搜档网
当前位置:搜档网 › 氢溢流现象及其在氢气净化中的应用

氢溢流现象及其在氢气净化中的应用

氢溢流现象及其在氢气净化中的应用
氢溢流现象及其在氢气净化中的应用

维普资讯 https://www.sodocs.net/doc/118165462.html,

工业催化试卷

工业催化参考试卷――1 一、填空 1. 催化剂只能改变化学反应到达平衡的速率_____________而不改变反应的_ _反应的平衡位置 __________。 2. 多相催化剂通常由_______、_______、_______三部分组成。 3. 评价工业催化剂性能好坏的指标有_______、_______、_______、_______、_______等。 4. 在多相催化反应中有_______、_______、_______三类控制步骤。在连串反应中,控制步骤_______总过程速度。当过程处于_______时,催化剂内表面利用率最高。 5. 固体酸表面存在_______和______两类酸性中心;两者的转化条件是_________________。 6. 催化剂表面能量分布的类型有_______、_______、_______三种形式。 7. Langmuir 吸附等温式用于_______,吸附量与压力的关系是_______。 8. 吸附热表征_______。催化活性与吸附热之间的关系_______。 9. 半导体的附加能级有_______和_______两种,N 型半导体的附加能级是_______能级,它使半导体的E f _______,电导率_______。 10. 络合物催化剂由_______和_______两部分组成。 11. 常用的工业催化剂制备方法有_______、_______、_______等。 12. 造成催化剂失活的原因有_______、_______、_______等。 13. 催化剂上的吸附有_______ 和____________两种类型; H2 的吸附常采用_______ ,烯烃的吸附常采用_________。反应物在催化剂上的吸附态决定了催化反应的 _______。 14. 按照助剂的功能,它可以分为_______、_______两类。 15. d 轨道在四面体配位场中能级分裂为_______、_______两组;当电子成对能P<分裂能Δ 时,电子采取_______排布。 16. 影响过渡金属的催化剂活性的因素有_______、______两方面,组成合金可以调节过渡金属催化剂的_______因素。 17. 分子筛催化剂的特点是_______。常用的分子筛催化剂有_______、_______等。 18. 均相催化的优点是_______、_______;但其缺点是_______、_______等。 19. 选择性的定义是________________________,其计算公式是_______________________。 二、画出[PtCl3(CH2=CH2)]―的空间构型及电子结构图,并指出CH2=CH2 活化的原因。 三、(二选一)1.写出CO+O2→CO2 在P 型半导体催化剂上的反应机理。2.试解释N 型半导体催化剂利于 加氢反应。 n—型半导体: 阳离子过剩,阴离子缺位。 例,ZnO中Zn2+ 离子过剩。 为保持电中性,过剩的离子,拉住一个电子形成eZn2+,在靠近导带附近形成一附加能级。温度升高时,此电子释放出来,成为自由电子,这是ZnO导电的来源。

氢溢流

所谓溢流(Spillover)现象,是指固体催化剂表面的活性中心(原有的活性中心)经吸附产生出一种离子的或者自由基的活性物种,它们迁移到别的活性中心处(次级活性中心)的现象。它们可以化学吸附诱导出新的活性或进行某种化学反应。如果没有原有活性中心,这种次级活性中心不可能产生出有意义的活性物种,这就是溢流现象。它的发生至少两个必要的条件: (A)溢流物种发生的主源; (B)接受新物种的受体,它是次级活性中心。 前者是Pt、Pd、Ru、Rh和Cu等金属原子。催化剂在使用中是处于连续变化状态,这种状态是温度、催化剂组成,吸附物种和催化环境的综合函数。据此可以认为,传统的Langmuir- Hinshelwood动力学模型,应基于溢流现象重新加以审定。因为从溢流现象中知道,催化加氢的活性物种不只是H,而应该是H0、H+、H2、H-等的平衡组成;催化氧化的活性物种不只是O,而应该是O0、O-、O=和O2等的平衡组成。 溢流现象是50年代初研究H2在Pt/Al2O3上的解离吸附时发现的,现在发现O2、CO、NO和某些烃分子吸附时都可能发生这种溢流现象。溢流现象的研究是近二十多年来催化领域中最有意义的进展之一。 氢溢流可以看作是吸附物种在表面(甚至浅体相中)的迁移或运动的形式之一,或者可以看作质子传递的一种特殊形式。其大小通过H2吸附量来衡量。 氢溢流现象是Khoobier在1964年首次观察到的,后被Sierfelt和Teicher 试验验证——检测气体中氢气组分的一个传统方法是将该气体通673K以上的WO3粉末(黄色),如果该粉末变成蓝色,则说明有氢气组分存在,这时反应形成了氢与WO3的非化学计量配合物,HxWO3(x=0.35)。他们发现,在室温下,用H2和纯WO3或WO3/Al2O3时,没有反应发生,但若用H2+WO3/Pt-Al2O3则反应迅速发生,黄色的粉末变成蓝色。他认为:H2在Pt上被解离化学吸附成活性的原子态氢,而后通过表面迁移与WO3反应。 氢溢流发生的条件: (1)能够产生原子态氢(如要求催化剂能够解离吸附氢)

溢流堰施工专项方案二

Ⅰ#溢流堰施工专项方案 一、编制说明 1.1 编制原则 1、安全第一的原则施工组织设计的编制始终按照技术可靠、措施得力、确保安全的原则确定施工方案。在安全措施落实到位,确保万无一失的前提下组织施工。 2、以优质、高效、经济、合理的原则,以业主提供的招标文件和设计图纸为依据,严格执行有关规范。 3、以确保工期为原则,安排施工进度计划。 4、以确保质量目标为原则,安排专业化施工队伍,配备先进的机械设备,采用先进的施工方法。 5、以确保安全生产为原则,制定各项安全措施,严格执行安全操作规程。 6、以节约土地、保护生态环境为目标布置施工总平面。 7、以加强管理,优化工艺,提高效率为原则,降低施工成本。 8、严格遵守国家、行业及当地在施工安全、工地工人健康、保护环境方面的要求及规定标准。 1.2 编制依据 1、《水工混凝土施工规范》SL677-2014; 2、《水工混凝土外加剂技术规程》DL/T5100-2014; 3、《水工混凝土试验规程》SL352-2006; 4、《水工混凝土钢筋施工规范》DL/T 5169-2013; 5、《混凝土强度检验评定标准》GB50107-2010;

6、有关法律、法规、规章和技术标准。 7、青铜峡市黄河金岸旅游带项目东部水系连通工程(罗家河整治工程)施工招标文件、有关协议、纪要、公文及补充文件; 8、工程所在地区和河流的自然条件、施工电源、水源及水质、 9、工程所在地区有关基本建设的法规或条例,地方政府、业主对本工程建设的要求。 10、本公司的施工设备、管理水平和技术特点。 11、工程所在地区和河流的自然条件、施工电源、水源及水质、交通、环保、防洪、灌溉等现状和近期发展规划。 12、当地城镇现有修配、加工能力,生活、生产物资和劳动力供应条件。 13、工程有关工艺试验或生产性试验结果。 14、设计、施工合同中与施工组织设计编制有关的条款。 1.3 编制内容 青铜峡市黄河金岸旅游带项目东部水系连通工程(罗家河整治工程)施工组织设计包括下列主要内容: 1、工程任务情况及施工条件分析; 2、施工方案、主要施工方法、工程施工进度计划和施工力量、机具及部署; 3、施工组织技术措施,包括工程质量、施工进度、安全防护、文明施工以及环境污染防治等措施; 4、施工平面布置图等。 二、工程概况 2.1工程地质条件

初中常用元素化合价表

钾 K +1 氯 Cl -1,+1,+5,+7 钠 Na +1 氧 O -2,-1 银 Ag +1 硫 S -2,+4,+6 钙 Ca +2 碳 C +2,+4 镁 Mg +2 硅 Si +4 钡 Ba +2 氮 N -3,+2,+3,+4,+5 锌 Zn +2 磷 P -3,+3,+5 铜 Cu +1,+2 硫酸根 SO4 -2 铁 Fe +2,+3,碳酸根 CO3 -2 铝 Al +3 硝酸根 NO3 -1 锰 Mn +2,+4,+6,+7 氢氧根 OH -1 氢 H +1 铵根 NH4 +1 氟 F -1 磷酸根 PO4 -3 氯酸根 ClO3 -1(Cl +5价) 关于化合价的口诀,方便大家记忆: 氢+1,氧-2, 银锂钠钾+l价, 锌镁钙钡+2价, 铝+3,硅+4. 只遇金属或是氢, 氮磷-3硫-2, 氟氯溴碘总-1. 可变价,不可怕, 具体判断"和为零". 单质为零要记清. "亚铜" +1"铜" +2, "亚铁" +2"铁" +3, 置换反应铁+2, 复分解时价不变. 关于化合价要准确记着金属元素化合价和原子团的化合价。一般非金属元素化合价是让你求的,所以只需要你了解非金属元素一般显负价,当含氧时显正价就可以了。具体是几不需要。

正一氢银和钠钾, 正二钙钡镁锌汞, 铜是一二,铁二三, 铝的价态是正三。原子团化合价口诀 OH氢氧根-1价, NO3硝酸根-1价 SO4硫酸根-2价 CO3碳酸根-2价 PO4磷酸根-3价 NH4铵根+1价 这种原子团化合价的记法便于掌握原子团的组成、名称、化合价。我们的学生一般都背这个。 一价钾钠氯(-1)氢银,二钾氧(-2)钙钡镁锌 三铝四硅五价磷 二三铁,二四炭,二四六硫都齐全 铜汞二价最常见 一价高锰、氯、硝酸根 二价锰、硫、碳酸根 三价磷酸根 元素化合价常用口诀表(金属显正价,非金属显负价) 一价钾钠氯氢银, 二价氧钙钡镁锌,

溢流堰设计说明书

溢流坝段既是挡水建筑物,又是重力坝枢纽中最重要的泄水建筑物。设计时,除了应满足稳定和强度要求外,还要满足因泄水带来的一系列要求,包括:(1)具有足够的孔口体形尺寸和较高的流量系数,,以使之具有足够的溢流能力。 (2)应具有良好的孔口体形,以使水流平顺地过坝,不产生有害的负压、震动和空蚀等。 (3)保证下游河床不产生危及坝体安全的局部冲刷。 (4)溢流坝段在枢纽中的位置,应使下游水流流态平顺,不产生折冲水流,不影响枢纽中的其他建筑物的正常运行。 (1)又灵活可靠的下泄水流控制设备,如闸门启闭机等 确定溢流断面长度 4.1.1 设计单宽流量 溢流重力坝的单宽流量q需综合考虑地质条件、枢纽布置、下游河道水深和消能工设计等因素,通过技术经济比较后选定。单宽流量愈大,所需的溢流前缘愈短,对枢纽布置有利,但下泄水流动能大,对下游消能防冲不利,。近年来随着消能工技术的进步,选定的单宽流量也不断增大。 本设计中,三峡坝之下游段地质条件优良,故可假定单宽流量q=200m3/s,据此可假定溢流坝段长度。 (1)设计洪水位工况下:Q = 23540 m3/s 则可假定 (2)校核洪水位工况下:Q = 35260 m3/s 则可假定 选取二者中的最大值,确定溢流段长度为176.3m 本设计选用平面钢闸门形式,因其结构简单,而且闸墩受力条件良好。取孔口净宽为b = 8 米。 a、计算孔口数: (1)设计洪水位工况下: (2)校核洪水位工况下: 由此可确定孔口数为22孔。 据此计算Q溢= 22×8×200 = 35300 m3/s,满足设计洪水位和校核洪水位工况下所需的下泄流量。 b、闸门布置: 溢流坝段表孔采用平面钢闸门,常用的布置有跨缝布置和跨墩布置,其中跨缝布置可以减少闸墩长度,但对地基要求较严格,若产生地基不均匀沉降则对闸门启闭运行极为不利,而跨墩布置可以适当放松对地基的要求,然而却增加了闸门的长度,使整个溢流坝段长度增大,对其经济性产生影响。综合各方面因素,鉴于三峡工程所在地地基条件优良,故选用跨缝布置。经考虑论证后选取闸墩厚度为13m,则每段坝长为13+8=21m。 c、溢流坝段前缘总长: 溢流坝顶装设闸门时,用坝墩将溢流坝段分割成若干个等宽的孔口。设孔口宽度为b,则孔口数n = L/b。,令闸墩厚度为d。 闸门段长L = 22×8+(22-1)×13 = 449m

溢流的征兆与检测培训教材

溢流的征兆与检测培训教材 1.1溢流时的征兆 在钻井各种作业中,当发生气侵或者油水侵后,侵入井内的油气水便推动井内钻井液从井口向外溢出,我们可以在地面以上发现从井内溢出的钻井液液流的各种显示即溢流显示。通过这些溢流显示,就可以使我们正确判断井侵情况。 及时发现溢流,并采取正确的操作迅速控制井口,是防止发生井喷的关键。 钻井人员要能够识别溢流的各种显示,及时发现溢流,并能在各自的岗位上采取正确的行动,迅速控制井口,这是钻井队每个工人的重要职责。 在钻井的不同作业中,溢流显示是不同的、现分别介绍如下。 1.1.1下钻时溢流的征兆 (1)返出的钻井液体积大于下入钻具的体积 正常情况下,每一根钻柱下入井眼内,都会有相当该钻柱体积的钻井液向外返出,如果返出的钻井液体积大于下入

钻柱的体积,就证明有一定数量的流体侵入井内;从井口返出的钻井液可以流到钻井液罐,钻井液池中,我们可以通过钻井液罐返出钻井液体积大于下入钻具体积的增量来判断井侵情况。 (2)下放停止接立柱时井眼仍外溢钻井液 如果下放停止,带负荷吊卡坐在转盘面上时,井口仍向外溢出钻井液,就说明井底发生了井侵。随着井侵的增加和气体的上升,溢流量会越来越大,有时还会发生井眼不停地外溢钻井液的现象。下钻中下放停止观察溢流是最直观、最有效地方法。因此,下钻中应有专人观察下放停止时的溢流状况,下放停止后,一般需要观察10~15min。 (3)井口不返钻井液井口液面下降 如果下钻速度太快,就会产生较大的激动压力,而造成井漏,使钻井液外溢量减小。井漏严重时,井口液面会下降,使井内钻井液柱高度降低,井底压力减小,当井底压力小于地层压力时,就会发生井涌。井漏是井涌的前兆,当发现井漏后,必须立即采取措施制止井漏,防止井涌的发生。

工业催化试题答案

催化科学与技术八大领域: 1.多相催化科学与技术 2.均相催化科学与技术(包括负载络合催化, 均相过程多相化). 3.光、电催化科学与技术(光催化与电极催化过程). 4.酶催化科学与技术(酶的结构与性能,酶改性,酶浓集和固定化, 酶的分离和负载以及仿酶催化). 5.催化分离科学与技术(催化蒸馏,催化膜反应,催化萃取) 6.催化材料科学与技术 7.催化剂制造科学与技术(沉淀法,浸渍法,沉淀沉积法,溶胶凝胶 法,超临界反应法, 等离子体法,生物法制酶等). 8.催化剂性能表征和催化研究方法 ?特征:(1)催化剂只能加速热力学上可以进行的反应. (2)只能加速到达反应平衡的时间,不能改变化学平衡位置. (3)催化剂对反应具有选择性 (4)催化剂活性有一定寿命 ?催化剂组成 ①活性组分:提供改变反应历程的组分,多为金属、氧化物、酸碱 ②载体组分:是或活性组分的分散剂、粘合剂、或支撑体。多数为硅和铝 的氧化物 ③助催化剂组分:催化剂的辅助组分,本身没有活性或者活性很低,用于 改善催化剂的各种性能 ?载体功能: ①提供适宜的比表面和孔结构 ②维持催化的形状和机械强度 ③改善催化剂热传导性 ④提高催化剂中活性组分分散度 ⑤提供附加活性中心 ⑥活性组分和载体的溢流现象和强相互作用 活性组分与载体的溢流现象(Spillover)和强相互作用 所谓溢流现象,是指固体催化剂表面的活性中心(原有的活性中心)经吸附产生出一种离子的或者自由基的活性物种,它们迁移到别的活性中心处(次级活性中心)的现象。它们可以化学吸附诱导出新的活性或进行某种化学反应。如果没有原有活性中心,这种次级活性中心不可能产生出有意义的活性物种,这就是溢流现象。它的发生至少两个必要的条件:(A)溢流物种发生的主源;(B)接受新物种的受体,它是次级活性中心。 ?工业催化剂的要求 1、催化剂的活性: 2、催化剂的选择性: 3、催化剂的稳定性 4、环境相容性 催化剂稳定性

元素常见化合价

元素常见化合价 【主要离子】例子该化合价的性质元素及单质的其他性质 氢H +1(主要) 【H+】在大多数化合物中,如HCl、H2O、NaHCO3、NH3等●有三种同位素:1H、2H(或D)、3H(或T)●单质有还原性●可燃●密度最小的气体●无色无味 -1 【H-】在活泼金属氢化物中及其衍生物,如NaH、KH、CaH2、KBH4等有强还原性,可以和水反应放出H?2 锂Li +1 【Li+】锂化合物如LiCl、LiOH、Li2O等焰色为深红色●银白色的活泼金属,可以和水反应●熔点比水高,密度很小●同位素6Li用在核反应堆内吸收中子●使用于电池内●在空气中燃烧生成Li2O●强还原剂 钠Na +1 【Na+】钠化合物如NaCl、Na2O2等焰色为黄色●银白色的活泼金属,可以和水反应,保存在煤油中●熔点比水低,密度、硬度小●和醇、酸反应放出氢气●在空气中燃烧生成Na2O2●强还原剂 钾K +1 【K+】钾化合物如KCl、KNO3等焰色为紫色(混有Na+时会为黄色,透过蓝色钴玻璃才能看到紫色)●银白色活泼金属,可以和水反应,比钠更剧烈,保存在煤油中●熔点比水低、密度、硬度小●强还原剂●在空气中燃烧生成K2O2和KO2●钾钠合金用作核反应堆的冷却剂 铷Rb 铯Cs +1 【Rb+】 【Cs+】铷、铯化合物如RbCl、CsCl等铷的焰色为浅紫色,铯的焰色为天蓝色●铷 是银白色金属,铯是略带金黄色光泽的金属,熔点低,和水极其猛烈地反应●铯可以在空气中自燃●强还原剂 镁Mg +2 【Mg2+】镁化合物如MgCl2、MgSO4等●银白色活泼金属,和沸水略有反应●在空气中燃烧生成MgO,也有Mg3N2生成●能在CO2等大多数气体中燃烧●和酸剧烈反应●强还原剂●军事上用作照明弹 钙Ca +2 【Ca2+】钙化合物如CaCl2、CaSO4、CaO等焰色为砖红色●银白色活泼金属,和水反应●密度比水大●在空气中缓慢氧化或燃烧生成CaO●强还原剂 锶Sr 钡Ba +2 【Sr2+】 【Ba2+】锶、钡化合物如SrCl2、BaSO4等锶的焰色为深红色,钡的焰色为黄绿色;Ba2+有毒●银白色活泼金属,可以和水反应●密度比水大●强还原剂●可以在空气中燃烧 硼B +3 【BO33-】大多数硼化合物如H3BO3、B2O3等 铝Al +3 【Al3+】

堰坝计算

1、堰坝堰上水头计算 该堰为折线型实用堰,通过公式: 堰坝堰上水头根据排洪渠渠顶高程H 和水位高程h 得: T 0=H-h=13.39-13.05=0.34m 2、下游消力池计算 1、判别下游水流衔接形式: 堰坝过流量s m H g BM /9.234.08.925.065.62Q 32323=????== 单宽流量m s m B Q q ?===/44.065.6/9.2/3 总水头E=P+T 0=0.8+0.34=1.14m 临界水深m g q h k 27.032== 用试算法计算收缩水深h c 由公式: 溢流堰流速系数:93.044 .014.11.011.01312131 21=-=-=q P φ 14.193.08.9244.02222222 =???+=+=c c c c h h h g q h E φ 通过试算得:h c =0.094m 跃后水深:(下游水深)15.0604.0181232">=??? ? ??-+=c c c gh q h h 故会发生远离式水跃,需要修建消力池。 2、消力池长度的计算 ()() 53.034.095.01121120=?--?=?--?=T m G 消力池斜坡段水平投影长度Ls : ()()()()m 609.053.05.08.053.05.034.095.025.05.020=?+??-??=+?-??=G P G T Ls ? 式中:α——流速系数,取0.95; m ——过堰流量系数,取0.95;

P ——堰高(m); 水跃长度L :()()m 553.3094.0604.09.6"9.6=-?=-?=hc hc L 消力池长L sj :m L Ls Lsj 273.3553.375.0609.0=?+=+=β 取长度为3.3m 。 3、消力池深度计算 消力池尾部出口水面跌落△Z : 式中:α——水流动能矫正系数1.0~1.05,取1.0; φ——消力池出口段流速系数,取0.95; 消力池深度: m Z h h d t c 026.0462.0-15.0-604.005.1"=?=?--??= 取深度为0.1m 。 m gh q h g q Z c t 462.0604.08.9244.0115.095.08.9244.01"22222 2222222=???-????=-=?αφα

处理溢流的方法

处理溢流的方法 第一节压井有关概念 问题:采用一般的循环方法(敞开井口)是无法制止溢流的,因为这时环空内液柱压力大大小于地层压力,打入的重泥浆会随同油气立即溢出或喷出,无法建立起压力平衡。 解决方法:必须在井口造成一定的局部阻力来增大环形空间的压力。即井口加回压。 压井的定义:是指发生溢流后,泵入能平衡地层压力的加重钻井液,并通过调节节流阀开度大小,始终控制井底压力略大于地层压力,排除溢流,重建井眼与地层系统的压力平衡关系。 在重新建立起平衡关系之前,不能让地层流体再流入井内,而此时的井内钻井液液柱压力又不足以压稳地层。因此,在压井循环过程中不能使井口完全敞开,必须适当关闭节流阀,在井口产生一定回压,使井口回压与钻井液液柱压力一起平衡地层,制止地层流体流入井内。如果全部打开节流阀,井口失去套压,井底压力便会小于地层压力,发生新的溢流,甚至造成井喷事故。如果关闭节流阀,又会使立管压力、套管压力、井底压力增至过高,造成压漏地层、损坏井口设备等后果。 因此,在整个压井过程中,利用开大或关小节流阀始终保持井底压力略大于地层压力。 压井原理:压井是以“U”管原理为依据,在压井过程中控制井底压力略大于地层压力并保持不变。 钻具与井眼所形成的循环系统可视为一个“U”管,钻具和环空分别为“U”管的两条腿。其基本原理是“U”管底部是一个压力平衡点,此处的压力只能有一个值,这个值只能通过分析连通管的任意一条管的压力而获得。套管压力与立管压力由于“U”管原理的存在使之紧密相关,改变套管压力可以控制井底压力,并影响立管压力使之产生同样大小的变化。 因此,可以用“U”形管原理来分析其压力。利用地面节流阀产生的阻力(即回压)和井内钻井液液柱压力所形成的井底压力来平衡地层压力,实现压井的基本原则。 当井深和钻井液密度一定时,关井立管压力的大小就能反映地层压力的大小。因此,人们把关井立管压力作为判断地层压力或井底压力的压力计来使用。压井方法:由于关井以后,井下情况各不相同:地层渗透率、地层能量、地层压力、地层破裂压力、套管下深、井控装置配置、溢流种类、数量、关井时井内是

溢流堰施工设计

洋县卡房水利枢纽工程溢流堰 施工组织设计 1.概况及工程量 1.1概况 溢流堰是卡房水库工程的主要泄洪建筑物,分布在大坝7#、8#、9#坝段,开敞式表孔溢流结构,共6孔,每坝段2孔,各孔堰首宽度均为10m,各坝段右表孔堰尾宽度分别为11.23m,11.7m和10.94m,左表孔堰尾宽度均为 2.5m。堰顶高程▽886.2m,各坝段右表孔堰尾高程为▽866.2m,左表孔堰尾高程为▽859.52m;堰面长度均为25.38m,其中桩号0+12.8m上游侧为C30普通混凝土浇筑,下游侧为C30高强耐磨粉煤灰混凝土浇筑。各坝段右表孔堰面0-1.0 m至0+0.41m、0+14.62m至0+24.38m和各坝段左表孔堰面0-1.0m至0+0.41m、0+17.3m至0+24.38m均为圆弧线段,各表孔0+0.41m至0+12.8m是函数关系式为y=0.1273x1.85的曲线段,其余部位均为坡比1:0.5的斜直线段。各表孔堰顶部位设平板闸门,闸顶设交通桥,桥面宽度5m。 1.2工程量 ——1——

卡房水库溢流堰的主要工程量为混凝土浇筑11243m3,其中普通混凝土5686m3,高强耐磨粉煤灰混凝土5557m3,钢筋制安305 T,模板制安9500 m2,铜止水制安230m。 2.0施工程序及方法: 溢流堰总的施工程序是:沿堰面长度方向,以桩号0+12.8为界,按先下游、后上游,先堰面、后墩墙的顺序进行施工。 2.1堰面施工程序及方法: 0+12.8m桩号下游部分堰面:先对各坝段右表孔进行施工,混凝土浇筑分四期完成,一、二期混凝土浇筑高度分别为3m、3.73m,高程分别为▽858—▽861,▽861—▽864.73,三、四期混凝土为堰面部分分两次浇筑完成,每期浇筑长度为5—6m。再对各坝段左表孔进行施工,堰面混凝土浇筑自下而上分两期完成。按堰面长度方向每期浇筑长度为5—6m。 0+12.8m桩号上游部分堰面:堰面混凝土施工以孔为施工单元,由右向左逐孔进行施工,每孔混凝土分五期进行施工,一、二、三期混凝土为堰首底部▽883以下部位的混凝土,浇筑高度分别为1.5m、1.47m、3.13m,高程段分别为▽876.7—▽878.20,▽878.20—▽879.87,▽879.87—▽883,四、五期混凝土为堰面 ——2——

工业催化的25题答案

1.多相催化的反应步骤 1.反应物分子从气流中向催化剂表面和孔内扩散. 2.反应物分子在催化剂表面吸附. 3.被吸附的反应物分子在催化剂表面相互作用或与气相分子进行化学反应. 4.反应产物自催化剂表面脱附. 5.反应产物离开催化剂表面像催化剂周围的介质扩散 2.生物催化反应的特征 催化效率极高(传统化工催化剂用量0.1-1%,酶用量%.2.选择性极高(相对/绝对专一性)一种酶只能催化一种底物,(绝对专一性)一种酶能催化一类结构相似的底物. 3.催化条件极温和常温,常压,PH=5-89(通常在7) 3选择性催化还原 是对下游工质的一项处理工艺.其原理就是在含有的尾气中喷入氨,尿素或者其他含氮化合物,使其中的还原成和水 4.三效催化剂载体涂层及其要求 涂层:具有高比表面积的无机氧化涂层(20-100 ) 也叫第二载体(真正的核心技术所在)常用 等及复合物。 对涂层的要求 1.有较高的热稳定性.2.增强涂层中某个重要组分的热稳定性 如3.协助或改善催化剂组分的功能 5.酶抑制剂作用及机理 失活作用: 次级键被破坏,导致空间构相变化,酶蛋白变质 抑制作用: 酶的必需基因受某种化学物质影响,导致火性降低。 去激活作用: 用螯合剂可去除能激活酶的金属离子 6.催化剂失活的主要种类及原因 中毒 催化剂的活性和选择性由于受到少数杂质作用而显著下降的现象。 积碳 催化剂在使用过程中,逐渐在表面沉积一层炭质化合物,减少了可利用的表面积,引起催化剂活性衰退的现象。 烧结,挥发和剥落。 烧结 催化剂长期处于高温下操作,融结而导致晶粒长大,减少了活性金属的比表面积,使活性降低。 7.简述载体的功能 提供适宜的比表面积和孔结构 维持催化剂的形状和机械强度 改善催化剂热传导性 提高催化剂活性组分分散度减少含量 提供附加活性中心 活性组分和载体的溢流现象和强相互作用 9.d带穴玉催化剂活性金属能带模型提供了d带穴概念,并将它与催化剂活性关联起来。D空穴越多,d能带中未占用的d电子或空轨道越多,磁化率越大,磁化率与金属催化剂活性有一定的关系,随金属和合金的

溢流的原因

溢流的原因Last revision on 21 December 2020

一、溢流的原因 二、溢流发生的原因很多,其最根本的原因是井内压力失去平衡、井内压力小于地层压力。 三、1、地层压力掌握不准确。这是新探区和开发区钻调整井时经常遇到的情况。特别是裂缝性碳酸岩地层和其他硬地层压力更难准确掌握。开发区注水使地层压力升高等原因,造成地层压力掌握不准确。 四、2、起钻时井内未灌满钻井液。起钻过程中,由于起出钻柱,井内钻井液液面下降,这就减小了静液压力。只要钻井液静液压力低于地层压力,溢流就可能发生。在起钻过程中,向井内灌钻井液可保持钻井液静液压力。起出钻柱的体积应等于新灌入钻井液的体积。如果测得的灌浆体积小于计算的钻柱体积,地层中的流体就可能进入井内,溢流就可能在发生。 五、3、过大的抽吸压力。起钻的抽吸作用会降低井内的有效静液压力,会使静液压力低于地层压力,从而造成溢流。起钻时井内钻井液没有上体钻具那样快,就可能产生抽吸作用。这实际上在钻头的下方造成一个抽吸空间并产生压力降。无论起钻速度多慢抽吸作用都会产生。应该记住的重要事情是,井内的有效压力始终应能平衡地层压力,这样就可以防止发生溢流。除起钻速度外,抽吸过程也受环形空间大小与钻井液性能的影响。在设计井身结构时,钻具(特别是钻铤)与井眼间应考略有足够的间隙。钻井液性能特别是粘度和静切力应维持在合理的水平。 六、4、钻井液密度低。钻井密度低是溢流比例高的一个原因。这样引起的溢流比较容易控制,并且很少导致井喷。钻井液密度低而产生的溢流通常是突然钻遇到高压层,地层压力高于钻井液静液压力条件下发生的,特别是为了获得高的机械钻速、降低钻井成本和保护油气层而是用较低的钻井液密度。钻井液的油、气、水侵是密度降低的一个重要原因。 七、5、钻井液漏失。钻井液漏失是指井内钻井液漏入地层,这就引起井内液柱和静液压力下降。下降到一定程度时,溢流就可能发生。在压力衰竭的砂岩、疏松的砂岩以及天然裂缝的碳酸盐岩中漏失是很普遍的。由于钻井液密度过高和下钻时的压力激动,使得作用于底层上的压力过大,而产生

溢流堰施工专项方案

溢流堰专项施工方案 1、工程概况 溢洪闸位于大坝设计桩号0+570.50处,溢洪闸为开敞式,共3孔,每孔净宽5.0m,中墩厚1.4m,总宽度17.8m,闸底板高程111.50m,设WES堰,堰顶高程114.00m,墩顶高程118.9m。堰面曲线控制坐标点图见后附图。 为保证溢洪闸溢流面混凝土体形尺寸及表面质量的要求,通过对滑模浇筑和翻模浇筑两种施工。 2、施工方案 2.1总体布置 堰体分3次浇筑,第一次浇筑A区域,浇筑至设计高程108.9m,第二次浇筑B区域,浇筑至设计高程111.50m,第三次浇筑C区域,浇筑至设计高程113.5m,堰体表面混凝土以闸室中墩为界分为3个工作面,先对左堰进行施工,后对右堰进行施工,最后施工中间堰体。 2.2施工方法 2.2.1施工放线 在安装钢筋和支模前将溢流堰纵断面轮廓线放样到已成型闸墩上,再在两侧对应点上拉线绳,以此来确定钢筋及模板位置。具体是在背水侧堰面曲面部位每隔1m标志放样点。 2.2.2模板工程 迎水侧堰面两侧为平面,采用钢模支立,钢管加固,保证堰体两

侧平整,偏差在允许范围内,堰面采用滑模施工技术,滑模是由拉力拉动滑轨滑动的模板控制混凝土浇筑后成形,能使混凝土连续浇筑的一种模板技术,主要由滑行模板、滑模滑轨、和牵引系统组成。(1)滑行模板 由平面钢板作为底模,顶部由工字钢固定,模板断面为梯形断面。溢洪闸堰面每孔宽度为5m,组装完成后滑模总长4.9m。模板上的2个牵引点分别距模板两端1m处。距模板底面为20cm。滑升模板面板为5mm厚钢板,主梁采用2根工字10槽钢,腹板采用10mm钢板,间距50cm。每节模体两端堵头板为15mm厚钢板,根据有关钢结构设计规范要求进行校核验算,滑模的刚度满足规范的有关要求。滑模模体断面见下图: (2)滑模轨道 滑模轨道布置在分缝模板外侧,紧贴分缝模板,模板轨道采用10mm 钢板,根据WES堰面纵断面轮廓线焊制加工完成。轨道与滑升模板之间滑动受力。轨道用直径25mm 钢筋做锚筋,支撑钢筋与堰体设计钢筋连接牢固。钢筋轨道支撑间隔每2m左右增加一道斜撑,保证滑模在轨道不发生下沉和侧斜。 (3)滑模牵引系统 溢流堰进行3次分层浇筑,在浇筑到设计高程111.50m处在仓内设置锚桩,每孔闸室左右各两个锚桩,直径为0.5m,锚桩内预埋25mm 拉筋,拉筋延伸到滑模开始滑动处,随着滑模的不断提升,拆除多余

溢流阀知识大全

溢流阀知识大全 一、DB/DBW型先导溢流阀 1.结构和工作原理 DB型阀是先导控制式的溢流阀;DBW型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB型阀主要是由先导阀和主阀组成。DBW型阀是由电磁换向阀、先导阀和主阀组成。 DB型溢流阀: A腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B腔(控制油内排型)或通过外排口(11)流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A腔流到B腔(即卸荷)。 DBW型电磁溢流阀: 此阀工作原理与DB型阀相同,只是可通过安装在先导阀上的电磁换向阀(14)使系统在任意时刻卸荷。 DB/DBW型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X和外排口Y。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。(2)空穴产生的噪声 当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成

一些常见元素化合价口诀

一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根 一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根 一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根 一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根 一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根 一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根 一些常见元素化合价口诀 一价氢氯钾钠银二价氧钙钡镁锌三铝四硅五价磷二三铁,二四碳二四六硫都齐全铜汞二价最常见条件不同价不同单质为零永不变一些常见原子团的化合价 负一硝酸氢氧根负二硫酸碳酸根负三记住磷酸根正一价的是铵根

溢流堰方案

许昌市建安区西水东引备用水源工程(小洪河至高铁北站) 溢流堰施工方案 编制: 审核: 许昌市建安区西水东引备用水源工程项目部 2020年3月18

溢流堰施工方案 一、工程概况 本项目为石梁河、老潩水水系连通(西水东引项目)项目,引水线路为:自石梁河末端引水至汉风路,再向北沿汉风路至农大路,然后沿规划农大路向东至高铁北站,全长约16.5㎞。在石梁河石寨桥西侧建设一座蓄水60万方的蓄水坝,为西水东引、进驻高铁北站提供水源支持,在老潩河新元大道至许鄢快速通道段清淤疏浚17公里,提升沿河两岸景观,新建蓄水坝、湿地等工程。本次施工范围自许昌京港澳高速北站附近的小洪河至高铁北站,管线总长4.867km, 其中桩号K0+600-K3+285长2.685km为顶管,K0+000-0+600、K3+285-4+867长2.182km 为埋管。跨许开路、西航路顶管施工;管材选用钢筋混凝土管,管子采用橡胶圈接口,管径为DN1200。K4+867至启航路为明渠开挖段,长度1486m。本方案任务为两个溢流堰,位于明渠段。 二、施工方案 溢流堰主要施工内容为:土方开挖→基底平整打夯→模板工程→混凝土工程→拆模→土方开挖→基底土方平整分层打夯→格宾石笼网箱拼装→土工布铺设→浆砌石护坡护脚铺设→土方回填 1、土方开挖 1.1 测量放线 测量人员做好技术准备,外围控制线施工放样到实地,并随时跟踪挖土标高加强标高控制,严禁超挖。 1.2 土方开挖 本工程土方采取挖掘机挖土,挖出的土方堆置在指定的空场地内。 2、施工降水 基坑四周地下水汇集到基坑中,我方现使用如下设备用于基坑抽水:

现场抽水由专人记录好抽水设备的类型及数量、工作起始和终止时间、施工降水的区域,计量以机械连续工作8小时为一个台班计算,降水结束做好计量单并交由监理方核对签字。 3、基底土方平整打夯 打夯采用汽油立式打夯机由最靠近基础边由里向外来回分层夯实。边角窄小处,一夯压半夯依次进行。 4、模板工程 溢流堰的施工涉及到模板的安装,采用木胶板,规格为 2440×1220×14,用于侧模板以及顶模板;松木方料,规格为60×80用于模板连接排挡;钢管(Φ48×3.5):围楞和搭支模架;扣件:用于支模钢管架体的连接与紧固。 根据测量放样提供的尺寸和控制点进行模板安装。模板安装要有足够的强度、钢度和稳定性,以保证混凝土浇筑后结构物的形状和相互位置等符合设计要求。因此,在模板安装过程中,设置足够的临时固定设施,以防模板变形和倾覆。 模板安装前要清理其表面的杂物,对已变形的模板进行较正。模板表面涂脱模剂以保证其光洁平整;模板拼接严密紧闭,以免漏浆。浇筑过程中派人对模板值班巡视,加强保护。

2005年博士研究生考试工业催化试题[1]修改

2005年博士研究生入学考试工业催化试题及答案 一、名词解释: 多相催化-指催化剂与反应物分别处于不同相的催化反应体系,通常为固液相反应或固气相反应, 即催化剂为固相,反应物以液态或气态的形式与催化剂接触,从而发生催化反应。 催化剂寿命-是指催化剂从开始使用至它的活性下降到在生产中不能再用的程度(这个程度取决于 生产的具体技术经济条件)所经历的时间。 催化助剂-这是催化剂中具有提高主催化剂的活性、选择性,改善催化剂的耐热性、抗毒性、机械 强度和寿命等性能的组分。简言之,在催化剂中只要添加少量助催化剂,即可明显达到 改进催化剂催化性能的目的。助催化剂通常可分为:结构助催化剂、电子助催化剂、晶 格缺陷助催化剂和扩散助催化剂。 活性位-催化剂的活性位随不同的催化剂而异,它可以是一个质子,配位络合物,表面原子簇,蛋 白质上的胶束囊。一般以“*”表示。对固体催化剂而言,它是固体表面的配位不饱和 的原子或由这样的原子组成的簇,在一系列的反应步骤中,反应物或中间物能吸附在它 的上面。 绿色化学-绿色化学相对于传统化学是更高层次的化学。它是利用化学的技术和方法去减少或消灭 那些对人体健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物及副产物等的使用和生产。其主要特点是原子经济性,即在获取新物质的转化过程中充分利用 每个原料原子,实现“零排放”,因此可以充分利用资源,又不产生污染。 择形催化-因为分子筛结构中由均匀的小内径,当反应物和产物的分子线度与晶内孔径相接近时, 催化反应的选择性常取决于分子与孔径的相应大小。这种选择性称之为择形催化。 物理吸附和化学吸附-由分子间的作用力即范德华力产生的吸附为物理吸附,一般不具有选择性, 即可以发生单分子层吸附,也可以形成多分子层吸附。 由化学键力产生的吸附为化学吸附,具有明显的选择性,只能发生单分子层吸附。 金属的分散度-金属在载体上微细的分散程度用分散度表示,其定义为: D =总的金属离子表面的金属离子 /克催化剂 固定床反应器-凡是流体经过不动的固体物料所形成的床层而进行反应的装置都称为固定床反应 器,其中尤以用气态的反应物料通过由固体催化剂所形成的床层而进行反应的气-固相 催化反应器占最主要的地位。如:炼油工业中的催化重整、异构化、基本化学工业中的 氨合成、天然气转化等。 反应级数-由实验数据得出的经验速率方程,一般可写成下式幂乘积的形式: V A =-dC A /dt =kC αA C β B … 式中各浓度的方次α和β等,分别称为反应组分A 和B 等的分级数。反应的总级数n 为各组分分级数的代数和:n =α+β+… 二、简述题 1.试述催化作用的特征 答:催化作用有四个基本特征:

脱硫吸收塔溢流原因及应对措施

脱硫吸收塔溢流原因及应对措施 发表时间:2018-10-01T11:28:29.857Z 来源:《电力设备》2018年第16期作者:陈贵方 [导读] 摘要:在湿式石灰石湿法脱硫工艺运行过程中,诸多电厂都发现吸收塔不同程度溢流,不但威胁增压风机安全运行,还造成环境污染等严重事件,结合黔北电厂吸收塔溢流情况、分析其溢流原因及其控制措施。 (贵州西电电力股份有限公司黔北发电厂贵州金沙 551800) 摘要:在湿式石灰石湿法脱硫工艺运行过程中,诸多电厂都发现吸收塔不同程度溢流,不但威胁增压风机安全运行,还造成环境污染等严重事件,结合黔北电厂吸收塔溢流情况、分析其溢流原因及其控制措施。 关键词:吸收塔溢流原因控制措施 1吸收塔系统概况 为积极响应国家政策,减少大气污染,黔北电厂4×300MW机组在2010年相继对四台机组安装工艺成熟且在国内广泛应用的湿式石灰石湿法脱硫装置,以下简称FGD。以达到国家大气污染物的排放要求。 黔北电厂4×300MW机组各安装一套脱硫塔,烟气处理量为1094676Nm3/h,吸收塔直径为12.5m,高度为44.95m,钢结构圆柱体,内衬玻璃鳞片,塔体上部为2层除雾器和5层喷淋层,下部为浆液池及其附属设备,吸收塔中上部设置倒U型溢流管。设5台浆液循环泵、3台氧化风机、2层除雾器及4台搅拌器。原烟气烟道连接引风和吸收塔系统,卧式增压风机处于烟道底部位置,底部设置倒U型水封无阀排污管。吸收塔区域有排水池坑及排水池泵,回收正常运行中少量排水、排浆。 正常运行工况中,在保证脱硫系统脱硫效率及出口烟气SO2达标排放的条件下,通过控制吸收塔进水和出水平衡,维持吸收塔液位略低于正常液位运行,以保障脱硫系统的安全运行。脱硫塔正常运行液位为19.75米,溢流口为21.75米,为了保证脱硫系统安全运行,液位维持在18.5--20.5m之间运行。 该厂液位计为差压式,且氧化风机出口母管压力与吸收塔液位的变化成线性关系,在正常运行中主要以氧化风机出口母管压力作为液位监控方式,并要求单台氧化风机运行时出口压力不超过60Kpa,两台氧化风机运行时出口压力不能超过70Kpa。 在脱硫系统运行中,吸收塔浆液溢流现象是影响脱硫系统能否安全稳定运行的主要因素,且溢流浆液会对环境造成污染,甚至造成机组被迫停运。自脱硫系统投运以来,曾数次发生吸收塔溢流现象,结合该厂吸收塔溢流情况,通过查找脱硫系统运行中浆液溢流原因,并采取相应措施,对溢流情况进行控制。 2 吸收塔溢流危害 2.1吸收塔溢流量较大时,溢流管尺寸已不能满足溢流浆液流通量,大量的浆液自原烟道出口倒入原烟道底部,如果原烟道底部排污门不能立即将浆液排出,烟道内浆液液位将急剧上涨,当液位上涨到增压风机叶轮位置处,淹没部分叶轮,造成叶轮带水,风机振动加剧,造成增压风机叶轮损坏的恶性设备事故。 2.2大量溢流出的浆液进入排水池坑,大量横流的浆液将严重影响文明卫生,并造成土壤、水体环境污染事故。 3 吸收塔溢流的原因 3.1运行控制调整不当,脱硫系统进出水平衡被扰乱,大量新鲜工业水补入系统内并最终汇入吸收塔,造成吸收塔液位难以控制而溢流,例如以下情况: 1)浆液管道冲洗水、脱水皮带机冲洗水等有阀门内漏或冲洗时间过长,大量工业水进入脱硫系统。 2)制浆系统用工业水代替滤液水制浆,向脱硫系统大量补入工业水。 3)除雾器冲洗水冲洗时间长冲洗频次高,大量工业水直接进入脱硫塔。 3.2 吸收塔浆液表面或内部起泡严重,浆液泡沫大量挤占吸收塔空间并抬升浆液液位,当浆液泡沫在氧化风的鼓动作用下进入溢流管,逐步形成虹吸现象,导致溢流。吸收塔产生泡沫有如下原因。 1)吸收塔中有机物或重金属杂质增多。由于锅炉燃烧中投油或运行中燃烧不充分,未燃尽的物质或本身存在重金属物质进入吸收塔,使吸收塔中有机物及重金属含量增加,当这些物质达到一定量时发生皂化反应,液体表面形成油膜引起浆液表面张力增加,导致浆液起泡。 2)镁离子影响。石灰石中含有少量的MgO,如果MgO含量低时,对浆液影响不大,当MgO含量集聚到一定量时,不仅会影响脱硫效率,而且与浆液中硫酸根离子反应,生成大量的泡沫。 3)油污影响。机组启动时燃烧大量柴油,未充分燃烧的柴油进入吸收塔附集在浆液的表面,经过浆液大量冲刷,形成油膜。 4)脱硫废水处置不合格。脱硫浆液重金属、有机物及粉尘不断集聚,如果废水系统不能正常投入,导致重金属、有机物含量增加使浆液品质恶化。 5)设备启停影响。当氧化风机突然停止时,由于大量空气鼓入而突然停止,导致浆液在吸收塔内震荡,其高度可达1.5米,同时氧化风机运行中产生空气会将浆液中气泡吹破,而氧化风机突然停运时大量气泡的产生会导致大量溢流。 4 吸收塔溢流控制措施 为防止吸收塔出现溢流现象,应当提高运行处理及判断能力,从吸收塔液位及氧化风机运行压力进行判断,适当对运行工况进行调整。 4.1 适当控制吸收塔液位,在保证脱硫系统正常运行的情况下,保持液位在低限运行,即控制在19.75m以下,单台氧化风机运行压力必须控制在60Kpa以下,两台氧化风机运行控制在70Kpa以下,同时控制吸收塔浆液密度在1140㎏/m3以下运行。 4.2 及时对脱硫废水进行处理,降低浆液中重金属,有机物,悬浮物,MgO及各种杂质的含量,避免因各种杂质集聚到一定量造成浆液中毒。使浆液气泡, 4.3 规范运行管理,氧化风机切换操作必须先启后停,停运氧化风机前必须先开启氧化风机排空门,使氧化风母管压力缓慢下降,禁止氧化风母管压力陡降,造成吸收塔浆液波动。 4.4 添加脱硫专用消泡剂 抑制吸收塔溢流最有效手段向吸收塔排水池坑加入消泡剂,在机组启动前加入量较大,向吸收塔内加消泡剂,并注意浆液是否起泡,

相关主题