搜档网
当前位置:搜档网 › 高考数学中的放缩技巧

高考数学中的放缩技巧

高考数学中的放缩技巧
高考数学中的放缩技巧

高考数学中的放缩技巧

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求

∑=-n

k k

1

2

142

的值; (2)求证:

3

51

1

2

<

∑=n

k k

.

解析:(1)因为121121)12)(12(21

422+--=+-=

-n n n n n ,所以12212111

4212

+=+-=-∑=n n n k n k (2)因为??? ??+--=-=-

<1211212144

4

11

1

222n n n n n ,所以35321121121513121112=+

k Λ 奇巧积累:(1)??? ??+--=-<

=1211212144

4412

2

2n n n n

n

(2))

1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(1

11)1(1!11)!(!!11

≥--=-<

=+r r r r r r n r n r n n

C T

r

r r

n r (4)2

5

)1(12311

2111)11(<-++?+

?++<+n n n n Λ (5)

n

n n

n 2

1121)12(21--=- (6)

n n n -+<+22

1

(7))1(21)1(2--<<-+n n n n n (8)

n

n n n n n n 2)32(12)12(12

13211221?+-?+=???? ??+-+- (9)

?

?

? ??++-+=+++??? ??+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1

(10) !)1(1!1!)1(+-=+n n n n (11)

2

1

2121

21222)1212(21

-++

=

-++=

--+

(11)

)2(1

21121)12)(12(2)22)(12(2)12)(12(2)12(211

12≥---=--=--<--=----n n n n n n n n n n n n n n

(12) 1

11)1(1)1(1)1)(1(111

2

3

--+????? ??+-

-=+-<

?=

n n n n n n n n n n n n

1

1112111111

+--<-++?

??? ??+--=n n n n n n n

(13) 3

212132122)12(332)13(2221n n n

n n n n n n <-?

>-?>-?>?-=?=+

(14)

!

)2(1!)1(1)!2()!1(!2+-

+=+++++k k k k k k (15) )2(1)1(1

≥--<+n n n n n

(15)

11

1)

11)((1122222

222<++++=

++

+--=

-+-+j i j

i j i j i j i j i j i

例2.(1)求证:)2()12(2167)

12(1513112

22≥-->-++++n n n Λ (2)求证:n

n 412141361161412

-<++++Λ (3)求证:1122642)12(531642531423121-+<

????-????++????+??+n n

n ΛΛΛ

(4) 求证:)112(213

12

11)11(2-+<++++<-+n n

n Λ

解析:(1)因为

??? ??+--=+->-12112121)12)(12(1)

12(12

n n n n n ,所以 )

1

2131(211)12131(211)

12(1

1

2

--+>+-+>-∑=n n i n

i

(2))111(41)1211(4141361161412

22n

n n -+<+++=++++ΛΛ

(3)先运用分式放缩法证明出1

212642)12(531+<

????-????n n

n ΛΛ,再结合

n

n n -+<+22

1进行裂项,最后就

可以得到答案 (4)首先n

n n n n

++=

-+>12)1(21

,所以容易经过裂项得到

n

n 13

12

11)11(2+

++

+

<-+Λ

再证

2

12121

21222)1212(21-++

=

-++=

--+

而由均值不等式知道这是显然成立

的,所以)112(2131211-+<++++n n Λ

例3.求证:

3

5

191411)12)(1(62<++++≤++n n n n Λ

解析:一方面:因为??? ??+--=-=-<121121

2144

4

11

1

222

n n n n n ,所以

353211211215

1

31211

1

2

=

+

n

k Λ 另一方面:1

111)1(143132111914112

+=+-=+++?+?+>++++n n n n n n ΛΛ 当3≥n 时,)

12)(1(61

++>

+n n n n n

,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,

当2=n 时,

21

91411)12)(1(6n

n n n ++++<++Λ,所以综上有

3

5

191411)12)(1(62<++++≤++n n n n Λ

例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b

-≥.证明:1k a b +>.

解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则

b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤

0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a

1

11

ln ln ,因为)ln (ln 11

b a k a a k

m m m <∑=,

于是b a b a b a k a a k =-+≥+>+)(|ln |11111

例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .

解析:首先可以证明:nx x n +≥+1)1(

=++++++++--=-++---+--=n

k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证

1)1()1(11-+<+<++m n m n S m n 只要证:

∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n

k m m m m m m m m m n k m n k m m k k n n n n n k m k k 1

11111111111

1

11]

)1[(2)1()1(1)1()1(])1([Λ 故只要证

∑∑∑=++==++-+<+<--n

k m m n k m n

k m m k k k m k k

1

111

1

1

1

])1[()1(])

1([,即等价于

m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m k

k m k k m

而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n

n n

a a a T +++=

Λ212,求证:23321<++++n

T T T T Λ.

解析:)21(2)14(3

421)21(241)41(4)222(444421321n n n

n n n n

T -+-=-----=+++-++++=ΛΛ

所以

123)2(222322342323

23422234342)21(2)14(3422111111+?-??

=+?-?=-+=-+-=-+-=++++++n n n

n n n n n n n n n n n n

n T

??

? ??---=--??=

+12112123)12)(122(2231n n n n n

从而2

31211217131311231321

T T T T ΛΛ 例7.已知11=x ,???∈=-∈-==)

,2(1),12(Z k k n n Z k k n n x n

,求证:

*))(11(21

1

1

4

1224

5

44

32N n n x x x x x x n n ∈-+>++?+

?+Λ

证明:

n

n

n n n n x x n n 222141

141

)

12)(12(1

1

4

2

4

24

4

1

22=

?=>

-=

+-=

+,因为 12++

1(21

2

221

4

1

22n n n n n

x x n n -+=++>

>

+

所以

*)

)(11(21

1

14

1

224

5

44

3

2N n n x x x x x x n n ∈-+>+

+?+

?+Λ

二、函数放缩

例8.求证:)(6

65333ln 44ln 33ln 22ln *N n n n n n

∈+-<++++Λ.

解析:先构造函数有x

x

x x x 11ln 1ln -≤?-≤,从而)3

13121(1333ln 44ln 33ln 22ln n

n n n +++--<++++ΛΛ

因为??

? ??++++++??? ??++++++??? ??+=+

++n n n n 311212

1

91817161514131213131

21ΛΛΛ

6533323279189936365111n n n n n =???

? ??+?++??? ??++??? ??++>---Λ

所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n

n

Λ

例9.求证:(1))2()

1(212ln 33ln 22ln ,22

≥+--<+++≥n n n n n n α

ααααααΛ

例11.求证:e n <+??++)!

11()!

311)(!

211(Λ和e n <+??+

+)3

1

1()8111)(91

1(2Λ. 解析:构造函数后即可证明

例12.求证:32)]1(1[)321()211(->++???+??+n e n n Λ

解析:

1

)1(3

2]1)1(ln[++-

>++n n n n ,叠加之后就可以得到答案

例13.证明:)1*,(4

)

1(1ln 54

ln 43ln 32ln >∈-<++

+++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:

1

2111)('--=--=

x x x x f ,令

0)('>x f 有21<x ,

所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以2

11

ln -≤

+n n n

,所以)1*,(4

)1(1ln 54ln 43ln 32

ln >∈-<+++++

n N n n n n n Λ

例14. 已知112111,(1).2

n n n

a a a n n

+==+++证明2n a e <.

解析:

n

n n n n a n n a n n a )21)1(11(2

1))1(11(1+++<+++

=+, 然后两边取自然对数,可以得到

n

n n a n n a ln )2

1

)1(11ln(ln 1++++

<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:

?+++

≤+n n

n a n n a )21

11(2

1?++++

≤+n n n a n n a ln )2

1

11ln(ln 2

1 n

n n n a 2

1

1ln 2

+++

≤。于是

n

n n n n a a 2

1

1ln ln 2

1++≤

-+,

.

221122

11)21

(111ln ln )2

11()ln (ln 1

1211

11

1

<--=--+

-≤-?++≤---=+-=∑

n n n i n i i i n i n n a a i i a a

即.2ln ln 21e a a a n n

注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n 来放缩:

?-+-+

≤+)1(1

))1(11(1n n a n n a n n ?

+-+≤++)1)()

1(11(11n n a n n a .

)

1(1

))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n

11

1)1ln()1ln()1(1)]1ln()1ln([21

2

112

<-<+-+?-<+-+?∑

∑-=+-=n

a a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-

例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >?在0>x 上恒成立. (I)求证:函数

),0()

()(+∞=

在x

x f x g 上是增函数;

(II)当)()()(:,0,0212121x x f x f x f x x +<+>>证明时; (III)已知不等式01)1ln(≠-><+x x x x 且在时恒成立, 求证:).

()2)(1(2)1ln()

1(14ln 413ln 312ln 2

1

*22

222222

N n n n n n n ∈++>++++++

Λ

解析:(I)0)()(')('2

>-=

x x f x x f x g ,所以函数),0()()(+∞=在x

x f x g 上是增函数 (II)因为

),0()

()(+∞=

在x

x f x g 上是增函数,所以 )()()()(212

111

2

1211

1x x f x x x x f x x x x f x x f +?+<

?++< )()()()(212

122212122x x f x x x x f x x x x f x x f +?+

两式相加后可以得到)()()(2121x x f x f x f +<+ (3) )

()()()

(21211

121211

1n n

n n x x x f x x x x x f x x x x x x f x x f +++?+++

ΛΛΛΛ )()()()(212122212122n n

n n x x x f x x x x x f x x x x x x f x x f +++?+++

n n n n n n x x x f x x x x x f x x x x x x f x x f +++?+++

相加后可以得到:

)()()()(2121n n x x x f x f x f x f +++<+++ΛΛ

所以)ln()(ln ln ln ln 2121332211n n n n x x x x x x x x x x x x x x ++++++<++++ΛΛΛ 令

2

)1(1n x n +=

,有 <

???

? ??++++++-22222222)1ln()1(14ln 413ln 312ln 21

n n Λ

?

??? ??++++????? ??+++++2222222)1(13121ln )1(1413121n n ΛΛ ????

?

?+++?+?????? ??++++

=??

? ??+-??? ??+-

()2)(1(2)1ln()

1(14ln 413ln 312ln 2

1

*22

222222

N n n n n

n n ∈++>++++++

Λ

(方法二)?

?

? ??+-+=++≥+++>

++2111

4ln )2)(1(4ln )2)(1()1ln()1()1ln(22

2

n n n n n n n n n 所以)

2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2

1

22222222

+=??? ??+->++++++

n n n n n Λ 又1

114ln +>>n ,所以

).

()2)(1(2)1ln()

1(14ln 413ln 312ln 21*22

222222N n n n n

n n ∈++>++++++Λ

例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥

++>>证明

解析:设函数()()(),(0)g x f x f k x k =

+->

.

2

021,0)(,ln

1)ln(1ln )(.

0),ln()(ln )(,

ln )(k x k

x k k x x k x x g x

k x x k x x g k x x k x k x x x g x x x f <--?>->'-=---+='<<∴--+=∴=则有令ΘΘ

∴函数k

k

x g ,2

[)(在)上单调递增,在

]2

,0(k 上单调递减. ∴)(x g 的最小值为

)2(k g ,即总有).2

()(k g x g ≥

而,2ln )()2ln (ln 2

ln )2

()2

()2

(k k f k k k k k k f k f k g -=-==-+=

,2ln )()(k k f x g -≥∴ 即.2ln )()()(k k f x k f x f -≥-+ 令,,b x k a x =-=则.b a k +=

.2ln )()()()(b a b a f b f a f +-+≥+∴

).()(2ln )()(b f b a f b a a f -+≥++∴

三、分式放缩

姐妹不等式:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

记忆口诀”小者小,大者大”

解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:12)1

21

1()5

11)(3

11)(11(+>-+

+++n n Λ和 1

21)21

1()611)(411)(211(+<

+---n n

Λ也可以表示成为

1

2)

12(5312642+>-???????n n n

ΛΛ和1

212642)12(531+

解析: 利用假分数的一个性质)0,0(>>>++>m a b m

a m

b a

b 可得

>-??1225

63412n n

Λ

=+??n n 212674523Λ)

12(2126

54321+?-??n n

n Λ

?12)1

225

63412(2

+>-??n n n Λ

即.12)1211()511)(311)(11(+>-+

+++n n Λ 例20.证明:.13)2

31

1()711)(411)(11(3+>-+++

+n n Λ 解析: 运用两次次分式放缩:

1

338956.232313784512-????>--????n n n n ΛΛ (加1)

n

n n n 3139

1067.342

3137

84512+????>--????ΛΛ (加2)

相乘,可以得到:

)13(1323875421131381057.2423137

845122

+?--????=-+?

???>??? ??--????n n n n n n n ΛΛΛ 所以有.13)2311()711)(411)(11(3+>-++++n n Λ 四、分类放缩

例21.求证:2

1213

12

11n

n

>-+

+++Λ 解析: +++++++++>-+

+++ΛΛ)2

1

212121()4141(2111213

12113

333n 2)2

11(221)212121(

n

n n n n n n

>-+=-+++Λ 例22.(2004年全国高中数学联赛加试改编) 在平面直角坐标系xoy 中, y 轴正半轴上的点列{}n

A 与曲

线x y 2=(x ≥0)上的点列{}n B 满足n

OB OA n

n 1==,直线n n B A 在x 轴上的截距为n a .点n B 的横坐标为

n b ,*∈N n .

(1)证明n a >1+n a >4,*∈N n ; (2)证明有*∈N n 0,使得对0n n >?都有n

n n n b b b b b b b b 112312+-++++Λ<2008-n .

解析:(1)

依题设有:(()10,,,0n n n

n A B b b n ??> ???

,由1n OB n =得:

2*212,1,n n n b b b n N n +=

∴∈,又直线n n A B 在x 轴上的截距为n a 满足

(

)()

11000n n a b n n ???

-=--? ????

n a 2222

1210,2n n n n

n b n b b n b =->+=

Q

(

2

211212n n n n n b a b n b n b +∴=

===+-

1n a 显然,对于1

101

n

n >

>+,有*14,n n a a n N +>>∈

(2)证明:设

*1

1,n n n

b c n N b +=-

∈,则

(

)

()()22222

111211212

121n c n n n n n n n ?- +??? ?++ > ++ ?()()()2

*1

212210,,2

n n n n n c n N n ++-+=>∴>

∈+Q 设*12,n n S c c c n N =+++∈L ,则当()

*221k n k N =->∈时,

23111111111113421234212212n k k k k

S -??????>++++=+++++++ ? ? ?-++??????

L L L

212311112222222

k k k -->?

+?++?=L 。 所以,取4009022n =-,对0n n ?>都有:

200821

4017111012312=->>=???? ??-++???? ??-+???? ??-+n n n n S S b b b b b b Λ 故有n

n n n b b b b b b b b 112312+-++++Λ<2008-n 成立。 例23.(2007年泉州市高三质检) 已知函数),1()(2R c b c bx x x f ∈≥++=,若)(x f 的定义域为[-1,0],值域也为[-1,0].若数列}{n b 满足)()(*3

N n n

n f b n ∈=,记数列}{n b 的前n 项和为n T ,问是否存

在正常数A ,使得对于任意正整数n 都有A T n <?并证明你的结论。 解析:首先求出x x x f 2)(2+=,∵n

n

n n n

n f b n 12)(3

23>+==

∴n b b b b T n n 131211321++++>++++=ΛΛ,∵214124131=?>+,218148

1716151=?>+++, (2121221221121)

1

11=?>++++

+---k k k k k Λ,故当k n 2>时,12

+>k T n

, 因此,对任何常数A ,设m 是不小于A 的最小正整数,

则当222->m n 时,必有A m m T n

>=+->12

22.

故不存在常数A 使A T n <对所有2≥n 的正整数恒成立. 例24.(2008年中学教学参考)设不等式组??

?

??+-≤>>n nx y y x 3,

0,

0表示的平面区域为n D ,设n D 内整数坐标点的

个数为n a .设

n

n n n a a a S 22

1

111+

++

=

++Λ,

当2≥n 时,求证:3611711112321+≥++++n a a a a n Λ.

解析:容易得到n a n 3=,所以,要证

36

11711112321+≥++++n a a a a n Λ只要证12

11721312112+≥++++

=n S n n

Λ,

因为n n n n

S 2

1

2211

2

1(

)81716151()4131(2111

1

2

++++

++++++++++=--ΛΛ 12

117)1(12723211121222+=-+≥+++++

=-n n T T T n Λ,所以原命题得证.

五、迭代放缩 例25. 已知1,1411

=++=

+x x x x

n n n ,求证:当2≥n 时,n n

i i x -=-≤-∑11

22|2| 解析:通过迭代的方法得到1

212-≤-n n

x ,然后相加就可以得到结论

例26. 设n

n n S 2

!sin 2

!2sin 2

!1sin 21+++=Λ,求证:对任意的正整数k ,若k ≥n 恒有:|S n+k -S n |<1

n

解析:

|2)sin(2)!2sin(2)!1sin(|

||2

1k

n n n n k n k n n n S S ++++++++++=-Λ k

n n n k n n n k n n n +++++++++≤++++++≤2

12

12

1|2

)sin(||2

)!2sin(||2

)!1sin(|2121ΛΛ

n

k n k n 2

1)2

11(2

1)2

12

12

1(2

12<-?=+++=Λ 又n C C C n n n n n n >+++=+=Λ10)11(2 所以n

S S

n n k

n 121||<

<

-+ 六、借助数列递推关系

例27.求证:1222642)12(5316

425314

2312

1-+

n ΛΛΛ

解析: 设n

n a n

2642)12(531????-????=ΛΛ则

n n n n n a na a n a n n a +=+?++=

++2)1(2)

1(21

211,从而

n n n na a n a 2)1(21-+=+,相加后就可以得到

1

2

21)22(13

21)1(22)1(21121-+?

+<-+?

+<-+=++++n n n n a a n a a a n n Λ

所以1222642)12(5316

425314

2312

1-+

n ΛΛΛ

例28. 求证:1122642)12(5316

425314

2312

1-+

n ΛΛΛ

解析: 设n

n a n

2642)12(531????-????=ΛΛ则

1

11)12(]1)1(2[)

1(212+++++=++?++=

n n n n n a a n a n a n n a ,从而

n n n a n a n a )12(]1)1(2[11+-++=++,相加后就可以得到

1122

3

1

21)12(3)12(1121-+<-

+?

+<-+=++++n n n a a n a a a n n Λ 例29. 若1,111+=?=+n a a a n n ,求证:)11(21

11

21

-+≥+++

n a a a n

Λ 解析:

n

n n n n n n a a a a a n a a -=?

+?=+=?+++++21

112112

所以就有21221

111

211211

21

-+=-≥--++=+++

++n a a a a a a a a a a a n n n n n Λ 七、分类讨论

例30.已知数列}{n a 的前n 项和n S 满足.1,)1(2≥-+=n a S n n n 证明:对任意的整数

4>m ,有

8

711154<+++m a a a Λ 解析:容易得到

[]

.)1(23

212---+=

n n n a ,

由于通项中含有n

)1(-,很难直接放缩,考虑分项讨论:

当3≥n

且n 为奇数时1

2222223)121121(2311

2

13

21

2121--++?=-++=+

-------+n n n n n n n n n

a a )

2

121(232

2

2

2

3123

21

2

-----+?=

+?

m 且m 为偶数时

=

+++m

a a a 11154Λ)11()11(11654m m a a a a a +++++-Λ .878321)2

11(412321)212121(23214243=+<-??+=++++<--m m Λ ②当

4

>m 且

m

为奇数时<+++

m a a a 1

11

54

Λ1

541111+++++m m a a a a Λ(添项放缩)由①知

.

8

71111154<+++++m m a a a a Λ由①②得证。 八、线性规划型放缩

例31. 设函数2

21()2

x f x x +=+.若对一切x R ∈,3()3af x b -≤+≤,求a b -的最大值。

解析:由

22

22

1(2)(1)(())((1)1)22(2)x x f x f x -+-+-=

+知

1

(())((1)1)0

2

f x f +-≤ 即

1

()12

f x -≤≤ 由此再由()f x 的单调性可以知道()f x 的最小值为12

-

,最大值为1

因此对一切x R ∈,3()3af x b -≤+≤的充要条件是,133233

a b a b ?-≤-+≤?

?

?-≤+≤?

高考数学答题得分的几个窍门_答题技巧

高考数学答题得分的几个窍门_答题技巧 数学自古以来就是所有科目中比较重要的,也是比较难的一棵,很多学生都不喜欢数学,特别是上高中以后,高中数学简要的就是代数和几何两部分,无论是文科还是理科生,数学所占分值都是非常高的,现特联合烟台市几所重点初高中多年在职教师,总结出一些适合每一个学习数学的学生所使用的方法,供大家参考讨论. 高考题量大、面广且有一定难度,想要做到快速、准确地答题并不是一件容易的事。以数学为例,考试时间只有两个小时,90%的学生在限定的时间内都答不完。如果快速与准确发生冲突,应以准确为主。由于考试时间紧,不少考生没有时间检查,所以,我们在作答时要稳中求快,做选择题、填空题要“一步到位”,不要寄希望于最后检查时再纠正错误。 平时与学生交流时,经常有学生面带遗憾地说:“其实这次考试并没有考出我的正常水平,有些题我明明可以得分的,要不是??????” 实际教学过程中,我对这一点也是深有体会,有些同学平时学习成绩一直很不错,但一考试就会考得不如人意。在对这些学生进行一番观察后,我发现他们身上存在这样一个共通的缺点:不懂一些最大限度拿分的技巧。比如: 相同的一道题目,花费的时间总是比别人多; 对整张试卷没有全局观,结果对试题难易程度没有很好的把握,导致在难题上浪费时间太多,最终时间不够用; 因此,尽管他们本身的水平并不差,但却很难取得与自己的知识水平相对应的成绩。 听我说到这里,可能你会问:“我们究竟该怎么做,才能将实际知识与能力水平转化为应有的考试分数呢?” 这里除了身体因素、临场考试状态外,最主要的还是答题应试的策略。 在前一节的内容中我们已经讲到了充分利用考前5分钟和合理分配时间两个技巧,下面我再结合自己的教学实践和一些优秀学子的经验之谈,谈谈另外几个答题得分的技巧。 (1)力争首次就做对。 在考试的时候,很多同学拿到卷子后的第一反应往往是急于作答,急切地一题题往下做,潜意识里并不重视正确率。用他们自己的话说,反正一会儿还要检查呢,先把试卷做完再说。正因为第一遍作答时放松了要求,结果有些本来能答好的题目也出了不少错误。 很显然,这种应试方法就很不明智。 一位成绩优异的同学就曾这样说: “做题要抓正确率,保证做过的题目尽量得分。没有把握的题目标个记号等你全部做完再回头检查或补做。否则,你匆匆做完考卷,然后寄希望于整张卷,这相当于每道题目都做了两遍,你根本没有这个时间,而且做时匆匆,毛毛躁躁,错误率必然高,隐患大。” 考场上的时间是非常宝贵的,有时因为题量过大或者其他原因,做过一遍的题目可能就没时间再检查了。因此我们在考试的过程中,对自己会做的题目,在确信解题思路正确之后,第一遍作答时就应力求准确无误。也许你的“认真仔细”会花掉一些时间,但与第一遍马虎从事、第二遍检查出错再重做相比还是要节省不少时间的。 还有,我必须意识到这样一点:考试中的复查只是一种辅助手段,因此初次作答时最好不要寄希望于复查。 (2)答题应先易后难,从前到后。 答题顺序应怎样安排才算合理呢?一般来说,答题的原则是,先易后难。这样做至少有以下几个方面的好处:

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

高考数学考试的答题技巧和方法_答题技巧

高考数学考试的答题技巧和方法_答题技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 选择题绝大部分是低中档题,所以必须争取多得分或得满分。选择题的答法审题要慢,答题要快。因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。答选择题常用的方法还有:数形结合法(根据题意做出草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。另外,答选择题不要恋战,要学会暂时放弃。

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

数列放缩法高考专题

高考专题—数列求和放缩法 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 n n n n a a 4.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明32221+<++

高考数学数列答题技巧解析

2019-2019高考数学数列答题技巧解析 数列是高中数学的重要内容,又是学习高等数学的基础。下面是查字典数学网整理的数学数列答题技巧,请考生学习。 高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。 有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。 试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关 问题。 2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

彭春波:高考数学有哪些应试技巧

一、历年高考数学试卷的启发 1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向; 2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。当然,我们也要考虑结论的独立性; 3.注意题目中的小括号括起来的部分,那往往是解题的关键; 如果大家还有关于数学或者其他科目不明白的,没有学习方法,我整理了《高考九大科目答题技巧》视频,大家可以领一份看看,里面讲解的很详细。同学们放心领,不要钱的!当然,如果有什么学习上的困惑,可以和我说,希望能用过来人的经验,给大家一些建议!私信回复:“九大科”,即可领取。 二、答题策略选择 1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。 一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答; 2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”。 注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。多写不会扣分,但写了就可能得分。 三、答题思想方法 1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 例题:方程sinx=lgx的根的个数为:() A1个B2个C3个D4个 3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是…… 4.选择与填中出现不等式的题目,优选特殊值法。 5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。 6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。 7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。 8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。 9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;回忆椭圆离心率公式:回忆双曲线离心率公式;。 10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。 11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜

高三数学必做题--数列放缩法

(1) 求数列 4的通项公式; 1 a a 1 (2) 若a ,设b n n 丄,且数列b n 的前n 项和为「,求证:人 3 1 a n 1 a n i 3 n 1 a 2、已知数列 q 的前n 项和s n -,且a 1 1. 2 (1) 求数列耳的通项公式; (2) 令b n ln a n ,是否存在k (k 2,k N),使得b k 、b k 1、b k 2成等比数列.若存在, 值;若不存在,请说明理由. 3、已知a n 是等差数列,a 2 3, a 3 5. ⑴求数列a n 的通项公式; 4、设数列a n 的前n 项和为S n ,且满足a 1 2, a . 1⑵对一切正整数n ,设b n n (1) n a n a n 1 ,求数列 b n 的前n 项和S n . 求出所有符合条件的 k 2S n 2 n 1,2,3L

(1)求 a 2 ; (2)数列a n 的通项公式; 5、对于任意的n € N*,数列{a n }满足 (I )求数列{a n }的通项公式; (n )求证:对于 n 》2,—— a ? a a i 1 a 2 2 , a n n -1 .2 L n 1 2 1 2 1 2 1 L 2 1 J a n 1 2n 2 6、已知各项均为正数的数列 {a n }的前n 项和为S n 满足4S n a n 2a n ?(3)设 b n a n 1 S n i S n ,求证: b i b 2 b n

(1)求a i 的值; (2)求{a .}的通项公式; 1 (1)求证:数列{」}是等差数列; a n 1 2 (2)求证:丄色更鱼L n 1 a 2 a 3 a ° (3)求证: 1 ~2 a i 1 ~2 a 2 a n ^,n N 2 7、已知数列耳满足a 1 2,a n 1a n 细1 1 0," N 8已知首项大于0的等差数列 a n }的公差d 1,且二 a n a n 1

高考数学答题技巧:应试解题方法

高考数学答题技巧:应试解题方法高考数学答题技巧:应试解题方法 1.解答那些一眼看得出结论的简单选择或填空题(一旦解出,情绪会立即稳定). 2.其他不能立即作答的题目,可一边通览,一边粗略分为A、B两类:A类指题型比较熟悉、预计上手比较容易的题目;B类是题型比较陌生、自我感觉比较困难的题目. 3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题. 通览全卷是克服前面难题做不出,后面易题没时间做的有效措施,也从根本上防止了漏做题.对于同一道题目,有的人理解的深,有的人理解的浅,有的人解决的多,有的人解决的少.为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分.这种方法我们叫它分段评分,或者踩点给分--踩上知识点就得分,踩得多就多得分. 分段得分的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分. 1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要

特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被分段扣点分.经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难. 2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密. (1)缺步解答.如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫大题拿小分. (2)跳步答题.解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一卡壳处.由于考试时间的限制,卡壳处的攻克如果来不及了,就可以把前面的写下来,再写出证实某步之后,继续有一直做到底.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在

高考数学解答题解题技巧

高考数学解答题解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。 一、三角函数题 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类: 1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。 3.解三角形问题,判断三角形形状,正余弦定理的应用。 注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输! 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。 3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。 全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。 三、立体几何题

高考数学得分技巧

2015高考数学得分技巧整理(完整版) 第1讲选择题得解题方法与技巧 题型特点概述 选择题就是高考数学试卷得三大题型之一.选择题得分数一般占全卷得40%左右,高考数学选择题得基本特点就是: (1)绝大部分数学选择题属于低中档题,且一般按由易到难得顺序排列,主要得数学思想与数学方法能通过它得到充分得体现与应用,并且因为它还有相对难度(如思维层次、解题方法得优劣选择,解题速度得快慢等),所以选择题已成为具有较好区分度得基本题型之一. (2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定得综合性与深度等特点,且每一题几乎都有两种或两种 以上得解法,能有效地检测学生得思维层次及观察、分析、判断与推理能力. 目前高考数学选择题采用得就是一元选择题(即有且只有一个正确答案),由选择题得结构特点,决定了解选择题除常规方法外还有一些特殊得方法.解选择题得基本原则就是:“小题不能大做”,要充分利用题目中(包括题干与选项)提供得各种信息,排除干扰,利用矛盾,作出正确得判断. 数学选择题得求解,一般有两条思路:一就是从题干出发考虑,探求结果;二就是从题干与选择支联合考虑或从选择支出发探求就是否满足题干条件. 解答数学选择题得主要方法包括直接对照法、概念辨析法、图象分析法、特例检验法、排除法、逆向思维法等,这些方法既就是数学思维得具体体现,也就是解题得有效手段. 解题方法例析 题型一直接对照法 直接对照型选择题就是直接从题设条件出发,利用已知条 件、相关概念、性质、公式、公理、定理、法则等基础知 识,通过严谨推理、准确运算、合理验证,从而直接得出 正确结论,然后对照题目所给出得选项“对号入座”,从 而确定正确得选择支.这类选择题往往就是由计算题、应用 题或证明题改编而来,其基本求解策略就是由因导果,直接 求解. 例1 设定义在R上得函数f(x)满足f(x)·f(x+2)=13,若f(1)= 2,则f(99)等于 () A.13 B.2 C、13 2D、 2 13 思维启迪

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

高考数学答题技巧五大关系

高考数学答题技巧五大关系 如今的高考,考的并不是谁的逻辑思维强,也不是谁的基础知识强;而是在考谁能最快、最准做出题来,得更多的分,可见掌握应试教育的技巧是多么的重要。 在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得最好的成绩。在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。 高考数学答题技巧五步走 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量如“至少”,“a>0”,自变量的取值范围等等,从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准

2016年高考数学解题方法技巧总结整理_答题技巧

2016年高考数学解题方法技巧总结整理_答题技巧 高考数学复习是考生们复习过程中的重点和难点,以下是小编整理的高考数学解题方法技巧,供同学们参考学习。 方法一、调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。 方法二、内紧外松,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。 方法三、沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。 方法四、六先六后,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。 1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行兴奋灶的转移,而先同后异,可以避免兴奋灶过急、过频的跳跃,从而减轻大脑负担,保持有效精力, 4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗 5.先点后面。近年的高考数学解答题多呈现为多问渐难式的梯度题,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面 6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施分段得分,以增加在时间不足前提下的得分。 方法五、一慢一快,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则

相关主题