理证明二项式定理;理解并掌握二项式定理,并能简单应用. 学习重点:探究并归纳用计数原理分析3)(b a +的展开式的形成过程,并依此方法得到二项式定 理. 二项式定理研究的是n b a )(+的展开式,如何利用两个计数原理得到2)(b a +, 3)(b a +,4)(b a +的展开式?你能由此猜想一下n b a )(+的展开式是什么? 学习任务:阅读课本P 29~P 35. 问题1. 用乘法法则展开3)(b a +,合并同类项之前展开式有多少项?合并同类项后会有几项?其 中b a 2的系数是多少?用两个计数原理分析。 问题2. 回答P 30探究。 问题3. n b a )(+的展开式按照a 的降幂排列,共有多少项?其中,含有k k n b a -的项是第几项?这 一项的项数是多少?利用计数原理分析。 问题4. 通过教材例1和例2学习,熟悉二项式定理二项式系数,二项展开式的通项中a ,b ,n , k 的具体含义。 问题5. 回答P 32探究。 问题6. 如果把n b a )(+的展开式的二项式系数看成函数的话,它是一个定义域在自然数内的离散 函数),2,1,0()(n n C r f r n ???==,请通过“杨辉三角”计算n = 6时的二项式系数,并画出 )6,2,1,0()(6???==r C r f r 的图象,由图象得出函数值怎样的分布特点?试着由此总结二项式 系数的性质。 问题7. 仔细阅读例3,体会“赋值法”的应用。 必做题 A 级 P 31 1~4 P 35 1~3 B 级 习题1.3 A 组 B 组. 选做题 1. 7 3 )2(x x +的展开式的第4项是 ;第4项的二项式系数是 ;第4项的系数 是 . 2. 求10 3 )1()1(x x +-的展开式中5 x 的系数. 3. 对于二项展开式1 2) (+-n b a ,下列结论中成立的是( ) A.中间一项的二项式系数最大 B.中间两项的二项式系数相等且最大 C.中间两项的二项式系数相等且最小 D.中间两项的二项式系数互为相反数 4.(1)4)(x y y x -的展开式中33y x 的系数是 . (2)6 )212(x x - 的展开式的常数项是 . 5. 533)1()21(x x -+的展开式中x 的系数是( ) A. -4 B. -2 C. 2 D. 4 6. 在1003)52(+的展开式中,有理项的个数是多少? 7. 求10 2)11(x x + +的展开式中的常数项. 8.(1)6364364164C C C +???++ = . (2)612512C C += . 9. 求n x x x )1()1()1(43++???++++的展开式中2x 的系数. 10. 已知2010201021020102)21(x a x a x a a x +???+++=-. (1)求2010210a a a a +???+++的值. (2)求20102008420a a a a a ++???+++的值. 11.(1)n n n n n n C C C C 1321242-+???++等于( ) A. n 3 B. 13-n C. 2 1 3-n D. 12 3-n (2)已知7292222332210=+???+++n n n n n n n C C C C C ,则n n n n n C C C C +???+++321等于( ) A.63 B.64 C.31 D.32 12. 若n x x )1(23+ 的展开式中第6项系数最大,则其中的常数项为( ) A.210 B.10 C.462 D.252 13. 若443322104)32(x a x a x a x a a x ++++=+,则 (1)43210a a a a a ++++ = . (2)4321a a a a +++ = . (3)2312420)()(a a a a a +-++ = .

二项式定理

-..二项式定理()

————————————————————————————————作者:————————————————————————————————日期:

1.3 二项式定理(1) 教材分析 本节内容是数学选修2-3 第一章 第三节,是在学习了计数原理的基础上展开的。一方面是因为它的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也为学习随机变量及其分步做准备。另外,由于二项式系数是一些特殊的组合数,由二项式定理可导出一些组合数的恒等式,这对深化组合数的认识有好处。总之,二项式定理是综合性的、具有联系不同内容作用的知识. 课时分配 本节内容用2课时的时间完成,第一节主要用两个计数原理分析()n a b +的展开式,归纳的 得出二项式定理,并能用计数原理和数学归纳法证明。掌握二项展开式的通项公式,并会简单应用。第二课时主要是运用二项式定理解决整除问题、求特殊项等问题。 教学目标 重点: 用两个计数原理分析()n a b +的展开式,归纳的得出二项式定理,并能用计数原理证明。掌握 二项展开式的通项公式。 难点:用两个原理分析()n a b +的展开式;用两个原理证明二项式定理. 知识点:理解二项展开式的推导过程;掌握公式的运用。 能力点:如何探寻二项展开式证明思路,归纳思想的运用. 教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:运用数学归纳法证明二项式定理. 考试点:用通项公式求特殊项. 拓展点:用数学归纳法证明二项式定理. 教具准备 多媒体课件 课堂模式 学案导学 一、引入新课 ⑴22202122 222()2a b a ab b C a C ab C b +=++=++; ⑵3322303122233 3333()33a b a a b ab b C a C a b C ab C b +=+++=+++ ⑶4 ()()()()()a b a b a b a b a b +=++++的各项都是4次式, 即展开式应有下面形式的各项:4a ,3a b ,22a b ,3ab ,4 b , 展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即0 4C 种,4a 的系数是0 4C ;恰有1个

第十一章 第二节 二项式定理

突破点一二项式的通项公式及应用 [基本知识] 1.二项式定理 2.二项式系数与项的系数

[基本能力] 一、判断题(对的打“√”,错的打“×”) (1)C r n a n - r b r 是(a +b )n 的展开式中的第r 项.( ) (2)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( ) (3)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)√ (3)√ 二、填空题 1.????1x -x 10的展开式中x 2的系数等于________. 答案:45 2.在????x 2-2 x 6的展开式中,常数项为________. 答案:240 3.? ???? x -124x 8 的展开式中的有理项共有________项. 答案:3 [全析考法]

考法一 形如(a +b )n 的展开式问题 [例1] (1)(2018·全国卷Ⅲ)????x 2+2 x 5的展开式中x 4的系数为( ) A .10 B .20 C .40 D .80 (2)(2019·陕西黄陵中学月考)????x +1 2x 6的展开式中常数项为( ) A.5 2 B .160 C .-52 D .-160 [解析] (1)????x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·????2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25· 22=40. (2)????x +12x 6的展开式的通项T r +1=C r 6x 6-r ????12x r =????12r C r 6x 6-2r ,令6-2r =0,得r =3,所以展开式中的常数项是T 4=????123C 36=5 2,选A. [答案] (1)C (2)A [方法技巧] 二项展开式问题的常见类型及解法 (1)求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可. (2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.

二项式定理3

课题:二项式定理性质与应用1 教学任务 教学流程说明 教学过程设计

1.已知2(1)n a +展开式中的各项系数的和等于216 5x ? ? 的展开式的常数项,而 2(1)n a + 展开式的系数的最大的项等于54,求a 的值()a R ∈。 答案:a =2.设()()()()()5 9 14 13 011314132111x x a x a x a x a -+=+++++++ 求:① 0114a a a ++ + ②1313a a a ++ +. 答案:①9 3 19683=; ② () 9 53 399632 +=。 3.求值:0123456789 999999999922222C C C C C C C C C C -+-+-+-+-. 答案:82256=。 4.设296 ()(1)(21)f x x x x =+-+,试求()f x 的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和。 答案:(1)6 3729=; (2)所有偶次项的系数和为6313642-=;所有奇次项的系数和为631 3652 +=。 二项式定理(课外小练习) 1. )()4 5 1 1x -展开式中4 x 的系数为 45 ,各项系数之和为 0 . 2.多项式12233 ()(1)(1)(1)(1)n n n n n n f x C x C x C x C x =-+-+-++-(6n >)的展开式 中,6 x 的系数为 0 . 提示:()()16n f x x n =->。 3.若二项式2 31(3)2n x x - (n N *∈)的展开式中含有常数项,则n 的最小值为( B ) ()A 4 ()B 5 ()C 6 ()D 8 4.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 (C ) ()A 低于5% ()B 在5%~6%之间 ()C 在6%~8%之间 ()D 在8%以上

二项式定理

第四节二项式定理 考纲解读 1. 能用计数原理证明二项式定理? 2. 会用二项式定理解决与二项式展开式有关的简单问题 命题趋势探究 1. 高考对本节内容的考查常以选择题或填空题的形式出现,并且高于中等偏易试题 2. 主要考查内容是:①利用通项求解展开式中的某指定项;②利用二项式特别是 1 x n的 展开式求解系数或求某些类似于二项展开式的式子的值;③二项式系数的有关问题 知识点精讲 一、二项式定理 (a +b n=C0a n b°+c n a nJL b +…+c n a n_r b r+…+C n n a°b n(n乏N*). 展开式具有以下特点: (1 )项数:共n ? 1项? (2)二项式系数:依次为组合数c0,c n,c:,…,C:. (3)每一项的次数是一样的,都为n次,展开式依a的降幕、b的升幕排列展开.特别地, (1+xf =1+弘+弘2 + …+C:x n. 二、二项式展开式的通项(第r 1项) 二项式展开的通项为「1 =c n a n」b r r = 0,1,2,3,…,n..其中U的二项式系数.令变量 (常用x )取1,可得T r 1的系数. 注通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或 系数.在应用通项公式时要注意以下几点: ①分清C;a n_r b r是第r 1项,而不是第r项; ②在通项公式T r = C n r a n_r b r中,含T r gC:, a, b, r, n这6个参数,只有a, b, r, n是独立的, 在未知r,n的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n和r .三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指c0,c n,C:,…,Cn而言,不包括字母a,b所表示的式子中的系数.例如:2 x n的展开式中,含有x r的项应该是「1 =c n2n」x n,其中c n叫做该项的二项 式系数,而x r的系数应该是C;2nJ(即含x r项的系数)

相关主题