搜档网
当前位置:搜档网 › 抓住“三类模型”破解竖直面内的圆周运动-高考物理二轮复习专题检测

抓住“三类模型”破解竖直面内的圆周运动-高考物理二轮复习专题检测

抓住“三类模型”破解竖直面内的圆周运动-高考物理二轮复习专题检测
抓住“三类模型”破解竖直面内的圆周运动-高考物理二轮复习专题检测

抓住“三类模型”,破解竖直面内的圆周运动

1.(2018·肇庆摸底)如图,一长为L 的轻质细杆一端与质量为m 的小球

(可视为质点)相连,另一端可绕O 点转动,现使轻杆与小球在同一竖直面内

匀速转动,测得小球的向心加速度大小为g (g 为当地的重力加速度),下列说

法正确的是( )

A .小球的线速度大小为gL

B .小球运动到最高点时处于完全失重状态

C .当轻杆转到水平位置时,轻杆对小球作用力方向指向圆心O 点

D .轻杆在匀速转动过程中,轻杆对小球作用力的最大值为mg

解析:选B 根据匀速圆周运动中a =v 2r

,解得:v =gL ,A 错误;小球做匀速圆周运动,向心加速度大小为g ,所以小球在最高点的加速度为g ,处于完全失重状态,B 正确;当轻杆转到水平位置时,轻杆对小球的作用力和重力的合力指向圆心,所以轻杆对小球的作用力方向不可能指向圆心O 点,C 错误;在最低点轻杆对小球的作用力最大,即F -mg =ma ,解得:F =2mg ,D 错误。

2.一截面为圆形的内壁光滑细管被弯成一个半径为R 的大圆环,并固

定在竖直平面内。在管内的环底A 处有一质量为m 、直径比管径略小的小

球,小球上连有一根穿过位于环顶B 处管口的轻绳,在水平外力F 的作用

下,小球以恒定的速率从A 点运动到B 点,如图所示。忽略内、外侧半径

差别(小球可视为质点),此过程中外力F 的变化情况是( )

A .逐渐增大

B .逐渐减小

C .先减小,后增大

D .先增大,后减小

解析:选D 小球做匀速圆周运动,合外力提供向心力,所以切线方向合力为零,设小球重力方向与切线方向的夹角为α,则有F =mg cos α,小球上升过程中,α从90°先减小到0(与圆心等高处),后增大到90°(B 点处),cos α 先增大后减小,所以F =mg cos α先增大后减小,故D 正确。

3.如图所示,一质量为m 的小物块沿竖直面内半径为R 的圆弧轨

道下滑,滑到最低点时的瞬时速度为v ,若小物块与轨道间的动摩擦

因数是μ,则当小物块滑到最低点时受到的摩擦力为( )

A .μmg

B .μmv 2R

C .μm ? ??

??g -v 2R D .μm ? ????g +v 2R

解析:选D 小物块滑到轨道最低点时,由重力和轨道的支持力提供向心力,由牛顿第

二定律得F N -mg =m v 2R ,得F N =m ? ??

??g +v 2R ,则当小物块滑到最低点时受到的摩擦力为 f =μF N =μm ? ??

??g +v 2R ,D 正确。 4.[多选](2018·洛阳高三统考)如图所示,处于竖直平面内的光

滑细金属圆环半径为R ,质量均为m 的带孔小球A 、B 穿于环上,两根长

为R 的细绳一端分别系于A 、B 球上,另一端分别系于圆环的最高点和

最低点,现让圆环绕竖直直径转动,当角速度缓慢增大到某一值时,连

接B 球的绳子恰好拉直,转动过程中绳子不会断,则下列说法正确的是

( )

A .连接

B 球的绳子恰好拉直时,转动的角速度为 2g R

B .连接B 球的绳子恰好拉直时,圆环对A 球的作用力为零

C .继续增大转动的角速度,圆环对B 球的作用力可能为零

D .继续增大转动的角速度,A 球可能会沿圆环向上移动

解析:选AB 当连接B 球的绳子刚好拉直时,mg tan 60°=m ω2

R sin 60°,解得ω= 2g R ,A 项正确;连接B 球的绳子恰好拉直时,A 球与B 球转速相同,由对称性知,A 球所受合力也为mg tan 60°,又A 球所受重力为mg ,可判断出A 球所受绳子的拉力为mg

cos 60°=2mg ,A 球不受圆环的作用力,B 项正确;继续增大转动的角速度,连接B 球的绳子上会有拉力,要维持B 球竖直方向所受外力的合力为零,圆环对B 球必定有弹力,C 项错误;当转动的角速度增大,圆环对A 球的弹力不为零,根据竖直方向上A 球所受外力的合力为零,可知绳子对A 球的拉力增大,绳子应张得更紧,因此A 球不可能沿圆环向上移动,D 项错误。

5.(2019届高三·合肥调研)如图甲所示,轻杆一端与一小球相连,另一端连在光滑固定轴上,可在竖直平面内自由转动。现使小球在竖直平面内做圆周运动,到达某一位置开始计时,取水平向右为正方向,小球的水平分速度v x 随时间t 的变化关系如图乙所示。不计空气阻力。下列说法中正确的是( )

A .t 1时刻小球通过最高点,图乙中S 1和S 2的面积相等

B.t2时刻小球通过最高点,图乙中S1和S2的面积相等

C.t1时刻小球通过最高点,图乙中S1和S2的面积不相等

D.t2时刻小球通过最高点,图乙中S1和S2的面积不相等

解析:选A 由题意可知,题图乙中t1时刻小球通过最高点,面积S1表示的是小球从最低点运动到水平直径最左端位置的过程中通过的水平位移,其大小等于轻杆的长度;S2表示的是小球从水平直径最左端位置运动到最高点的过程中通过的水平位移,其大小也等于轻杆的长度,所以选项A正确。

6.如图所示,质量为M的物体内有光滑圆形轨道,现有一质量为m的

小滑块沿该圆形轨道在竖直面内沿顺时针方向做圆周运动,A、C点为圆

周的最高点和最低点,B、D点为与圆心O在同一水平线上的点,小滑块

运动时,物体在地面上静止不动,则关于物体对地面的压力N和地面对物

体的摩擦力的说法正确的是( )

A.小滑块在A点时,N>Mg,摩擦力方向向左

B.小滑块在B点时,N=Mg,摩擦力方向向左

C.小滑块在C点时,N>(M+m)g,物体与地面无摩擦力

D.小滑块在D点时,N=(M+m)g,摩擦力方向向左

解析:选C 小滑块在A点时对物体的作用力竖直向上,物体在水平方向不受力的作用,所以不受摩擦力,A错误;小滑块在B点时,需要的向心力向右,所以物体对小滑块有向右的支持力作用,对物体受力分析可知,地面要对物体有向右的摩擦力作用,小滑块在竖直方向上对物体没有作用力,物体受力平衡,所以物体对地面的压力N=Mg,B错误;小滑块在C点对物体的作用力竖直向下,物体在水平方向不受力的作用,所以不受摩擦力;小滑块对物体的压力要大于自身所受的重力,则物体对地面的压力N>(M+m)g,C正确;小滑块在D 点和B点受力情况类似,分析可知N=Mg,摩擦力方向向左,D错误。

7.如图所示,内壁光滑的半球形碗放在水平面上,将质量不

同的A、B两个小球(A球质量小,B球质量大)从碗口两侧同时由

静止释放,让两球沿内壁下滑,不计两小球的大小,则下列说法

正确的是( )

A.A球先到达碗底

B.B球先到达碗底

C.两球下滑的过程中,碗有向左滑动的趋势

D.两球下滑的过程中,碗有向右滑动的趋势

解析:选D 由于两小球运动轨迹关于过球心的竖直线对称,两小球下滑过程中在同一水平面上的加速度大小始终相同,所以同时到达碗底,选项A、B错误;由于B球质量较大,下滑过程中对右侧碗壁的作用力较大,所以两球下滑的过程中,碗有向右滑动的趋势,选项

C 错误,

D 正确。

8.[多选](2018·厦门模拟)如图所示,两根等长的细线拴着两

个小球在竖直平面内各自做圆周运动,某一时刻小球1运动到自身

轨道的最低点,小球2恰好运动到自身轨道的最高点,这两点高度

相同,此时两小球速度大小相同,若两小球质量均为m ,可视为质

点,忽略空气阻力的影响,则下列说法正确的是( )

A .此刻两根细线拉力大小相同

B .运动过程中,两根细线上拉力的差值最大为2mg

C .运动过程中,两根细线上拉力的差值最大为10mg

D .相对同一零势能面,球1在最高点的机械能等于球2在最低点的机械能

解析:选CD 题述位置,球1加速度方向向上,处于超重状态,球2加速度方向向下,

处于失重状态,故拴着球1的细线拉力较大,故A 错误;球1在最高点时,有:F 1+mg =m v 12R

,球2在最低点时,有:F 2-mg =m v 22R ,两球运动过程中机械能守恒,球1:12

mv 2= 12mv 12+2mgR ,球2:12mv 2=12mv 22-2mgR ,解得:F 1=m v 2R -5mg ,F 2=m v 2R +5mg ,故 F 2-F 1=10mg ,故B 错误,C 正确;两球运动过程中机械能守恒,而题述位置两球的机械能相等,故两球的机械能一直是相等的,故D 正确。

9.如图所示,一倾角为30°的匀质圆盘绕垂直于盘面的固定对

称轴以恒定角速度ω转动,盘面上离转轴距离为d 处,有一带负电

的电荷量为q 、质量为m 的物体与圆盘始终保持相对静止。整个装

置放在竖直向上的匀强电场中,电场强度E =mg 2q

,则物体与盘面间的动摩擦因数至少为(设最大静摩擦力等于滑动摩擦力,g 为重力加速度)( )

A.

3g +4ω2d

9g B.3+ω2d 3g C.3g +4ω2d 3g D.3g +2ω2d 3g

解析:选A 对物体随圆盘转动的各个位置分析比较可知,当物体转到圆盘的最低点时,所受的静摩擦力沿斜面向上达到最大,由牛顿第二定律得:μ(mg +qE )cos 30°-(mg +qE )sin 30°=m ω2d ,解得:μ=3g +4ω2d 9g

,故A 正确,B 、C 、D 错误。 10.固定在竖直平面内的光滑圆弧轨道ABCD ,其A 点与圆心等高,

D 点为轨道的最高点,DB 为竖直直径,AC 为水平直径,A

E 为水平面,如图所示。今使小球自A 点正上方某处由静止释放,且从A 点进入圆

弧轨道运动,只要适当调节释放点的高度,总能使小球通过最高点D ,

则小球通过D 点后( )

A .一定会落到水平面AE 上

B .一定会再次落到圆弧轨道上

C .可能会再次落到圆弧轨道上

D .一定不会落到水平面A

E 上

解析:选A 设圆弧轨道半径为R ,若小球恰好能够通过最高点D ,根据mg =m v D 2R

,得:v D =gR ,知在最高点D 的最小速度为gR ,小球经过D 点后做平抛运动,根据R = 12gt 2,得:t = 2R g ,则平抛运动的最小水平位移为:x =v D t =gR ·2R g =2R ,知小

球一定会落到水平面AE 上。故A 正确,B 、C 、D 错误。

11.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平

固定轴MN 旋转以调节其与水平面所成的倾角。板上一根长为L =

0.60 m 的轻绳,它的一端系住一质量为m 的小球,另一端固定在板上

的O 点。当平板的倾角为α时,先将轻绳平行于水平轴MN 拉直,第

一次给小球一初速度使小球恰能在平板上做完整的圆周运动,小球在最高点的速度大小为 3 m/s ,若要使小球在最高点时轻绳的拉力大小恰与小球所受的重力大小相等,则小球在最高点的速度大小为(取重力加速度g =10 m/s 2

)( )

A. 6 m/s

B .2 m/s

C .3 m/s

D .2 3 m/s 解析:选C 小球在倾斜平板上运动时受重力、轻绳拉力、倾斜平板弹力。在垂直倾斜平板方向上合力为0,重力沿倾斜平板方向的分量为mg sin α,若小球恰能通过最高点,轻

绳拉力T =0,此时mg sin α=m v 2L ,代入数据得:sin α=12

,若要使小球在最高点时轻绳的拉力大小恰与小球所受的重力大小相等,小球在最高点时,有mg +mg sin α=m v ′2

L ,代入数据得:v ′=3 m/s ,故C 正确。

12.[多选](2018·大庆模拟)如图所示,竖直平面内的两个半圆轨

道在B 点平滑相接,两个半圆的圆心O 1、O 2在同一水平线上,粗糙的小

半圆半径为R ,光滑的大半圆半径为2R ;一质量为m 的滑块(可视为质

点)从大半圆的一端A 点以一定的初速度向上沿着半圆内壁运动,且刚好能通过大半圆的最高点,最后滑块从小半圆的左端冲出轨道,刚好能到达大半圆的最高点,已知重力加速度为g ,则( )

A .滑块在A 点的初速度为6gR

B .滑块在A 点对半圆轨道的压力为6mg

C .滑块第一次通过小半圆过程克服摩擦力做的功为mgR

D .增大滑块在A 点的初速度,则滑块通过小半圆克服摩擦力做的功不变 解析:选AC 由于滑块恰好能通过大半圆的最高点,在最高点重力提供向心力,即

mg =m v 22R ,解得v =2gR ,根据机械能守恒定律可得12mv A 2=2mgR +12

m (2gR )2,解得 v A =6gR ,A 正确;滑块在A 点时受到半圆轨道的支持力为:F =m v A 2

2R

=3mg ,由牛顿第 三定律可知,B 错误;设滑块在O 1点的速度为v 1,则v 1=2g ×2R =2gR ,在小半圆运动的

过程中,根据动能定理得W f =12mv A 2-12

mv 12=mgR ,C 正确;增大滑块在A 点的初速度,则滑块在小半圆中各个位置速度都增大,滑块对小半圆的平均压力增大,因此克服摩擦力做的功增多,D 错误。

13.[多选](2018·湖南六校联考)如图所示为用绞车拖物块

的示意图。拴接物块的细线被缠绕在轮轴上,轮轴逆时针转动从

而拖动物块。已知轮轴的半径R =0.5 m ,细线始终保持水平;被

拖动物块质量m =1 kg ,与地面间的动摩擦因数μ=0.5;轮轴的角速度随时间变化的关系是

ω=kt ,k =2 rad/s 2,g 取10 m/s 2,以下判断正确的是( )

A .物块做匀速运动

B .细线对物块的拉力是5 N

C .细线对物块的拉力是6 N

D .物块做匀加速直线运动,加速度大小是1 m/s 2

解析:选CD 由题意知,物块的速度为:v =ωR =2t ×0.5=t ,又v =at ,故可得:

a =1 m/s 2,所以物块做匀加速直线运动,加速度大小是1 m/s 2,故A 错误,D 正确;由牛顿第二定律可得,物块所受合外力为:F =ma =1 N ,F =T -f ,地面摩擦力为:f =μmg =0.5×1×10 N=5 N ,故可得物块受细线拉力为:T =f +F =5 N +1 N =6 N ,故B 错误,C 正确。

14.[多选](2018·铁岭协作体模拟)如图所示,半径为R 的内壁光滑圆

轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部

A 点。现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个

水平速度后沿轨道在竖直面内运动。当小球回到A 点时,再次用小锤沿运动

方向击打小球,通过两次击打,小球才能运动到轨道的最高点。已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功大小为W 1,第二次击打过程中小锤对小球做功大小为W 2。设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2

的值可能是( )

A.34

B.13

C.23 D .1

解析:选BC 第一次击打后小球最多到达与圆心O等高位置,根据功能关系,有:W1≤mgR,两次击打后小球可以到达轨道最高点,根据功能关系,有:W1+W2-2mgR=

1 2mv2,在最高点,有:mg+F N=m

v2

R

≥mg,解得:W1≤mgR,W2≥

3

2

mgR,故

W1

W2

2

3

,故B、C正确,

A、D错误。

高考物理圆周运动经典练习题

圆周运动 水平圆周运动 【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。当圆筒的角速度增大以后,下列说法正确的是(D) A、物体所受弹力增大,摩擦力也增大了 B、物体所受弹力增大,摩擦力减小了 C、物体所受弹力和摩擦力都减小了 D、物体所受弹力增大,摩擦力不变 【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a、b两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B ) A.在a轨道上运动时角速度较大 B.在a轨道上运动时线速度较大 C.在a轨道上运动时摩托车对侧壁的压力较大 D.在a轨道上运动时摩托车和运动员所受的向心力较大 【例题】长为L的细线,拴一质量为m的小球,一端固定于O点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L与竖直方向的夹角是α时,求: (1)线的拉力F;

(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。 ★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。由平行四边形法则得小球受到的合力大小为mg tanα,线对小球的拉力大小为F =mg/cosα由牛顿第二定律得mgt anα=mv 2 /r 由几何关系得r =Lsi nα 所以,小球做匀速圆周运动线速度的大小 为v = 小球运动的角速度 v r ω= == 小球运动的周期22T π==ω 点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。 1、竖直平面内: (1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况: ①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即r mv mg 2 临界 = ?rg =临界υ(临界υ是小球通过最高点的最小速度, 即临界速度)。 ②能过最高点的条件:临界υυ≥。 此时小球对轨道有压力或绳对小球有拉 力

高考物理曲线运动试题汇编

高考物理曲线运动试题汇编 平抛运动: (xx 年全国理综)19.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速为2v ,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 A .21222 v v dv B .0 C .21v dv D .1 2v dv (xx 年天津理综)16.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则 A .垒球落地时瞬时速度的大小仅由初速度决定 B .垒球落地时瞬时速度的方向仅击球点离地面的高度决定 C .垒球在空中运动的水平位移仅由初速度决定 D .垒球在空中运动的时间仅由击球点离地面的高度决定 (xx 年上海物理)16.(4分)右图为用频闪摄影方法拍 摄的研究物体作平抛运动规律的照片,图中A 、B 、C 为 三个同时由同一点出发的小球,AA /为A 球在光滑水平 面上以速度运动的轨迹;BB /为B 球以速度v 被水平抛 出后的运动轨迹;CC /为C 球自由下落的运动轨迹,通 过分析上述三条轨迹可得出结论: 。 答案:作平抛运动的物体在水平方向作匀速直线运动,在竖直方向作自由落体运动(或平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合成)。

(xx 年春季物理)13.质量为10.0=m kg 的小钢球以 100=v m/s 的水平速度抛出,下落0.5=h m 时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角 =θ_____________.刚要撞击钢板时小球动量的大小为 _________________.(取2/10s m g =) (xx 年全国物理)10.图为一空间探测器的示 意图, P 1、P 2、P 3、P 4是四个喷气发动机, P 1、P 3的连线与空间一固定坐标系的x轴平 行,P 2、P 4的连线与y 轴平行,每台发动机 开动时,都能向探测器提供推力,但不会使 探测器转动,开始时,探测器以恒定的速率 v 0向正x 方向平动,要使探测器改为向正x 偏负y 60o的方向以原来的速率v 0平动,则 可 A .先开动P 1适当时间,再开动P 4 B .先开动P 3适当时间,再开动P 2 C .先开动P 4适当时间,再开动P 2 D .先开动P 3适当时间,再开动P 4 (xx 年上海物理)20.(10分)如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2).某同学对此题的解法为: 小球沿斜面运动,则 t g t v h ?+=θθsin 21sin 0,由此可求得落地时间t . 问:你同意上述解法吗?若同意,求出所需时间; 若不同意则说明理由并求出你认为正确的结果. 答案:不同意。小球应在A 点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A 点的水平距离 )(110 2.025200m g h v t v s =??=== ① A h v 0 θ

匀速圆周运动专题

A 从动轮做顺时针转动 B.从动轮做逆时针转动 匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占 据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动 的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1) 线速度大小,方向沿圆周的切线方向,时刻变化; (2) 角速度,恒定不变量; (3)周期与频率; (4) 向心力,总指向圆心,时刻变化,向心加速度 ,方向与向心力相同; (5) 线速度与角速度的关系为 ,、、、的关系为。所以在、、中若一个量确定,其余两个量 也就确定了, 而还和有关。 2. 质点做匀速圆周运动的条件 (1) 具有一定的速度; (2) 受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确 定不变的平面内且一定指向圆心。 3. 匀速圆周运动的动力学特征 (1) 始终受合外力作用, 且合外力提供向心力, 其大小不变,始终指向圆心,因合力始终与速度垂直, 所以合力不做功. (2) 匀速圆周运动的动力学方程 根据题意,可以选择相关的运动学量如 v ,3, T , f 列出动力学方程;,,, 熟练掌握这些方程,会给解题带来方便. 4. 变速圆周运动的动力学特征 (1)受合外力作用,但合力并不总是指向圆心, 且合力的大小也是可以变化的, 故合力可对物体做功, 物体的速率也在变化. (2)合外力的分力(在某些位置上也可以是合外力 )提供向心力. 例题1?在图1中所示为一皮带传动装置,右轮的半径为 r , a 是它边缘上的一点,左侧是一轮轴,大轮 的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为 的边缘上。若在传动过程中,皮带不打滑。则( ) A . a 点与b 点的线速度大小相等 B . a 点与b 点的角速度大小相等 C . a 点与c 点的线速度大小相等 D. a 点与d 点的向心加速度大小相等 说明:在分析传动装置的各物理量时,要抓住等量和不等量之间 如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传 虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及 齿轮上的各点线速度大小相等、角速度与半径成反比。 练习 1.如图所示的皮带转动装置,左边是主动轮,右边是一个轮轴, ,。假设在传动过 程中皮带不打滑,则皮带轮边缘上的 A 、B C 三点的角速度之比是 ___________ ;线 r 。 c 点和d 点分别于小轮和大轮 的关系。 动(不考 a r 4r d - 'Jr 图1

高考物理一轮复习圆周运动专题训练(附答案)

高考物理一轮复习圆周运动专题训练(附答 案) 质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫圆周运动。以下是圆周运动专题训练,请考生认真练习。 1.(2019湖北省重点中学联考)由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是() A.P、Q两点的角速度大小相等 B.P、Q两点的线速度大小相等 C.P点的线速度比Q点的线速度大 D.P、Q两物体均受重力和支持力两个力作用 2.(2019资阳诊断)水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径Rr=21。当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为1,木块的向心加速度为a1,若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为2,木块的向心加速度为,则() A.=Rr=21 B.=2 C.=1 D.=a1 3.自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径RB=4RA、RC=8RA,如图3所示。当自

行车正常骑行时A、B、C三轮边缘的向心加速度的大小之比aAaB∶aC等于() A.11∶8 B.41∶4 C.41∶32 D.12∶4 对点训练:水平面内的匀速圆周运动 4.山城重庆的轻轨交通颇有山城特色,由于地域限制,弯道半径很小,在某些弯道上行驶时列车的车身严重倾斜。每到这样的弯道乘客都有一种坐过山车的感觉,很是惊险刺激。假设某弯道铁轨是圆弧的一部分,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢地面与水平面夹角)为,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为() A. 2 B.4 C. 5 D.9 5.(多选)绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动() A.转速相同时,绳长的容易断 B.周期相同时,绳短的容易断 C.线速度大小相等时,绳短的容易断 D.线速度大小相等时,绳长的容易断 6.(多选)(2019河南漯河二模)两根长度相同的细线分别系有两个完全相同的小球,细线的上端都系于O点。设法让两个

高考物理曲线运动试题(有答案和解析)含解析

高考物理曲线运动试题(有答案和解析)含解析 一、高中物理精讲专题测试曲线运动 1.如图所示,倾角为45α=?的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+? 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-?= 解得42 14 μ-= 2.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。 (1)若小球与箱壁一次碰撞后落到箱底处离C 点距离为,求小球抛出时的初速度v 0; (2)若小球正好落在箱子的B 点,求初速度的可能值。 【答案】(1) (2) 【解析】 【分析】 (1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B 点,则水平位移应该是2L 的整数倍,通过平抛运动公式列式求解初速度可能值。 【详解】 (1)此题可以看成是无反弹的完整平抛运动, 则水平位移为:x = =v 0t 竖直位移为:H =gt 2 解得:v 0= ; (2)若小球正好落在箱子的B 点,则小球的水平位移为:x′=2nL (n =1.2.3……) 同理:x′=2nL =v′0t ,H =gt′2 解得: (n =1.2.3……) 3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为

上海市上海交通大学附属中学圆周运动专题练习(解析版)

一、第六章 圆周运动易错题培优(难) 1.如图所示,叠放在水平转台上的物体 A 、B 及物体 C 能随转台一起以角速度 ω 匀速转动,A ,B ,C 的质量分别为 3m ,2m ,m ,A 与 B 、B 和 C 与转台间的动摩擦因数都为 μ ,A 和B 、C 离转台中心的距离分别为 r 、1.5r 。设最大静摩擦力等于 滑动摩擦力,下列说法正确的是(重力加速度为 g )( ) A . B 对 A 的摩擦力一定为 3μmg B .B 对 A 的摩擦力一定为 3m ω2r C .转台的角速度需要满足g r μω D .转台的角速度需要满足23g r μω 【答案】BD 【解析】 【分析】 【详解】 AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有 ()()233f m r m g ωμ= 故A 错误,B 正确; CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有 ()()233m r m g ωμ 对AB 整体有 ()()23232m m r m m g ωμ++ 对物体C 有 ()21.52m r mg ωμ 解得 g r μω 故C 错误, D 正确。 故选BD 。 2.如图所示,水平的木板B 托着木块A 一起在竖直平面内做圆心为O 的匀速圆周运动,

Oa水平,从最高点b沿顺时针方向运动到a点的过程中() A.B对A的支持力越来越大 B.B对A的支持力越来越小 C.B对A的摩擦力越来越小 D.B对A的摩擦力越来越大 【答案】AD 【解析】 【分析】 【详解】 由于始终做匀速圆周运动,合力指向圆心,合力大小不变,从最高点b沿顺时针方向运动到a点的过程中,合力的水平分量越来越大,竖直向下的分量越来越小,而合力由重力,支持力和摩擦力提供,因此对A进行受力分析可知,A受到的摩擦力越来越大,B对A的支持力越来越大,因此AD正确,BC错误。 故选AD。 3.如图所示,两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑。两个同种材料制成的完全相同的滑块A、B放置在轮盘上,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B,两滑块的质量之比为m A∶m B=9∶2.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是() A.滑块A和B在与轮盘相对静止时,线速度之比v A∶v B=2∶3 B.滑块A和B在与轮盘相对静止时,向心加速度的比值a A∶a B=2∶9 C.转速增加后滑块B先发生滑动 D.转速增加后两滑块一起发生滑动 【答案】ABC 【解析】 【分析】 【详解】 A.假设轮盘乙的半径为r,因r甲∶r乙=3∶1,所以轮盘甲的半径为3r。 由题意可知两轮盘边缘的线速度v大小相等,由v=ωr可得

高考专题复习:圆周运动(精选.)

圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2= ?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动 的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。 b 点在小轮上,到小轮中心的距离为r 。 c 点和 d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习 1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。 2.图示为某一皮带传动装置。主动轮的半径为r 1,从动轮的半径为r 2。已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打 图3-1 4r 2r r r a b c d 图3-4

高三物理曲线运动知识点总结

高三物理曲线运动知识点总结 高三物理曲线运动知识点 1.曲线运动:物体的轨迹是一条曲线,物体所作的运动就是曲线运动。 作曲线运动物体的速度方向就是曲线那一点的切线方向,而曲线上各点的切线方向不同,也就是运动物体的速度在不断地改变,所以作曲线运动的物体速度是变化的,物体作变速运动。 运动物体的轨迹是它在平面坐标系中的运动图像,与作直线运动物体的位移与时间图像是有着本质的不同,前者是运动的轨迹,后者是其位移随时间变化的规律;前者各点的切线方向是运动物体的速度方向,切线的斜率是运动物体的速度方向与某一方向的夹角的正切,后者各点的切线的斜率是运动物体的速度大小,但它只反映作直线运动物体的速度情况,而不能反映作曲线运动的速度情况。 物体作曲线运动的条件:物体所受的合外力与物体的速度不在一条直线上(也就是合外力沿与速度垂直的方向上有分量,该分量时刻在改变着运动物体的速度方向) 2.运动的合成与分解:运动的合成与分解就是矢量的合成与分解,它涉及运动学中的位移、速度、加速度三个矢量的合成与分解。 两个互相垂直方向上的直线运动合成后可能是直线运

动,也可能是曲线运动,反过来,两个方向的直线运动合成后可能是曲线,这就提供了研究曲线运动的途径——将曲线运动转化为直线运动进行研究。 运动的独立作用原理:如同力的独立作用原理一样,运动的合成与分解也是建立在各个方向分运动独立的基础上。 3.研究曲线运动的方法:利用速度、位移、加速度和力这些物理量的矢量性,进行合成与分解。 (1)在恒力的作用下的曲线运动:这种运动是匀速运动。一般将运动物体的初速度沿着力的方向和与力垂直的方向 上分解,在沿力的方向上物体作匀变速直线运动,在与力垂直的方向上物体作匀速直线运动。 若所求方向与速度和力均不在一条直线上,将速度和力均沿求解问题的方向和与求解问题垂直的方向进行分解。 (2)在变力作用下的曲线运动:这种运动是非匀变速运动。一般将物体受到的力沿运动方向和与运动垂直的方向分解。与运动方向一致的力改变速度的大小,与运动方向垂直的力改变运动的方向。 生活中的曲线运动举例 子弹射出枪膛,离弦的箭,抛铅球,投篮,过河的船等等都属于曲线运动。 高三物理平抛运动 1.平抛运动的特点:

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

2018高考物理真题曲线运动分类汇编

2018年全真高考+名校模拟物理试题分项解析 真题再现 1.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的() A. 时刻相同,地点相同 B. 时刻相同,地点不同 C. 时刻不同,地点相同 D. 时刻不同,地点不同 【来源】2018年全国普通高等学校招生统一考试物理(江苏卷) 【答案】 B 点睛:本题以平抛运动为背景考查合运动与分运动的关系及时刻和位置的概念,解题时要注意弹射管沿光滑竖直轨道向下做自由落体运动,小球弹出时在竖直方向始终具有跟弹射管相同的速度。 2.根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球 A. 到最高点时,水平方向的加速度和速度均为零 B. 到最高点时,水平方向的加速度和速度均不为零 C. 落地点在抛出点东侧 D. 落地点在抛出点西侧 【来源】2018年全国普通高等学校招生统一考试物理(北京卷) 【答案】 D 【解析】AB、上升过程水平方向向西加速,在最高点竖直方向上速度为零,水平方向上有向西的水平速度,且有竖直向下的加速度,故AB错; CD、下降过程向西减速,按照对称性落至地面时水平速度为0,整个过程都在向西运动,所以落点在抛出点的西

侧,故C错,D正确; 故选D 点睛:本题的运动可以分解为竖直方向上的匀变速和水平方向上的变加速运动,利用运动的合成与分解来求解。3.滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中 A. 所受合外力始终为零 B. 所受摩擦力大小不变 C. 合外力做功一定为零 D. 机械能始终保持不变 【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷) 【答案】 C 【点睛】考查了曲线运动、圆周运动、动能定理等;知道曲线运动过程中速度时刻变化,合力不为零;在分析物体做圆周运动时,首先要弄清楚合力充当向心力,然后根据牛顿第二定律列式,基础题,难以程度适中.

圆周运动专题汇编(必须掌握经典题目)

r m 高一期末考试题目 圆周运动专题汇编 ——高一必须掌握的经典题目 一、选择题[共53题] .............................................................................................................. 1 二、填空题[共9题] ................................................................................................................ 9 三、实验题[共2题] .............................................................................................................. 11 四、计算题[共6题] .............................................................................................................. 12 [编者按]高一不可能一步达到高三的水平,到底需要掌握哪些题型?打开历年的高一中考、末考题目,就可以心中有数了。这是笔者从138套历年全国各地高一期末考试题目中挑选的题目,选择题[共53题],填空题[共9题],实验题[共2题],计算题[共6题],共70道,不涉及与机械能联系的题目,汇编成一体,供讲新课的老师参考。 一、选择题[共53题] 1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( ) A .小球在最高点时所受向心力一定为重力 B .小球在最高点时绳子的拉力不可能为零 C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gL D .小球在圆周最低点时拉力可能等于重力 2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r , 如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A . g mr m M + B .g mr m M + C .g mr m M - D . mr Mg 3.关于匀速圆周运动的向心加速度,下列说法正确的是: A .大小不变,方向变化 B .大小变化,方向不变 C .大小、方向都变化 D .大小、方向都不变 4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有: A .车对两种桥面的压力一样大 B .车对平直桥面的压力大 C .车对凸形桥面的压力大 D .无法判断 5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时: A .衣物受到重力、筒壁的弹力和摩擦力的作用 B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的

(完整word版)高中物理圆周运动优秀教案及教学设计

高中物理圆周运动优秀教案及教学设计 导语:教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。你知道生活中还有哪些圆周运动呢?以下是品才整理的,欢迎阅读参考! 一、教材分析 《匀速圆周运动》为高中物理必修2第五章第5节.它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内容作为该章节的重要部分,主要要向学生介绍描述圆周运动的几个基本概念,为后继的学习打下一个良好的基础。 人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析总结出规律,从而形成理性认识。 教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。 二、教学目标 1.知识与技能 ①知道什么是圆周运动、什么是匀速圆周运动。理解线

速度的概念;理解角速度和周期的概念,会用它们的公式进行计算。 ②理解线速度、角速度、周期之间的关系:v=rω=2πr/T。 ③理解匀速圆周运动是变速运动。 ④能够用匀速圆周运动的有关公式分析和解决具体情景中的问题。 2.过程与方法 ①运用极限思维理解线速度的瞬时性和矢量性.掌握运用圆周运动的特点去分析有关问题。 ②体会有了线速度后,为什么还要引入角速度.运用数学知识推导角速度的单位。 3.情感、态度与价值观 ①通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。 ②体会应用知识的乐趣,感受物理就在身边,激发学生学习的兴趣。 ③进行爱的教育。在与学生的交流中,表达关爱和赏识,如微笑着对学生说“非常好!”“你们真棒!”“分析得对!”让学生得到肯定和鼓励,心情愉快地学习。 三、教学重点、难点 1.重点

2014-2018高考物理曲线运动真题

专题四曲线运动 (2017~2018年) 201701 15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网,其原因是A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍

(2016~2014年) 1.(2016·全国卷Ⅰ,18,6分)(难度★★)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 2.(2016·全国卷Ⅱ,16,6分)(难度★★★)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点() A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度

3.(2016·江苏单科,2,3分)(难度★★)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是() A.①B.②C.③D.④ 4.(2015·安徽理综,14,6分)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是() A.M点B.N点C.P点D.Q点

(完整版)高考第二轮复习专题:圆周运动

高考第二轮复习专题: ——物体的圆周运动 圆周运动 1.物体做匀速圆周运动的条件: 匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方 向垂直并指向圆心。 2.描述圆周运动的运动学物理量 (1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。 它们之间的关系大多是用半径r 联系在一起的。如:T r r v πω2=?=,2 2224T r r r v a πω===。要注意转速n 的单位为r/min ,它与周期的关系为n T 60=。 (2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有: ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。只适用于匀速圆周运动的公式有:2 24T r a π= ,因为周期T 和转速n 没有瞬时值。 例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧 是一轮轴,大轮的半径为4r ,小轮的半径为2r 。b 点在小轮上,到小轮中心的距离为r 。c 点和d 点分别于小轮和大轮的边缘上。若在传动过程中,皮带不打滑。则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。因为a 、c 两点在同一皮带 上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。 所以选项C 正确,选项A 、B 错误。 设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2/r 可分析出:A 点的向心加速度大小为r v a A 2=;D 点的向心加速度大小为:r v r r r a D 2 22)2(4=?=?=ωω。所以选图3-1

最新高考物理专题复习:圆周运动精编版

2020年高考物理专题复习:圆周运动精编 版

专题4.2 圆周运动 【高频考点解读】 1.掌握描述圆周运动的物理量及它们之间的关系. 2.理解向心力公式并能应用; 3.了解物体做离心运动的条件. 【热点题型】 题型一圆周运动的运动学问题 例1.如图4-3-3所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B两点( ) 图4-3-3 A.角速度之比ωA∶ωB=2∶1 B.角速度之比ωA∶ωB=1∶ 2 C.线速度之比v A∶v B=2∶1 D.线速度之比v A∶v B=1∶ 2 【提分秘籍】 1.圆周运动各物理量间的关系

2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比; 当ω一定时,v 与r 成正比; 当v 一定时,ω与r 成反比。 3.对a =v 2 r =ω2r 的理解 当v 一定时,a 与r 成反比; 当ω一定时,a 与r 成正比。 4.常见的三种传动方式及特点 (1)皮带传动:如图4-3-1甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B 。 图4-3-1 (2)摩擦传动:如图4-3-2甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B 。 图4-3-2 (3)同轴传动:如图乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB 。 【举一反三】 如图4-3-4所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来。a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )

高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理曲线运动常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试曲线运动 1.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtG α π 【解析】 试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度. (1)小球做平抛运动,落在斜面上时有:tanα== = 所以星球表面的重力加速度为:g=. (2)在星球表面上,根据万有引力等于重力,得:mg=G 解得星球的质量为为:M= 星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ= 点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G 和ρ=求星球的密度. 2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方 2 R 处的O '点由静止释放,小

球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求: (1)小球运动至B 点时的速度大小B v (2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大. 【答案】(1)4? /B v m s = (2)22?f W J = (3) 3.36L m = 【解析】 试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度. (1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2 B N v F mg m R -= 解得:4/B v m s = (2)从O '到B 的过程中重力和阻力做功,由动能定理可得: 21022f B R mg R W mv ? ?+-=- ??? 解得:22f W J = (3)由B 到C 的过程中,由动能定理得:221122 BC C B mgL mv mv μ-=- 解得:22 2B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g = = B 到P 的水平距离:2202B C C v v L v t g μ-= + 代入数据,联立并整理可得:214445 C C L v v =- + 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m

匀速圆周运动临界问题专题

匀速圆周运动临界专题 任务一:水平面内的圆周运动:物体在水平面内做的一般是匀速圆周运动.这样的物体在竖直方向上受力平衡,在水平方向上受的合外力提供它做圆周运动所需的向心 力. 同学们通过下面的练习,体会下面在水平面内的匀速圆周运动特点。 1.如图所示,水平转盘上放一小木块。转速为60rad/ min时,木块离轴8cm恰 好与转盘无相对滑动,当转速增加到120rad/min时,为使小木块刚好与转盘保 持相对静止,那么木块应放在离轴多远的地方?(注:汽车在水平面上转弯类 ............. 似这种情况) ...... 任务二:竖直平面内的圆周运动:物体在竖直面内作圆周运动的情况关键在于:最高点和最低点的状态分析。依据物体在圆周最高点的受力状态可以大致分为:物体最高点无支撑力的情况(例:绳球模型)和物体最高点有支撑力的情况(例:杆球模型) 图1绳球模型图3轻杆模型图4圆管轨道 1.如图1、2 所示,没有支撑物的小球在竖直平面作圆周运动过最高点的情况 ○1临界条件 ○2能过最高点的条件,此时绳或轨道对球分别产生______________ ○3不能过最高点的条件 2.如图3、4所示,为有支撑物的小球在竖直平面做圆周运动过最高点的情况 竖直平面内的圆周运动,往往是典型的变速圆周运动。对于物体在竖直平面内的变速圆周运 动问题,中学阶段只分析通过最高点和最低点的情况,并且经常出现临界状态,下面对这类 问题进行简要分析。 ○1能过最高点的条件,此时杆对球的作用力 ○2当0gr时,杆对小球的力为其大小为____________ 讨论:绳与杆对小球的作用力有什么不同? (第1题)

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

相关主题