搜档网
当前位置:搜档网 › 概率统计例题

概率统计例题

概率统计例题
概率统计例题

已知二维连续型随机向量),(Y X 的联合密度函数为

??

?<<<<=其他。

,;

,,

010104),(y x xy y x f

则X 与Y 相互独立

【解:由二维连续型随机向量),(Y X 的联合密度函数为

??

?<<<<=其他。

,,

010104),(y x xy y x f

可得两个边缘密度函数分别为:

??

?<<==?∞+∞

-其他。,

0102),()(x x dy y x f x f X

??

?<<==?

+∞

-其他。

0102),()(y y dx y x f y f Y

从而可得)()(),(y f x f y x f Y X ?=,所以X 与Y 相互独立。

■12、设二维随机变量(X , Y ) ~4,01,01

(,)0,xy x y f x y <<<

其它,求

(1) X 的边缘密度函数()X f x ; (2)概率()P Y X ≥;

■13、某供电站供应该地区1000户居民的用电,各户用电相对独立,已知每户日用电量(单位:度)服从[6,12]上的均匀分布,求这1000户居民日用电量超过9100度的概率。

■14、在次品率为0.3的一大批产品中任取400件,利用中心极限定理计算取得的400件产品中次品数在110与125之间的概率。

■15、一大批种子的良种率为0.9,从中任取500粒,求良种数超过460粒的概率。

■12、【解:(1)当01x ≤≤时,1

()(,)42,X f x f x y dy xydy x +∞

-∞

=

==?

?

故2,01

()0,X x x f x others

≤≤?=?

?

当01y ≤≤时,1

()(,)42,Y f y f x y dx xydx y +∞

-∞

=

==?

?

故2,01

()0,Y y y f y others ≤≤?=??

(2)因为(,)()()X Y f x y f x f y =

故X 与Y 是相互独立

(3)2

1

1

000()440.52

x

x P X Y dx xydy x

dx >===??? ()1()0.5P Y X P X Y ≥=->=】

■13、【解:设X i 为第i 户的日用电量,X 为总用电量。则∑==

1000

1

i i

X

X 。

∵]12,6[~U X i ,∴312

)()(,92)(22

=-===+==a b X D b a X E i i σμ ∴E(X)=n μ=1000×9=9000, D(X)=n σ2=1000×3=3000, 由中心极限定理,近似有X ~N (9000,3000) ∴(1) (9100)11

P X >≈-Φ=-Φ= (2) 设每天需供电u 度,则可列出等式99.0)3000

9000

(

99.0)(=-Φ?=≤u u X P ? u = … 】 ■14、【解:设X 为次品数。则)3.0,400(~B X ,因n 较大,所以又近似有),(~npq np N X ,即

)84,120(~N X 。∴?

??

? ??Φ+-???

? ??Φ=???

? ?

?-Φ-???

? ?

?-Φ≈<<8410184584

12011084

120125)125110(X P 】 ■15、【解:设X 为良种数。则)9.0,500(~B X ,又近似有)45,450(~N X 。良种率超过92%即良种数超过460,∴ =???

?

??Φ-=????

??-Φ-≈>53101454504601)460(X P 】 已知总体)10,60(~2N X ,从总体X 中抽取一个容量为25的样本,则样本均值X 与总体均值之差的绝对值大于2的概率为:

|60|

(|60|2)(

1)1(1)(1)2(1(1))2

X P X P -->=>=-Φ+Φ-=-Φ= 0.3174.

■5、设某零件的高度),(~2

σμN X 现任取25只,x =32.3,s =0.41。

(1)若σ=0.4,求μ的置信水平为0.95的置信区间 (2)若σ未知,求μ的置信水平为0.95的置信区间 (3) σ2的置信水平为0.95的置信区间

■6、某单位的日用水量X ~),(2

σμN ,现抽查了16天的用水量,得样本均值为x =170度,样本标准差s =30度,试求μ的置信水平为0.9的置信区间。

■7、设某厂生产的钮扣直径),(~2σμN X ,σ =5.2。现随机取一样本),,,(21n X X X ,n =36,测得

56.26=x 。试在0.05下检验其均值是否为26。(即检验假设0H :260==μμ)

■8、若上题中σ未知,条件中增加s =5,如何检验?

■9、一批电子元件寿命X 服从正态分布),(2σμN ,原先均值16500==μμ。现从刚生产的产品中随机抽取25个,测得寿命的样本均值为x =1691,样本标准差s=169。以01.0=α的显著性水平检验整批元件平均寿命是否仍为1650。

■5、【解:(1) 因σ已知,构造样本函数 n

X U /σμ

-=

,则U ~ N (0, 1);

10.95α-=,查标准正态分布表得2

u α=1.96

∴ μ的置信水平为0.95的置信区间为 (

2x u α

-,2x u α

+)=(32.1432,32.4568)

(2) 因σ未知,而s 已知,构造样本函数 n

s X T /μ

-=,则T ~ t (24);

10.95α-=,查表得0639.2)24(05.0==t t

∴ μ的置信水平为0.95的置信区间为 (x t α-,x t α+)=(32.1308,32.4692) (3) 构造样本函数:2

2

2

)1(σ

χ

S n -=

,则χ2 ~ χ2 (n ?1);

令P ( a < χ2

< b ) = 0.95,得?????====??????=>=>364

.39)24(401.12)24(025.0)(975.0)(2

025.02975.022

χχχχb a b P a P 得到σ2

的以1?α为置信度的置信区间为: (a S n b S n 2

2)1(,)1(--)=(0.1025,0.3253)】 ■6、【解:σ未知,而s 已知,构造样本函数 n

s X T /μ

-=,则T ~ t (15);

10.9α-=,查表得7531.1)15(1.0==t t

∴ μ的置信水平为0.9的置信区间为((15)x t α-,x t α+)=(156.852,183.148)】

■7、【解:H 0:260==μμ

构造检验统计量n

X U /0

σμ-=

,则H 0成立时应有U ~N (0,1)。

05.0=α,查标准正态分布表得2

u α=1.96

而实际统计量值646.06

/2.52656.26/0

=-=

-=

n

x u σμ,满足|u |<1.96,所以接受原假设。

】 ■8、【解:H 0:260==μμ

构造检验统计量n

s X T /0

μ-=

,则H 0成立时应有T ~ t (35)。

05.0=α,查表得0.05(35) 2.03t =(表明|T | > 2.03为小概率事件)

而实际统计量值672.06

/52656.26/0=-=

-=

n

s x t μ,满足| t | < 2.0301,所以接受假设。

】 ■9、【解:H 0:16500==μμ

构造检验统计量n

s X T /0

μ-=

,则H 0成立时应有T ~ t (24)。

05.0=α,查表得0.05(24) 2.797t =(表明|T | > 2.797为小概率事件)

而实际统计量值847.25

/7216501691/0=-=

-=

n

s x t μ, | t | > 2.797,所以拒绝假设。

已知一元线性回归直线方程为x a y

4??+=,且3=x ,6=y , 则a ?的计算方法如下:由4?=b 可 得6??-=-=x b y a 。

例2 对四块面积都是1亩的土地,施用化肥x (公斤),得到的水稻产量y (公斤)的实验结果如下表。

请按下表求x (化肥量)与y (水稻产量)的线性回归方程,并用F 法进行检验。

33060090036000018000

440700160049000028000

∑10020003000110000057000

(1)

(2)

(3)

∴线性回归方程为=150+14x。

(二)对进行显著性检验

(1)

(2)引进统计量

(3)查F(1,n-2)表给定α=0.05,Fα(1,2)=18.5

∴拒绝域W为(Fα(1,n-2),+∞)=(18.5,+∞)

(4)计算F

(5)判定:∵F落在拒绝域W内;∴拒绝H0,接受H1。

即线性关系明显。

概率论试题(含解析)

1、事件A B 、独立,且()0.8,()0.4P A B P A ?==,则P(AB) 2、设()f x 是连续型随机变量X 的概率密度函数 ()f x 非负。 3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而 (A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。 答:( A ) 6、某人投篮,每次命中的概率为2 3 ,现独立投篮3次,则至少命中3次的概率为. 7、已知连续型随机变量X 的概率密度函数为(1)2,1()0, x Ae x f x --??≥=???其它,则常数A = . 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0 (,)0,x y x y F x y --?-->>=?? 其它,则概率 P(Y>2)= . 9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则D(X+Y)= 设,A B 为随机事件,且()0,(|)1P B P A B >=,说明什么? 某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第5次射击恰好第2次命中目标的概率为( )C 14P 2(1-p )3 三、解答题(本大题共6小题,每小题10分,共60分)。 一、已知男人中有8%是肝病患者,女人中有0.35%是肝病患者。今从男女人数相等的人群中随机地挑选一人,恰好是肝病患者,问此人是男性的概率是多少? 四、 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1. 顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下的概率。(结果保留3个有效数字) 解:设B 表示售货员随意取一箱玻璃杯,顾客买下;i A 表示取到的一箱中含有i 个残品, 0,1,2i =,则所求概率为 2 ()(|)()...............................................................................(5') 1918171618171615 0.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10')

概率论与数理统计试题

07试题 一、填空题(本大题共6小题,每小题3分,总计18分) 1. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则() () P AB P AB += 2.10件产品中有4件次品,从中任意取2件,则第2件为次品的概率为 3.设随机变量X 在区间[0,2]上服从均匀分布,则2Y X =的概率密度函数为 4.设随机变量X 的期望()3E X =,方差()5D X =,则期望()2 4E X ??+=? ? 5. 设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得 {} 22P X -≥≤ . 6. 设1234,,,X X X X 是来自正态总体X ~()0,4N 的样本,则当a = 时, ()()22 123422Y a X X a X X =++-~()22χ. 二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题 共6个小题,每小题3分,总计18分) 1.设,A B 为对立事件, ()01P B <<, 则下列概率值为1的是( ) ~ (A) ()|P A B ; (B) ()|P B A ; (C) () |P A B ; (D) ()P AB 2. 设随机变量X ~()1,1N ,概率密度为()f x ,分布函数()F x ,则下列正确的是( ) (A) {0}{0}P X P X ≤=≥; (B) {1}{1}P X P X ≤=≥; (C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈ 3. 设()f x 是随机变量X 的概率密度,则一定成立的是( ) (A) ()f x 定义域为[0,1]; (B) ()f x 非负; (C) ()f x 的值域为[0,1]; (D) ()f x 连续 4. 设4{1,1}9P X Y ≤≤= ,5 {1}{1}9 P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( ) (A) 23; (B) 2081; (C) 49; (D) 13 5. 设随机变量(),X Y 的方差()4D X =,()1D Y =,相关系数0.6XY ρ=,则方差 ()32D X Y -= ( ) - (A) 40; (B) 34; (C) ; (D) 6. 设12,,,n X X X 是正态总体X ~() 2,N μσ的样本,其中σ已知,μ未知,则下列不是 统计量的是( ) (A) 1max k k n X ≤≤; (B) 1min k k n X ≤≤; (C) X μ-; (D) 1 n k k X σ =∑ 三、计算题(本大题共6小题,每小题10分,共计60分) 1.甲乙丙三个同学同时独立参加考试,不及格的概率分别为: ,,, (1) 求恰有2位同学不及格的概率; (2) 若已知3位同学中有2位不及格,求其中1位是同学乙的概率.

概率论与数理统计综合试题

Ⅱ、综合测试题 s388 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论考试题以及解析汇总

——第1页—— 系名____________班级____________姓名____________学号____________ 密封线内不答题 试题一 一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( ) A.91 99 100 98 .02.0C B. i i i i C -=∑100100 9 100 98.02.0 C. i i i i C -=∑100100 10 100 98 .02.0 D.i i i i C -=∑- 1009 100 98.02.01 4、设)3,2,1(39)(=-=i i X E i ,则)()3 1 253(321=++ X X X E A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 2 3 21X X X X X c +++? 服从t 分布。( ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14( N ,则其概率密度为( ) A. 6 )14(2 61-- x e π B. 3 2)14(2 61-- x e π C. 6 )14(2 321 -- x e π D. 2 3)14(2 61-- x e π 7、 321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ 的无偏估计( ) A. 3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X + + D. 3216 1 3131X X X ++ 8 、设离散型随机变量X 的分布列为 X 1 2 3 P C 1/4 1/8 则常数C 为( ) (A )0 (B )3/8 (C )5/8 (D )-3/8 9 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X 近似的服从( ) (A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01 下,( )

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论试题(含解析)

一、单项选择题(本大题共5小题,每小题3分,共15分)。 1、事件独立,且,则等于 (A )0; (B )1/3; (C)2/3; (D)2/5、 ? ? 答:( B ) 2、设就是连续型随机变量得概率密度函数,则下列选项正确得就是 (A )连续; (B ); (C)得值域为[0,1]; (D)。 答:( D ) 3、随机变量,则概率随着得变大而 (A)变小; (B )变大; (C)不变; (D)无法确定其变化趋势. ? ?? ? 答:( A ) 4、已知连续型随机变量相互独立,且具有相同得概率密度函数,设随机变量,则得概 率密度函数为 (A ); (B ); (C ); (D )、 答:( D ) 5、设就是来自正态总体得容量为得简单样本,则统计量服从得分布就是 (A) (B ) (C) (D) 答:( C ) 二、填空题(本大题共5小题,每小题3分,共15分)。 6、某人投篮,每次命中得概率为,现独立投篮3次,则至少命中1次得概率为、 7、已知连续型随机变量得概率密度函数为,则常数=、 8、二维随机变量得分布函数为,则概率=、 9、已知随机变量得方差分别为,且协方差,则=1、8、 10、某车间生产滚珠,从长期实践中知道,滚珠直径(单位:c m)服从正态分布,从某 天生产得产品中随机抽取9个产品,测其直径,得样本均值=1、12,则得置信度为0、95得置信区间为、 (已知,,,) 三、解答题(本大题共6小题,每小题10分,共60分)。 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品得概率分别为0、8, 0、1, 0、1、顾客购买时,售货员随意取一箱,而顾客随意查瞧四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下得概率.(结果保留3个有效数字) 解:设表示售货员随意取一箱玻璃杯,顾客买下;表示取到得一箱中含有个残品,,则所 求概率为 2 0()(|)()...............................................................................(5') 19181716181716150.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10') 12、已知连续型随机变量得概率密度函数为 , (1)求概率;(2)求、

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

概率论与数理统计题型

1、甲,乙两人向同一目标独立地各射击一次,命中率分别为2 1 ,31现已知目标被击 中,则它是甲命中的概率为() A 、1/3 B 、2/5 C 、1/2 D 、2/3 2、设C B A ,,是三个相互独立的随机事件,且1)(0<?VarY VarX ,则() A 、Y X ,独立 B 、Y X ,不相关 C 、0),cov(>Y X D 、1),(=Y X Corr 4、设n x x x ,,21为取自正态总体()2,σμN 的一组简单随机样本,其中μ未知,2 σ 已知.令 )1()(1x x n -=η,σ η2 12x x += ,σ μ ησ ημη∑∑∑===-= = -= n i i n i i n i i x x n x 1 51 41 3,,其中统计量个数是() A 、 1 B 、 2 C 、 3 D 、4 5、设当事件A 与B 同时发生时,事件C 必发生,则() A 、 1)()()(-+≤B P A P C P B 、1)()()(-+≥B P A P C P C 、)()(AB P C P = D 、)()(B A P C P = 6、设B A ,为两事件,且0)(>B P ,0)(=B A P 则() A 、A 与 B 为互不相容事件 B 、AB 是不可能事件 C 、φ=B A D 、AB 未必是不可能事件 7、设,)(,)(βα==B P A P 则10≤+≤βα,)(B A P 可能取值的最大值为() A 、βα+ B 、αββα-+ C 、),max(βα D 、),min(βα 8、若()() ρσσμμ,,,,~,2 22 121N Y X ,则0=ρ是Y X ,独立的() A 、充分条件 B 、必要条件 C 、充要条件 D 、既非充分也非必要条件 9、掷两枚均匀硬币,已知其中一枚是反面,则另一枚也是反面的概率为() A 、1/2 B 、1/4 C 、1/8 D 、1/3 变式:已知一家庭中有两个小孩,已知其中至少有一个为女孩,则另一个也是女孩的概率为() A 、1/2 B 、1/3 C 、1/4 D 、2/3 10、设n x x ,,1???是总体)4,2(~U X 的一个样本,则=>)3()(n x P

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分) 1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 , =)B -A (p 0.1 ,)(B A P ?= 0.4 , =)B A (p 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2只,则第一次、 第二次取红色球的概率为: 1/3 。(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。 3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、 乙厂的产品分别占60%、40%的一批产品中随机抽取一件。 (1)抽到次品的概率为: 0.12 。 (2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4, Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为: 6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 , (~,12N Y X Y 则+= 5 , 16 )。 7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则: =-)2(Y X E - 4 ,=-)2(Y X D 6 。 8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。则:~X N (8 , 8/13 ), ~16252 S )25(2χ, ~5 2/8s X - )25(t 。

相关主题