搜档网
当前位置:搜档网 › 题型专练四 电磁感应中的单、双杆模型

题型专练四 电磁感应中的单、双杆模型

题型专练四 电磁感应中的单、双杆模型
题型专练四 电磁感应中的单、双杆模型

题型专练四电磁感应中的单、双杆模型

1.“导轨+杆”模型是电磁感应中的常见模型,选择题和计算题均有考查.该模型以单杆或双杆在导轨上做切割磁感线运动为情景,综合考查电路、动力学、功能关系、动量守恒等知识.

2.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等,情景复杂,形式多变.

3.在处理此类问题时,要以导体杆切割磁感线的速度为主线,由楞次定律、法拉第电磁感应定律和闭合电路欧姆定律分析电路中的电流,由牛顿第二定律分析导体杆的加速度及速度变化,由能量守恒分析系统中的功能关系,由动量定理中安培力的冲量分析电荷量.“导轨+双杆”模型中还可能满足动量守恒定律.

高考题型1电磁感应中的单杆模型

1.常见单杆情景及解题思路

常见情景(导轨和杆电阻不

计,以水平光滑导轨为例)

过程分析三大观点的应用

单杆阻尼式设运动过程中某时刻的速度

为v,加速度为a,a=

B2L2v

Rm,

a、v反向,导体棒做减速运

动,v↓?a↓,当a=0时,v

=0,导体棒做加速度减小的

减速运动,最终静止

动力学观点:分析加速度

能量观点:动能转化为焦

耳热

动量观点:分析导体棒的

位移、通过导体棒的电荷

量和时间

单杆发电式(v0=0) 设运动过程中某时刻棒的速

度为v,加速度为a=

F

m-

B2L2v

mR,F恒定时,a、v同向,

随v的增加,a减小,当a=0

时,v最大,v m=

FR

B2L2;a恒

定时,F=

B2L2at

R+ma,F与t

动力学观点:分析最大加

速度、最大速度

能量观点:力F做的功等

于导体棒的动能与回路中

焦耳热之和

动量观点:分析导体棒的

位移、通过导体棒的电荷

为一次函数关系

含“源”电动式(v 0=0)

开关S 闭合,ab 棒受到的安

培力F =BLE r ,此时a =BLE mr

速度v ↑?E 感=BL v ↑?I ↓

?F =BIL ↓?加速度a ↓,当

E 感=E 时,v 最大,且v m =E

BL

动力学观点:分析最大加

速度、最大速度

能量观点:消耗的电能转

化为动能与回路中的焦耳

动量观点:分析导体棒的位移、通过导体棒的电荷

含“容”无外力充电式

充电电流减小,安培力减小,a 减小,当a =0时,导体棒

匀速直线运动

能量观点:动能转化为电场能(忽略电阻)

含“容”有外力充电式

(v 0=0)

电容器持续充电F -BIL =ma ,I =ΔQ

Δt ,ΔQ =C ΔU =

CBL Δv ,a =Δv

Δt

,得I 恒定,a

恒定,导体棒做匀加速直线运动

动力学观点:求导体棒的加速度a =F

m +B 2L 2C

2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.

①求电荷量或速度:B I L Δt =m v 2-m v 1,q =I Δt . ②求位移:-B 2L 2v Δt R 总=0-m v 0,即-B 2L 2x

R 总=0-m v 0.

③求时间:(i)-B I L Δt +F 其他Δt =m v 2-m v 1 即-BLq +F 其他·Δt =m v 2-m v 1

已知电荷量q ,F 其他为恒力,可求出变加速运动的时间. (ii)-B 2L 2v Δt

R 总

+F 其他·Δt =m v 2-m v 1,v Δt =x .

若已知位移x ,F 其他为恒力,也可求出变加速运动的时间. 考题示例

例1 (2016·全国卷Ⅱ·24)如图1,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量

为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:

图1

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

答案 (1)Blt 0(F m -μg ) (2)B 2l 2t 0

m

解析 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 F -μmg =ma ①

设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律知金属杆中产生的电动势为 E =Bl v ③ 联立①②③式可得 E =Blt 0(F

m

-μg )④

(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =E R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为 F 安=BlI ⑥

因金属杆做匀速运动,有 F -μmg -F 安=0⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0m

.

例2 (2019·天津卷·11)如图2所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN

两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k .图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .PQ 的质量为m ,金属导轨足够长、电阻忽略不计.

图2

(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;

(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W .

答案 (1)Bkl 3R 方向水平向右 (2)12m v 2-2

3

kq

解析 (1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔФ

Δt ,则E =k ①

设PQ 与MN 并联的电阻为R 并,有 R 并=R

2

闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =E

R 并+R ③

设PQ 中的电流为I PQ ,有 I PQ =1

2

I ④

设PQ 受到的安培力为F 安,有F 安=BI PQ l ⑤ 保持PQ 静止,由受力平衡,有 F =F 安 ⑥

联立①②③④⑤⑥式得 F =Bkl

3R ⑦

方向水平向右.

(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化为ΔФ,平均感应电动势为E ,有 E =

ΔΦ

Δt

其中ΔФ=Blx ⑨

设PQ 中的平均电流为I ,有

I =

E 2R ⑩

根据电流的定义得 I =q

Δt ?

由动能定理,有 Fx +W =1

2m v 2-0 ?

联立⑦⑧⑨⑩??式得 W =12m v 2-23kq .

命题预测

1.(多选)(2020·福建福清市线上检测)如图3所示,左端接有阻值为R 的定值电阻且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度为B 、竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置在导轨上静止,导轨的电阻不计.某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中( )

图3

A .导体棒做匀减速直线运动直至停止运动

B .电阻R 上产生的焦耳热为I 22m

C .通过导体棒ab 横截面的电荷量为I

BL

D .导体棒ab 运动的位移为I (R +r )

B 2L 2

答案 CD

解析 导体棒获得向右的瞬时初速度后切割磁感线,回路中出现感应电流,导体棒ab 受到向

左的安培力,向右减速运动,由

B 2L 2v R +r

=ma ,可知由于导体棒速度减小,则加速度减小,所

以导体棒做的是加速度越来越小的减速运动,A 错误;导体棒减少的动能E k =12m v 2=12m ????I m 2

=I 22m ,根据能量守恒定律可得E k =Q 总,又根据串并联电路知识可得Q R =R R +r Q 总=I 2R 2m (R +r ),B 错误;根据动量定理可得-B I L Δt =0-m v ,I =m v ,q =I Δt ,可得q =I

BL ,C 正确;

由于q =I Δt =

E

R +r Δt =BLx R +r 将q =I

BL 代入可得,导体棒ab 运动的位移x =I (R +r )B 2L

2,D 正确.

2.如图4所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r .初始时开关S 断开,电容器两极板间的电压为U .闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好.下列说法正确的是( )

图4

A .闭合开关S 的瞬间,金属棒立刻开始向左运动

B .闭合开关S 的瞬间,金属棒的加速度大小为BUL mR

C .金属棒与导轨接触的两点间的最小电压为零

D .金属棒最终获得的速度大小为BCUL

m +B 2L 2C

答案 D

解析 由左手定则可知,闭合开关S 的瞬间,金属棒所受安培力方向向右,金属棒立刻获得向右的加速度,开始向右运动,A 错误;闭合开关S 的瞬间,金属棒的加速度大小a =BUL

m (R +r ),

B 错误;当金属棒切割磁感线产生的电动势跟电容器两极板之间的电压相等时,金属棒中电流为零,此后,金属棒将匀速运动下去,两端的电压达到最小值,故金属棒与导轨接触的两

点间的电压不会为零,C 错误;设闭合开关S 后,电容器的放电时间为Δt ,金属棒获得的速度为v ,由动量定理可得B C (U -BL v )Δt L ·Δt =m v -0,解得v =BCUL

m +B 2L 2C ,D 正确.

3.如图5所示,足够长的光滑平行金属导轨CD 、EF 倾斜放置,其所在平面与水平面间的夹角为θ=37°,两导轨间距为L ,导轨下端分别连着电容为C 的电容器和阻值R =3r 的定值电阻.一根质量为m 、电阻为r 的金属棒放在导轨上,金属棒与导轨始终垂直并接触良好,一根不可伸长的绝缘轻绳一端拴在金属棒中间、另一端跨过轻质定滑轮与质量M =3.6m 的重物相连.金属棒与定滑轮之间的轻绳始终在两导轨所在平面内且与两导轨平行,磁感应强度为B 的匀强磁场垂直于导轨所在平面向上,导轨电阻不计,初始状态用手托住重物使轻绳恰处于伸直状态,由静止释放重物,求:(sin 37°=0.6,重力加速度大小为g ,不计滑轮摩擦)

图5

(1)若S 1闭合,S 2断开,电阻R 的最大瞬时热功率;

(2)若S 1和S 2均闭合,当金属棒速度达到最大值时,遇到障碍物突然停止运动,金属棒停止运动后,通过金属棒的电荷量;

(3)若S 1断开、S 2闭合,请通过计算判断重物的运动性质.

答案 (1)27m 2g 2r B 2L 2 (2)27mgrC

4BL

(3)重物做初速度为零的匀加速直线运动

解析 (1)S 1闭合,S 2断开时,重物由静止释放后拉动金属棒沿导轨向上做加速运动,金属棒受到沿导轨向下的安培力作用,速度最大时,感应电动势最大,感应电流最大,则电阻R 的瞬时热功率最大,当金属棒速度最大时有Mg =mg sin 37°+BIL ,得I =3mg

BL

P m =I 2R

联立解得P m =27m 2g 2r

B 2L

2

(2)S 1和S 2均闭合时,电容器两极板间的最大电压U m =U R =IR =9mgr

BL

电容器所带的最大电荷量Q m =CU m =

9mgrC

BL

金属棒停止运动后,电容器开始放电,此时电阻R 与金属棒并联,

通过金属棒的电荷量q =R R +r

Q m =27mgrC

4BL

(3)S 1断开、S 2闭合时,设从释放重物开始经时间t 金属棒的速度大小为v ,加速度大小为a ,通过金属棒的电流为i ,金属棒受到的安培力F =BiL ,方向沿导轨向下,设在t ~(t +Δt )时间内流经金属棒的电荷量为ΔQ ,ΔQ 也是平行板电容器在t ~(t +Δt )时间内增加的电荷量,感应电动势E =BL v ,平行板电容器所带电荷量Q =CE =CBL v ,故ΔQ =CBL Δv Δv =a Δt 则i =ΔQ

Δt

=CBLa

设绳中拉力为F T ,由牛顿第二定律,对金属棒有F T -mg sin θ-BiL =ma 对重物有Mg -F T =Ma 解得a =Mg -mg sin θ

M +m +CB 2L 2

可知a 为常数,则重物做初速度为零的匀加速直线运动.

高考题型2 电磁感应中的双杆模型

1.常见双杆情景及解题思路 常见情景(以水平光滑导轨为例)

过程分析

三大观点的应用 双杆切割式

杆MN 做变减速运动,杆PQ 做变加速运动,稳定时,两杆的加速度均为零,以相同的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理 动力学观点:求加速度 能量观点:求焦耳热 动量观点:整体动量守恒求末速度,单杆动量定理求冲量、

电荷量 不等距导轨

杆MN 做变减速运动,杆PQ

做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动,所围的面积不变.v 1L 1=v 2L 2 动力学观点:求加速度 能量观点:求焦耳热 动量观点:动量不守恒,可分别用动量定理联立末速度关系求末速度

双杆切割式

a PQ 减小,a MN 增大,当a PQ =

动力学观点:分别隔离两导体

a MN时二者一起匀加速运动,存在稳定的速度差棒,F-

B2l2Δv

R总

=m PQ a

B2l2Δv

R总=m MN a,求加速度

2.对于不在同一平面上运动的双杆问题,动量守恒定律不适用,可以用对应的牛顿运动定律、能量观点、动量定理进行解决.

考题示例

例3(多选)(2019·全国卷Ⅲ·19)如图6,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是()

图6

答案AC

解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,这时两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v0=m v1+m v2,解得v1=v2=v0

2

,选项A、C正确,B、D错误.

例4(多选)(2020·全国卷Ⅰ·21)如图7,U形光滑金属框abcd置于水平绝缘平台上,ab和dc

边平行,和bc 边垂直.ab 、dc 足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN 置于金属框上,用水平恒力F 向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN 与金属框保持良好接触,且与bc 边保持平行.经过一段时间后( )

图7

A .金属框的速度大小趋于恒定值

B .金属框的加速度大小趋于恒定值

C .导体棒所受安培力的大小趋于恒定值

D .导体棒到金属框bc 边的距离趋于恒定值 答案 BC

解析 当金属框在恒力F 作用下向右加速运动时,bc 边产生从c 向b 的感应电流i ,金属框的加速度大小为a 1,则有F -Bil =Ma 1;MN 中感应电流从M 流向N ,MN 在安培力作用下向右加速运动,加速度大小为a 2,则有Bil =ma 2,当金属框和MN 都运动后,金属框速度为v 1,MN 速度为v 2,则电路中的感应电流为i =Bl (v 1-v 2)

R ,感应电流从0开始增大,则a 2从

零开始增加,a 1从F M 开始减小,加速度差值减小.当a 1=a 2时,得F =(M +m )a ,a =F

M +m 恒

定,由F 安=ma 可知,安培力不再变化,则感应电流不再变化,据i =Bl (v 1-v 2)

R 知金属框与

MN 的速度差保持不变,v -t 图像如图所示,故A 错误,B 、C 正确;MN 与金属框的速度差不变,但MN 的速度小于金属框的速度,则MN 到金属框bc 边的距离越来越大,故D 错误.

例5 (2017·浙江4月选考·22)间距为l 的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图8所示,倾角为θ的导轨处于大小为B 1、方向垂直于倾斜导轨平面向上的匀强磁场区间Ⅰ中,水平导轨上的无磁场区间静止放置一质量为3m 的“联动双杆”(由两根长为l 的金属杆cd 和ef ,用长度为L 的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B 2、方向垂直于水平导轨平面向上的匀强磁场区间Ⅱ,其长度大于L ,质量为m 、长为l 的金属杆ab 从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab 与“联动双杆”

发生碰撞后,杆ab 和cd 粘合在一起形成“联动三杆”,“联动三杆”继续沿水平导轨进入磁场区Ⅱ并从中滑出,运动过程中杆ab 、cd 和ef 与导轨始终接触良好,且保持与导轨垂直.已知杆ab 、cd 和ef 电阻均为R =0.02 Ω,m =0.1 kg ,l =0.5 m ,L =0.3 m ,θ=30°,B 1=0.1 T ,B 2=0.2 T ,g =10 m/s 2,不计摩擦阻力和导轨电阻,忽略磁场边界效应,求:

图8

(1)ab 杆在倾斜导轨上匀速运动时的速度大小v 0; (2)“联动三杆”进入磁场区间Ⅱ前的速度大小v ; (3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q . 答案 (1)6 m /s (2)1.5 m/s (3)0.25 J

解析 (1)ab 杆受到的安培力为:F A =B 1Il =B 12l 2v 0R +

R 2

ab 杆匀速运动,由平衡条件得:mg sin θ=F A ,代入数据解得:v 0=6 m/s.

(2)ab 杆与“联动双杆”碰撞过程系统动量守恒,以向右为正方向,由动量守恒定律得m v 0=(m +3m )v

代入数据解得:v =1.5 m/s.

(3)设“联动三杆”进入磁场区间Ⅱ的过程中速度的变化量为Δv ,由动量定理得: -B 2I l Δt =4m Δv

设在“联动三杆”进入磁场区间Ⅱ的过程中,通过ab 杆的电荷量为q ,则I Δt =q =B 2Ll

R +

R 2

代入数据解得:Δv =-0.25 m/s

“联动三杆”离开磁场区间Ⅱ的过程中,速度的变化量也为:Δv =-0.25 m /s ,离开磁场区间Ⅱ时“联动三杆”的速度为:v ′=v +2Δv =1.5 m/s -2×0.25 m/s =1 m/s.“联动三杆”滑过磁场区间Ⅱ的过程中,产生的焦耳热为:Q =12·4m v 2-12·4m v ′2,代入数据解得:Q =0.25 J.

命题预测

4.如图9所示,水平放置的两平行光滑金属导轨固定在桌面上,导轨间距为L ,处在磁感应

强度为B 、竖直向下的匀强磁场中.桌面离地面的高度为H .初始时刻,质量为m 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d ,质量也为m 的杆cd 与导轨垂直,以初速度v 0进入磁场区域,最终发现两杆先后落在地面上.已知两杆接入电路的电阻均为R ,导轨电阻不计,两杆落地点之间的距离为s ,重力加速度为g .

图9

(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时,求cd 杆运动的距离;

(3)在两根杆相互作用的过程中,求回路中产生的电能. 答案 (1)v 02-

s

2

g 2H (2)d +Rm

B 2L 2?

??

?v 0-s g 2H (3)14m v 02

-mgs 28H

解析 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为v 1、v 2,ab 杆落地点到抛出点的水平距离为x 1,cd 杆落地到抛出点的水平距离为x 2,则有 x 1=v 12H

g x 2=v 2

2H g

且x 2-x 1=s

以v 0的方向为正方向,根据动量守恒定律有m v 0=m v 1+m v 2 解得v 2=v 02+

s

2

g

2H ,v 1=v 02-s 2

g

2H

(2)ab 杆运动距离为d ,对ab 杆应用动量定理,有 B I L Δt =BLq =m v 1 设cd 杆运动距离为d +Δx q =ΔΦ2R =BL Δx 2R

解得Δx =2Rm v 1B 2L 2=Rm

B 2L

2(v 0-s

g

2H

) 则cd 杆运动距离为x =d +Δx =d +Rm

B 2L 2?

??

?v 0-s

g 2H

(3)根据能量守恒定律,回路中产生的电能等于系统损失的机械能, 则有Q =12m v 02-12m v 12-12m v 22=14m v 02

-mgs 2

8H

.

5.如图10所示,足够长的水平轨道左侧b 1b 2~c 1c 2部分轨道间距为2L ,右侧c 1c 2~d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒B 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的金属棒A 自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,B 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:

图10

(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒B 匀速运动的速度大小;

(3)在两棒整个运动过程中通过金属棒A 某横截面的电荷量;

(4)在两棒整个运动过程中金属棒A 、B 在水平导轨间扫过的面积之差. 答案 见解析

解析 (1)A 棒在曲线轨道上下滑时,由机械能守恒定律得: mgh =1

2m v 02

解得v 0=2 m/s.

(2)选取水平向右为正方向,对A 、B 分别应用动量定理, 对B :F B 安·t =M v B , 对A :-F A 安·t =m v A -m v 0, 其中F A 安=2F B 安, 整理得:m v 0-m v A =2M v B ,

两棒最后匀速时,电路中无电流,此时回路总电动势为零,必有2B cos θL v A -B cos θL v B =0, 即v B =2v A , 联立解得v B =4

9

m/s.

(3)当金属棒A 运动到水平轨道后,回路中开始有感应电流产生,此时金属棒B 开始加速运动,通过A 的电荷量与通过B 的电荷量相等. 在B 加速过程中:∑(B cos θ)iL Δt =M v B -0, q =∑i Δt , 解得q =509

C.

(4)根据法拉第电磁感应定律有:E =ΔΦ

Δt ,

其中磁通量变化量:ΔΦ=B ΔS cos θ, 电路中的电流:I =

E 2R ,

通过横截面的电荷量:q =I Δt , 联立解得ΔS =250

9

m 2.

专题强化练

保分基础练

1.(多选)(2020·河南六市高三4月第一次联合调研)如图1所示,光滑平行的两金属导轨间距为L ,与水平面夹角为θ,两导轨上端用阻值为R 的定值电阻相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面向上.质量为m 的金属杆ab 以沿导轨平面向上的初速度v 0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab 与导轨垂直且接触良好,不计ab 和导轨的电阻以及空气阻力.则( )

图1

A .初始时刻金属杆的加速度为

B 2L 2v 0mR

B .金属杆上滑时间小于下滑时间

C .在金属杆上滑和下滑过程中电阻R 上产生的热量相同

D .在金属杆上滑和下滑过程中通过电阻R 上的电荷量相同

答案 BD

解析 金属杆开始运动时,金属杆所受的安培力F A =BIL =B 2L 2v 0

R

根据牛顿第二定律得,mg sin θ+F A =ma ,

则金属杆的加速度a =mg sin θ+F A m =g sin θ+B 2L 2v 0

mR ,选项A 错误;由于金属杆要克服安培力

做功,其机械能不断减少,所以金属杆上滑和下滑经过同一位置时,上滑速度大于下滑的速度,则上滑的平均速度大于下滑的平均速度,所以金属杆上滑时间小于下滑时间,选项B 正确;金属杆克服安培力所做的功等于回路中产生的热量,即电阻R 上产生的热量,上滑过程中平均速度较大,则平均安培力较大,所以克服安培力做的功较大,产生的热量较多,选项C 错误;根据q =ΔΦR =BLs

R 可知,在金属杆上滑和下滑过程中,通过电阻R 上的电荷量相同,

选项D 正确.

2.(多选)(2020·湖南常德市高三二模)如图2所示,两条相距为L 的光滑平行金属导轨位于水平面(纸面)内,其左端接一阻值为R 的定值电阻,导轨平面与磁感应强度大小为B 的匀强磁场垂直,导轨电阻不计.导体棒ab 垂直导轨放置并接触良好,接入电路的电阻也为R .若给棒以平行导轨向右的初速度v 0,当通过棒横截面的电荷量为q 时,棒的速度减为零,此过程中棒发生的位移为x .则在这一过程中( )

图2

A .导体棒做匀减速直线运动

B .当棒发生的位移为x 2时,通过棒横截面的电荷量为q

2

C .在通过棒横截面的电荷量为q

3时,棒运动的速度为v 03

D .定值电阻R 产生的热量为BqL v 0

4

答案 BD

解析 由于导体棒向右减速运动,则感应电动势减小,感应电流减小,所以导体棒受到的安培力减小,根据牛顿第二定律可知其加速度减小,故导体棒做变减速运动,故A 错误;当棒

的速度减为零,发生的位移为x 时,通过棒横截面的电荷量为q =ΔΦ2R =BLx

2R ,则当棒发生的

位移为x 2时,通过棒横截面的电荷量为q

2,故B 正确;当棒的速度减为零时,通过棒横截面的

电荷量为q =BLx 2R ,设这段时间回路中的平均电流为I 1,由动量定理得-B I 1Lt 1=0-m v 0,

其中q =I 1t 1

当通过棒横截面的电荷量为q

3时,设这段时间回路中的平均电流为I 2

由动量定理得-B I 2Lt 2=m v 1-m v 0,其中q

3=I 2t 2

解得:v 1=2v 03,m =qBL

v 0

,故C 错误;

根据能量守恒可知,棒的速度减为零的过程中,定值电阻R 产生的热量为: Q R =12ΔE k =1

4m v 02=qBL v 04,

故D 正确.

3.(2020·哈尔滨师大附中联考)如图3所示,光滑、平行、电阻不计的金属导轨固定在竖直平面内,两导轨间的距离为L ,导轨顶端连接定值电阻R ,导轨上有一质量为m 、电阻不计的金属杆.整个装置处于磁感应强度为B 的匀强磁场中,磁场的方向垂直导轨平面向里.现将杆从M 点以v 0的速度竖直向上抛出,经过时间t ,到达最高点N ,杆始终与导轨垂直且接触良好,重力加速度大小为g .求t 时间内:

图3

(1)流过电阻的电荷量q ; (2)电阻上产生的电热Q .

答案 (1)m v 0-mgt BL (2)12m v 02-m 2gR (v 0-gt )B 2L 2

解析 (1)根据动量定理,有-mgt -F t =0-m v 0 又因为F =BL I ,q =I t ,

联立解得q =m v 0-mgt

BL

(2)根据I =

E

R =ΔΦRt =BLh Rt

, 解得h =(v 0-gt )mR

B 2L 2

由能量守恒定律得Q =1

2m v 02-mgh

联立解得Q =12m v 02

-m 2gR (v 0-gt )B 2L 2

.

争分提能练

4.如图4,两条平行导轨所在平面与水平地面间的夹角为θ,两导轨的间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B 、方向垂直于导轨平面向下.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻,让金属棒从导轨上端由静止开始下滑,求:

图4

(1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系. 答案 (1)Q =CBL v (2)v =

m (sin θ-μcos θ)

m +B 2L 2C

gt

解析 (1)设金属棒下滑的速度大小为v ,则感应电动势为E =BL v ① 平行板电容器两极板之间的电势差U =E ②

设此时电容器极板上积累的电荷量为Q ,则有Q =CU ③ 联立①②③式得Q =CBL v ④

(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为I .金属棒受到的安培力方向沿导轨向上,大小为F 安=BLI ⑤

设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,据定义有I =ΔQ

Δt

ΔQ 也是平行板电容器两极板在时间间隔(t ,t +Δt )内增加的电荷量.由④式得:ΔQ =CBL Δv ⑦ Δv 为金属棒的速度变化量,有a =Δv Δt

金属棒所受到的摩擦力方向沿导轨向上,大小为F f =μF N ⑨ F N 是金属棒对导轨的正压力的大小,有F N =mg cos θ⑩ 由牛顿第二定律得mg sin θ-F 安-F f =ma ? 联立⑤~?式得a =m (sin θ-μcos θ)

m +B 2L 2C

g ?

由?式及题意可知,金属棒做初速度为零的匀加速运动.则t 时刻金属棒的速度大小为 v =m (sin θ-μcos θ)m +B 2L 2C

gt .

5.(2020·山东济宁市一模)两根足够长的平行金属导轨固定于同一水平面内,两导轨间的距离为L ,导轨上垂直放置两根导体棒a 和b ,俯视图如图5甲所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B 、竖直向上的匀强磁场.两导体棒与导轨接触良好且均可沿导轨无摩擦地滑行,开始时,两棒均静止,间距为x 0,现给导体棒a 一向右的初速度v 0,并开始计时,可得到如图乙所示的Δv -t 图象(Δv 表示两棒的相对速度,即Δv =v a -v b ),求:

图5

(1)0~t 2时间内,回路产生的焦耳热; (2)t 1时刻,棒a 的加速度大小; (3)t 2时刻,两棒之间的距离.

答案 (1)14m v 02

(2)B 2L 2v 08mR (3)x 0+m v 0R B 2L 2

解析 (1)t 2时刻,两棒速度相等

以v 0的方向为正方向,由动量守恒定律得m v 0=(m +m )v 由能量守恒定律得Q =12m v 02-1

2×2m v 2

联立解得Q =1

4

m v 02

(2)t 1时刻,回路中的感应电动势E =BL v a -BL v b =BL Δv =BL v 0

4

此时棒a 所受的安培力大小F =BIL =B E

2R L

由牛顿第二定律可得F =ma 则棒a 的加速度大小a =B 2L 2v 0

8mR

(3)t 2时刻,两棒速度相同,由(1)知v =v 0

2

0~t 2时间内,对棒b 由动量定理有 B I Lt 2=m v -0 又q =I t 2=

ΔΦ2R =BL (x -x 0)2R

联立解得x =x 0+m v 0R

B 2L

2.

6.(2020·福建厦门市线上检测)如图6所示,足够长的平行金属导轨MNC 和PQD 间距为L ,左右两侧导轨平面与水平面夹角分别为α=37°、β=53°,导轨左侧空间磁场平行导轨向下,右侧空间磁场垂直导轨平面向下,磁感应强度大小均为B .均匀金属棒ab 和ef 质量均为m ,长度均为L ,电阻均为R ,运动过程中,两金属棒与导轨保持良好接触且始终垂直于导轨,金属棒ab 与导轨间的动摩擦因数为μ=0.5,金属棒ef 光滑.同时由静止释放两金属棒,并对金属棒ef 施加外力F ,使ef 棒保持a =0.2g 的加速度沿斜面向下匀加速运动.导轨电阻不计,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8.求:

图6

(1)金属棒ab 运动过程中最大加速度的大小; (2)金属棒ab 达到最大速度所用的时间;

(3)金属棒ab 运动过程中,外力F 对ef 棒的冲量. 答案 (1)0.2g (2)4mR B 2L 2 (3)8m 2gR

5B 2L

2,沿斜面向上

解析 (1)金属棒ab 释放瞬间加速度最大,根据牛顿第二定律有:mg sin α-μmg cos α=ma m 得a m =0.2g

(2)金属棒ab 释放之后,合外力为零时速度最大,则有mg sin α=μ(mg cos α+BIL )

其中I =E 2R ,E =BL v ef ,v ef =0.2gt 1,得t 1=4mR

B 2L

2

(3)金属棒ab 释放之后,设任意时刻的加速度为a ab ,根据牛顿第二定律得 mg sin α-μ(mg cos α+BIL )=ma ab ,得:a ab =0.2g -B 2L 2g

20mR

t ,其图象如图所示

a a

b -t 图象与t 轴所围面积代表速度增量,由运动的对称性可知,从金属棒ab 释放起,经过时间t 2=2t 1=8mR

B 2L 2速度减为零,此后保持静止,在此过程中,金属棒ef 一直做匀加速直线运

动,则有v ef =0.2gt 2,x ef =1

2

×0.2g ×t 22

对金属棒ef ,规定沿斜面向下为正方向,由动量定理可得 I F -B I Lt 2+mgt 2sin β=m v ef -0,其中q =I t 2=BLx ef

2R

得:I F =-8m 2gR

5B 2L

2,负号表示冲量沿斜面向上.

电磁感应,杆,双杆模型(教师版)

第九章冲刺985深化内容 电磁感应失分点之(三)——电磁感应中的“杆+导轨”类问题(3大模型) 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 模型一 单杆+电阻+导轨模型 [初建模型] [母题] (2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 [思路点拨] [解析] (1)设杆cd 下滑到某位置时速度为v , 则杆产生的感应电动势E =BLv , 回路中的感应电流I =E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有 mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中, 根据能量守恒定律得mgx sin θ=Q 总+1 2mv m 2 又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2 θ B 4L 4。 [答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2 ,方向沿导轨平面向下 (2)1 2 mgx sin θ-m 3g 2R 2sin 2θ B 4L 4 [内化模型] 单杆+电阻+导轨四种题型剖析 杆以速度v 切割

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型 研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。 一、在竖直导轨上的“双杆滑动”问题 1.等间距型 如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强 磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固 定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s, 则: A、当va=12m/s时,vb=18m/s B、当va=12m/s时,vb=22m/s C、若导轨很长,它们最终速度必相同 D、它们最终速度不相同,但速度差恒定 【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a 的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。 在释放a后的1s对a、b使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s它的冲量大小都为I,选向下的方向为正方向。 当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。释放棒后,经过时间t,分别以 和为研究对象,根据动量定理,则有: 对a有:( mg + I ) · t = m v a0, 对b有:( mg -I ) · t = m v b-m v b0 联立二式解得:v b = 18 m/s,正确答案为:A、C。 在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度 。当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流 也逐渐减小,则安培力也逐渐减小。最后,两棒以共同的速度向下做加速度为g的匀加速运动。 2.不等间距型

电磁感应现象中的单杆切割磁感线问题

电磁感应现象中的单杆切割磁感线问题 一、教学内容:电磁感应知识与应用复习之单杆切割磁感线问题 二、教学课时:二课时 三、教学课型:高三第一轮复习课 四、教学设计适合对象:高三理科学生 五、教学理念: 电磁感应现象知识的应用历来是高考的重点、热点,问题可将力学、电磁学等知识溶于一体,能很好地考查学生的理 解、推理、分析综合及应用数学处理物理问题的能力。通过近年高考题的研究,电磁感应问题每年都有“单杆切割磁感线 问题”模型的高考题出现。 而解决电磁感应单杆切割磁感线问题的关键就是借鉴或利用相似原型来启发、理解和变换物理模型,即把最基础的物 理模型进行细致的分析和深入的理解后,有目的的针对某些关键位置进行变式,从而把陌生的物理模型与熟悉的物理模型 相联系,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法?巧妙地 运用“类同”变换,“类似”变换, “类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化,从而提高了课堂教学的有效 性。 六、电磁感应教学内容与学情分析研究: 6. 1 ?教学内容分析: 电磁感应中的单杆模型包括:导轨、金属棒和磁场,所以对问题的变化点主要有: 1.针对金属棒 1)金属棒的受力情况:平行轨道方向上,除受安培力以外是否存在拉力、阻力; 2)金属棒的初始状态:静止或有一个初速度V。; 3)金属棒的运动状态:与导轨是否垂直,与磁场是否垂直,是不是绕中心点转动; 4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线。 2?针对导轨 1)导轨的形状:常见导轨的形状为U形,还可以为圆形、三角形、三角函数图形等; 2)导轨的闭合性:导轨本身可以开口,也可闭合; 3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; 4)导轨的放置:水平、竖直、倾斜放置。 3.针对磁场 1 )磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化; 2)磁场的分布:有界或无界。 6 . 2 .学生学情分析:

高中物理模型-电磁场中的单杆模型

模型组合讲解——电磁场中的单杆模型 秋飏 [模型概述] 在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。 [模型讲解] 一、单杆在磁场中匀速运动 例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A 且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。 图1 (1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少? (2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V , 当电压表满偏时,即U 1=10V ,此时电流表示数为 I U R A 112==并 设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20V a 、 b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/ (2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为

U I R 22=并=6V 可以安全使用,符合题意。 由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以 F I I F N N 221132 4060= ==×。 二、单杠在磁场中匀变速运动 例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。该轨道平面ab 棒的电阻为R =0.10Ω,其他各 部分电阻均不计。开始时,磁感应强度B T 0050 =.。 图2 (1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右F 的大小随时间t 变化关系如图2乙所示。求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。 (2)若从t =0开始,使磁感应强度的大小从B 0开始使其以??B t =0.20T/s 的变化率均匀增加。求经过多长时间ab 棒开始滑动?此时通过ab ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等) 解析:(1)当t =0时,F N F F ma f 113=-=, 当t =2s 时,F 2=8N F F B B Lat R L ma f 200--= 联立以上式得: a F F R B L t m s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:

电磁感应双杆问题

电磁感应双杆问题(排除动量畴) 1.导轨间距相等 例3. (04)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。 解法1:设杆2的运动速度为v ,由于两杆运动时,两 杆间和导轨构成的回路中的磁通量发生变化,产生感 应电动势 )(0v v Bl E -= ① 感应电流 2 1R R E I += ② 杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([212 2202R R l B g m v g m P +- =μμ ⑤ 解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ① 对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③ 以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212 202R R l B g m v g m P g +- =μμ ⑤ 2. 导轨间距不等 例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11y x 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路上的热功率。 解:设金属杆向上运动的速度为υ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小υ)(21l l B E -= 回路中的电流R E I = 方向沿着顺时针方向 两金属杆都要受到安培力的作用,作用于杆11y x 的安培力为11BIL f =,方向向上;作用于杆22y x 的安培力为22BIL f =,方向向下。当金属杆作匀速运动时,根据牛顿第二定律有 0f f g m g m F 2121=-+-- 2 1 0v

高考物理双基突破二专题电磁感应中的单杆模型精讲.doc

专题32 电磁感应中的“单杆”模型 单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 应电动势E = 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt 速度为v +Δv ,此时感应

=Blv R ,安培力F =BIL =B2L2v R ,做减速运 动:v ?F ?a , 当v =0时,F =0,a =0,杆保持静止 此时 a =BLE mr ,杆 ab 速度v ?感 应电动势 BLv ?I ?安 培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL BLv ?I ?安 培力F 安= BIL ,由F -F 安 =ma 知a ,当a =0时,v 最大, v m = FR B2L2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv20 2 C .整个过程中金属棒在导轨上发生的位移为qR BL

对磁场中双杆模型问题的解析(精)

对磁场中双杆模型问题的解析 南京市秦淮中学汪忠兵 研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。 在电磁感应中,有三类重要的导轨问题:1.发电式导轨;2.电动式导轨;3.双动式导轨。导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。尤其是双动式导轨问题要求学生要有较高的动态分析能力 电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变”的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。 一、在竖直导轨上的“双杆滑动”问题 1.等间距型 如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强 磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固 定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s, 则: A、当va=12m/s时,vb=18m/s B、当va=12m/s时,vb=22m/s C、若导轨很长,它们最终速度必相同 D、它们最终速度不相同,但速度差恒定 【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a 的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。 在释放a后的1s内对a、b使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s内它的冲量大小都为I,选向下的方向为正方向。 当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。释放棒后,经过时间t,分别以和为研究对象,根据动量定理,则有: 对a有:( mg + I ) · t = m v a0,

电磁感应中的单杆和双杆问题(习题,问题详解)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度; (2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程过ab 的电荷量.关键:在于能量观,通过做功求位移。 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大? 例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下 穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、“双杆”滑切割磁感线型 a b C v 0

最新高考物理双基突破:专题32-电磁感应中的“单杆”模型(精讲)

单杆模型是电磁感应中常见的物理模型,此类题目所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等。 1.此类题目的分析要抓住三点: (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零)。 (2)整个电路产生的电能等于克服安培力所做的功。 (3)电磁感应现象遵从能量守恒定律。如图甲,导体棒ab 从磁场上方h 处自由释放,当进入磁场后,其速度随时间的可能变化情况有三种,如图乙,全过程其能量转化情况是重力势能转化为动能和电能,电能再进一步转化为导体棒和电阻R 的内能。 2.单杆模型中常见的情况及处理方法: (1)单杆水平式 开始时a =F m ,杆 ab 速度v ?感 开始时a =F m ,杆ab 速度v ? 感应电动势E =BLv ,经过Δt

势E =BLv ,电流I = E R =Blv R ,安培力F =BIL = B 2L 2 v R ,做减速运动: v ?F ?a ,当v =0时,F =0,a =0, 杆保持静止 此时a =BLE mr ,杆 ab 速度v ?感应电动势BLv ?I ?安培力F =BIL ?加速度a ,当E 感 =E 时,v 最大,且v m =E BL 应电动势E =BLv ?I ?安培力F 安=BIL ,由F -F 安 =ma 知a ,当 a =0时,v 最大, v m = FR B 2L 2 【题1】如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值 为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好。整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q 。下列说法正确的是 A .金属棒在导轨上做匀减速运动 B .整个过程中电阻R 上产生的焦耳热为mv 202

电磁感应中地单杆切割问题

电磁感应单杆切割问题 (2013·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0.6)(B) A.2.5m/s 1W B.5m/s 1W C.7.5m/s 9W D.15m/s 9W (2013全国Ⅰ·16)如图,在水平面(纸面)有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线.可能正确的是(D) (2013·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C) A.c→a,2:1 B.a→c,2:1 C.a→c,1:2 D.c→a,1:2 (2013·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v0刷卡时,在线圈中产生感应电动势。其E-t关系如右图所示。如果只将刷卡速度改为v0/2,线圈中的E-t关系可能是(D)

河北省保定安国中学电磁感应中单杆模型的动态分析(10页)

河北省保定安国中学电磁感应中单杆模型的动态分析 速度V 0≠0 V =0 示意图 单杆以一定初 速度v0在光滑 水平轨道上滑 动,质量为m, 电阻不计,杆长为L 轨道光滑水 平,杆质量 为m,电阻不 计,杆长为L,拉力F恒定 力学和运动学分析导体杆以速度v切割磁感线产生感 应电动势BLv E=,电流 R BLv R E I= =,安培力 R v L B BIL F 2 2 = =,做减速运动: ↓ ↓?a v,当0 = v时,0 = F, = a,杆保持静止 开始时 m F a=,杆ab速度↑? v感应 电动势↑? ↑? =I BLv E安培力 ↑ =BIL F 安 由a F F m = - 安 知↓ a,当 = a时,v最大, 2 2L B FR v m = 图像观点 F B R v0 B R

1、(多选)如图所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的( ACD ) 在电磁感应现象问题中求解距离问题的方法:①运动学公式。②动量定理。 v m t R v L B ?=?总 22(t v ?是V-t 图像的面积)③利用电量总R nBxL q ==总R n φ? 2、质量为m 的导体棒可沿光滑水平的平行轨道滑行,两轨道间距离为L ,导轨左端与电阻R 连接,放在竖直向上的匀强磁场中,磁感应强度为B ,杆的速度为v 0,电阻不计,如图,试求棒所滑行的距离。 能 量 观 点 动能全部转化为内能: 202 1mv Q = F 做的功中的一部分转化为杆的动能,一部分产热:22 1m F mv Q W + = v 0 B R

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

电磁感应中的单杆切割问题

电磁感应单杆切割问题 (2013安徽·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0、5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0、8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0、6)(B) A.2.5m/s 1W B.5m/s 1W C.7.5m/s 9W D.15m/s 9W (2013全国Ⅰ·16)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac与MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且与导轨保持良好接触。下列关于回路中电流i与时间t的关系图线、可能正确的就是(D) (2013北京·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其她条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C) A.c→a,2:1 B.a→c,2:1 C.a→c,1:2 D.c→a,1:2

(2013浙江·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v 0刷卡时,在线圈中产生感应电动势。其E-t 关系如右图所示。如果只将刷卡速度改为v 0/2,线圈中的E-t 关系可能就是(D ) A. B. C. D. 根据感应电动势公式E =BLv 可知,其她条件不变时,感应电动势与导体的切割速度成正比,只将刷卡速度改为20v ,则线圈中产生的感应电动势的最大值将变为原来的21。磁卡通过刷卡器的时间v s t 与速率成反比,所用时间变为原来的2倍.故D 正确。 (2013全国Ⅰ·25)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。导轨上端接有一平行板电容器,电容为C 。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。

电磁感应单杆模型专项训练

电磁感应单杆模型 1.如图所示,固定于水平面的U 形导线框处于竖直向下的匀强磁场中(磁场足够大),磁场的磁感应强度为B ,点a 、b 是U 形导线框上的两个端点。水平向右恒力F 垂直作用在金属棒MN 上,使金属棒MN 以速度v 向右做匀速运动。金属棒MN 长度为L ,恰好等于平行轨道间距,且始终与导线框接触良好,不计摩擦阻力,金属棒MN 的电阻为R 。已知导线ab 的横截面积为S 、单位体积自由电子数为n ,电子电量为e ,电子定向移动的平均速率为v ?。导线ab 的电阻为R ,忽略其余导线框的电阻。则,在t 时间 A .导线ab 中自由电子从a 向b 移动 B .金属棒MN 中产生的焦耳热Q =FL C .导线ab 受到的安培力大小F 安=nSLev ?B D .通过导线ab 横截面的电荷量为BLv R 2.如图所示,足够长的光滑导轨竖直放置,匀强磁场的磁感应强度B =2.0T ,方向垂直于导轨平面向外,导体棒ab 长L =0.2 m (与导轨的宽度相同,接触良好),其电阻 r =1.0 Ω,导轨电阻不计。当导体棒紧贴导轨匀速下滑时,两只均标有“3V ,1.5 W ”字样的小灯泡恰好正常发光。求: (1)通过导体棒电流的大小和方向; (2)导体棒匀速运动的速度大小。 3.如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有 一阻值R =3Ω的定值电阻,下端开口,轨道间距L =1 m 。整个装置处于磁感应强度B =2T 的匀强磁场中,磁场方向垂直斜面向上。质量m =1kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1Ω,电路中其余电阻不计。金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好。不计空气阻力影响。已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,取g =10m/s 2 。 ⑴求金属棒ab 沿导轨向下运动的最大速度v m ; ⑵求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ; ⑶若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为1.5J ,求流过电阻R 的总电荷量q 。 M N B b a F v × × a B b B R θ θ M N P Q a b

(完整版)电磁感应双杆模型

b a c d B R M N P Q L 应用动量定理与动量守恒定律解决双导体棒切割磁感线问题 1.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求: (1)开始时,导体棒ab 中电流的大小和方向; (2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为 4 3 v 0时,cd 棒加速度的大小。 2.如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .忽略摩擦 (1)求:ab 到达圆弧底端时对轨道的压力大小 (2)在图中标出ab 刚进入磁场时cd 棒中的电流方向 (3)若cd 离开磁场时的速度是此刻ab 速度的一半, 求:cd 离开磁场瞬间,ab 受到的安培力大小 3.(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。请问: (1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少? (2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少? (3)整个过程中产生的内能是多少? 4.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab 、cd 垂直于两导轨且与导轨接触良好。棒ab 质量为2 m ,电阻为r ,棒cd 的质量为m ,电阻为r 。重力加速度为g 。开始棒cd 静止在水平直导轨上,棒ab 从圆弧顶端无初速度释放,进入水平直导轨后与棒cd 始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab 与棒cd 落地点到桌面边缘的水平距离之比为3: 1。求: (1)棒ab 和棒cd 离开导轨时的速度大小; (2)棒cd 在水平导轨上的最大加速度; (3)两棒在导轨上运动过程中产生的焦耳热。 B a b c d R

电磁感应中的单双杆模型

电磁感应中的单双杆问题 一、单杆问题 (一)与动力学相结合的问题 1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度? 2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN, 电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度? 3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd, 整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初 速度v,试求金属棒的最大速度? (二)与能量相结合的题型 1、倾斜轨道与水平面夹角为 ,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连 有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时 V,且在此过程中电阻上生成的热量为Q。 间后达到最大速度 m 求:(1)金属杆达到最大速度时安培力的大小 (2)磁感应强度B为多少 (3)求从静止开始到达到最大速度杆下落的高度 2.(20分) 如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的 光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑 金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2

=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。 (1)求导体棒ab从A下落r/2时的加速度大小。 (2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h 和R2上的电功率P2。 (3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab 从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。 二、双杆问题 (一)、同一磁场中的等宽轨道 1、水平放置的光滑金属轨道上静止两根质量为m的金属棒MN、PQ。电阻均为R,现给PQ一个向右的初速度v,其他部分及连接处电阻不计,试求:(1)金属棒MN在轨道上 的最大速度?(2)回路中产生的最大热量 (二)、同一磁场不等宽轨道 如图所示,光滑、足够长、不计电阻、轨道处在磁感应强度为B的匀强磁场当中,间距左边为l,右边为2l的平行金属导轨上静止M、N两根同样粗细的同种金属棒,除金属棒上电阻为R、2R外,其他电阻均不计。现给N棒一根瞬时冲量I (1)求金属棒N受到冲量后的瞬间通过金属导轨的感应电流 (2)设金属棒N在运动到宽轨道前M已经达到最大速度,求金属棒M的最大速度值;(3)金属棒N进入Ⅱ宽轨道区后,金属棒MN再次达到匀速运动状态,。求整个过程中金属棒MN中产生的总焦耳热。 (三)、不同磁场区域的平行轨道 1、(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;右半部分为Ⅱ匀强磁场区,磁感应强度为B2,且B1=2B2。在Ι匀强磁场区的左边界垂直于导轨放置一质量为m、电阻为R1的金属棒a,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m、电阻为R2的金属棒b。开始时b静止,给a 一个向右冲量I后a、b开始运动。设运动过程中,两金属棒总是与导轨垂直。 (1)求金属棒a受到冲量后的瞬间通过金属导轨的感应电流; (2)设金属棒b在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b在Ι匀强磁场区中的最大速度值;

公开课-电磁场中的单杆模型

电磁感应中的单杆问题 授课教师:孟庆阳 一、教学目标: 1、知识与技能: 掌握电磁感应中单杆问题的求解方法。 2、过程与方法: 能够运用理论知识从力电角度、电学角度和力能角度处理电磁感应中的单杆问题。 3、情感、态度与价值观 提高学生处理综合问题的能力,找出共性与个性的辩证唯物主义思想。 二、教学重点、难点:电磁感应中单杆问题的求解方法及相关的能量转化。 三、知识准备: 1、感应电流的产生条件 2、感应电流的方向判断 3、感应电动势的大小计算 四、模型概述: 电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点,主要类型有:“单杆”模型,“单杆+电源”模型、“单杆+电容”模型。 五、基本思路: 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考: 1、力电角度; 2、电学角度; 3、力能角度。 六、专项练习: 例1、如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L,两轨道之间用电阻R 连接,有一质量为m、电阻为r的导体棒静止地放在轨道上与两轨道垂直,轨道的电阻忽略不计,整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直轨道平面向上。现用水平 恒力F沿轨道方向拉导体棒,使导体棒从静止开始运动。 ①分析导体棒的运动情况并求出导体棒的最大速度; ②画出等效电路图;若此时E 感 =10V,R=3Ω,r=2Ω,那么导体棒两端电压为? ③分析此过程中所涉及的能量转化。 P

变1、两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。质量为m 、长度为L 、阻值为r 的金属棒ab 垂直于导轨放置,且与导轨保持良好接触,其他电阻不计。导轨处于磁感应强度为B 、方向水平向里的匀强磁场中,ab 由静止释放,在重力作用下运动,若ab 从释放至其运动达到最大速度时下落的高度为h 求: ①ab 运动的最大速度? ②ab 从释放至其运动达到最大速度此过程中金属棒产生的焦耳热为多少? ③ab 从释放至其运动达到最大速度的过程中,流过ab 杆的电荷量? ④ab 从释放至其运动达到最大速度所经历的时间? 变式2、如图ab 、cd 为间距L 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,ac 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场,将一根阻值为 r 、长度为L 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好。已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定的速度,重力加速度为g 。求: ①金属棒下滑到MN 的过程中通过电阻R 的电荷量; ②金属棒的稳定速度的大小。 例2、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试求: ①在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? ②在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).

相关主题