搜档网
当前位置:搜档网 › 耐火材料

耐火材料

耐火材料
耐火材料

INCOLOY?800系列

耐热不锈钢板材

800合金/800H合金/800A T合金

800 合金(UNS NO8800), 800H 合金(UNS NO8810), 800AT (UNS NO8811) 是用于高温环境下抗氧化和渗碳的镍、铁、和铬的合金。32%的镍合金含量使此合金抗氯化物压力腐蚀断裂及西格马相位沉淀物脆裂。此合金的抗一般腐蚀能力很强。在固熔退火情况下,800H 和800A T 具有优越的抗压力破裂特性。

800,800H,800A T合金规格明细

镍铬铁是为抗氧化和碳化而设计的。

常规特性

合金800(UNS NO8800),800H(UNS NO8810), 800A T(UNS8811). 镍铬铁合金是为温度升高时抗氧化和碳化而设计的。镍含量在32%时,可以增强合金对氯化物所造成的腐蚀裂化以及对在西格马状态沉淀过程中产生的脆变的耐受能力。总体抗腐蚀能力极佳。在溶液退火状态,800H和800A T合金具有优良的抗蠕变和抗裂变的特性。这三种基本的800型系列合金产品已被批准用于建筑材料,广泛应用于ASME锅炉、增压阀、电力锅炉第一节、核物质容器第三节和红色高压容器。

800、800H以及800A T合金基本相同,其不同之处在于800H合金的碳含量略高(0.5-0.15),800A T合金的铝和钛的含量增加1%。800合金一般用于温度约1100.F(593.C)的环境下。800H和800A T合金通常用于温度大约在1100.F以上的环境下,这种环境要求合金具有抗蠕变和裂变的特性。

应用范围

·化学、石油加工设备

·发电

·热加工装置

·炼纲

耐腐性

800、800H、800A T合金中含铬和镍的成分比304合金家族中的含量要高。在许多应用环境下,合金800、800H、800A T的表现与合金304相似。例如:在大多数工业和农业环境下以及在化学介质如硝酸有机酸的环境下,其表现有所不同。无论800、800H、800A T合金还是304合金都不建议应用于硫酸环境下,除非浓度和温度均较低。同奥氏体不锈钢相似,若800、800H、800A T合金在长时间下被加热到华氏1000度至华氏1400度(摄氏538度-760度)之间,它们会有敏化表现(碳化铬合金沉淀结粒)。敏化金属容易受到某些腐蚀性介体的晶间侵蚀,包括酸性物质或65%硝酸加热至沸点的实验(不锈钢耐蚀实验)

800合金虽然不能够完全抵抗由应力产生的裂化腐蚀,但它具有较高的抗此类腐蚀的特性。通过大量现场试验,800合金在石油、化学、食品、纸浆以及造纸工业多种设备中,始终表现出其优良特性。因此,当

800合金在适度腐蚀的环境下使用时能表现出明显优势,而其它奥式体不锈钢在应用过程中已表现出受应力裂化腐蚀影响的趋势。但是,通过极其严格的氯化镁试验证明800合金不能完全免除受应力裂变腐蚀的影响。

化学分析

典型分析(重量%)

合金800

0.02

1.00

0.020

0.010

0.35

21.0

合金800H

0.08

1.00

0.020

0.010

0.35

21.0

合金800A T

0.08

1.00

0.020

0.010

0.35

21.0

钛+ 铝

合金800

32.0

0.40

0.40

0.30

合金800H

32.0

0.40

0.40

0.30

合金800A T

32.0

1.00

0.30

310S(0Cr25Ni20/0Cr25Ni20Si2),耐热不锈钢,国内牌号0Cr25Ni20,美国牌号310S,又称2520,双相不锈钢,耐热不起皮钢,用于耐高温炉管制造。

310S 的化学成份(%):

Ni 镍:19.00-22.00

Cr 铬:24.00-26.00

Si 硅<=1.50

Mn 锰<= 2.00

C 碳<=0.08

S 硫<=0.030

P 磷<=0.035

310s是奥氏体铬镍不锈钢,具有很好的抗氧化性、耐腐蚀性,因为较高百分比的铬和镍,310s拥有良好的蠕变强度,能在高温下持续作业,具有良好的耐高温性。

密度:8.0克/立方厘米,经固溶处理后的力学性能:屈服强度≥205,抗拉强度≥520,伸长率≥40,硬度试验:HBS≤187,HRB≤90,HV≤200

310S不锈钢适于制作各种炉用构件、最高工作温度1200 ℃,连续使用温度1150 ℃。

耐热铸钢。

钢号最高使用温度性能特点

ZG35Cr24Ni7SiN 1100度抗氧化性好。用于炉罐、炉辊、通风机叶片、热滑轨、炉底版玻

璃、水泥窖及搪瓷窖等构件

ZG35Cr26Ni12 1100 高温强度高,抗氧化性能好,在规格范围内调整其成分,可使组

织内含有一些铁素体,也可为单相奥氏体。能广泛的用于许多炉

子构件,但不宜用于温度急剧变化的地方

ZG40Cr28Ni16 1150 力学性能同单相ZG40Cr25Ni12 ,具有较高温度的抗氧化性

能,用途同ZG40Cr25Ni12,ZG40Cr25Ni20

ZG40Cr25Ni20 1150 具有较高的蠕变和持久强度,抗高温气体腐蚀能力强,常用

做炉辊、辐射管、钢坯平滑板、热处理炉炉辊、管支架、

制氢转化管乙烯裂介管以及需要高蠕变强度的零件

ZG40Cr30Ni20 1150 在高温含硫气体中耐蚀性好,用于气体分离装置、焙烧炉衬板

ZG35Ni24Cr18Si2 1100 用于加热炉传送带、螺杆、紧固件等高温承载零件ZG35Ni24Cr15 1150 抗热疲劳性好。用于渗碳炉构件、热处理炉板、导轨、轮

子、铜焊夹具、蒸馏器、辐射管、玻璃轧辊、搪瓷窖构件以

及周期周期加热紧固件

ZG45Ni35Cr26 1150 抗氧化及抗渗碳性能良好,高温强度高。用于乙烯裂介管、

辐射管、弯管、接头、管支架、炉辊以及热处理用夹具等

ZGCr28 1150 抗氧化性能好。用于无强度要求的炉用构件以及含有硫化

物,重金属蒸气的焙烧炉构件

应该采用镍基高温合金,,以镍为基体(含量一般大于50%)、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金。

镍基合金是高温合金中应用最广、高温强度最高的一类合金。

镍基高温合金按强化方式有固溶强化型合金和沉淀强化型合金。

固溶强化型合金具有一定的高温强度,良好的抗氧化,抗热腐蚀,抗冷、热疲劳性能,并有良好的塑性和焊接性等,可用于制造工作温度较高、承受应力不大(每平方毫米几公斤力的部件,如燃气轮机的燃烧室。

沉淀强化型合金通常综合采用固溶强化、沉淀强化和晶界强化三种强化方式,因而具有良好的高温蠕变强度、抗疲劳性能、抗氧化和抗热腐蚀性能,可用于制作高温下承受应力较高(每平方毫米十几公斤力以上, 的部件,如燃气轮机的涡轮叶片、涡轮盘等

此外,镍基合金也可用做航天器、火箭发动机、核反应堆、石油化工和能源转换设备等的高温部件。

在现代飞机发动机中,涡轮叶片几乎全部采用镍基合金制造

2Cr25Ni20:承受1035℃以下反复加热的抗氧化钢,炉用部件、喷嘴、燃烧室

1Cr16Ni35:抗渗碳、抗氮化性好的钢种,1035℃以下反复加热。炉用钢

0Cr25Ni20:可承受1035℃加热。炉用材料、汽车净化装置用材料

2Cr25N:耐高温腐蚀性强,1082℃以下不产生易剥落的氧化皮,用于燃烧室

焊条PP-R427可耐600多度,一般还不好卖,市场上常见的耐热钢只能耐到500多度,比较可行的办法是选材尽量采用PP-R427,设计上尽量让焊缝避开受力点,我们就是这样做的

这类钢材叫作耐热钢,指在高温下具有较高强度和良好的化学稳定性的特殊钢。它包括抗氧化钢(高温不起皮钢)和热强钢两类。抗氧化钢通常在550~1250℃温度区间内使用,要求较好的化学稳定性(如抗氧化性及抗高温腐蚀能力等),但承受的载荷较低,对抗蠕变及抗蠕变断裂能力要求不高。热强钢通常在450~900℃温度区间内使用,受应力较大,要求材料兼有良好的抗蠕变、抗破断性和抗氧化性能。

根据你提供的要求来看2Cr25N和2Cr25Ni20比较适合。两者都可在1000摄氏度下工作。

35CrMo、12Cr1MoV、、13CrMo4

(A335P12、STFA22、15CrMo,10GrMo910(A335P12、12Cr2Mo、STFA24) 、A335P8(STFA25、Cr5Mo)、A335P9(Cr9Mo、STFA26)、A335P91(T91)、A335P92、WB36(15NiCuMoNB5)、

钢研102(12Cr2MoWViB)

12Cr1MoVG合金管15CrMoG合金管35CrMo合金管42CrMo合金管

耐1000度高温复合反射加热材料在钢坯加热炉的应用

申请号/专利号:201010261938

本发明的目的是提供一种耐1000度高温复合反射加热材料在钢坯加热炉的应用,是在耐火材料上或其他基材上,喷涂,粘接或烧结型高温反射加热材料,在1000度以上高温环境中使波长0.3-1.35范围的光大部分反射辐射到炉体内和加热的物体上(热能大部分是通过这个范围的光将能量传递出去的)。提高加热炉的热效率。波长0.3-1.35范围的光是热能的主要载体。通过在炉壁,炉顶施工时的高温复合合金反射加热材料角度,使大部分0.3-1.35范围的光的热能通过反射,使热能回到到被加热体上或返回炉内。提高了钢坯加热炉生产效率。节省能源。

第三章补偿器的选用

首先应利用改变管道走向获得必要的柔性,但由于布置空间的限制或其他原因也可采用补偿器

获得柔性。

1. 补偿器的形式

压力管道设计中常用的补偿器有三种:

Π型补偿器、波形补偿器、套管式或球形补偿器

2. Π型补偿器

Π型补偿器结构简单、运行可靠、投资少,在石油化工管道设计中广泛采用。采用Π形管段补偿时,宜将其设置在两固定点中部,为防止管道横向位移过大,应在Π型补偿器两侧设置导向

架。

3. 波形补偿器

波形补偿器,补偿能力大、占地小,但制造较为复杂,价格高,适用于低压大直径管道。

1) 波形补偿器条件

(1)比用弯管形式补偿器更为经济时或安装位置不够时。

(2)连接两个间距小的设备的管道。其补偿能力不够时。

(3)为了减少压降,推力或振动,在工艺过程上可行而且在经济上合理时。

(4)为了保护有严格受力要求的设备嘴子。

2) 波形补偿器的形式及适用条件

(1)直管段使用轴向位移型;

(2)两个方向位移的L形,Z形管段使用角型;

(3)三个方向位移的Z形管段使用万向角型;

(4)吸收平行位移的使用横向型。

3) 选用无约束金属波纹管膨胀节时应注意的问题

(1) 两个固定支座之间的管道中仅能布置一个波纹管膨胀节;

(2) 固定支座必须具有足够的强度,以承受内压推力的作用;

(3) 对管道必须进行严格地保护,尤其是靠近波纹管膨胀节的部位应设置导向架,第一个导向支架与膨胀节的距离应小于或等于4DN,第二个导向支架与第一个导向支架的距离应小于或等于14DN,以防止管道有弯曲和径向偏移造成膨胀节的破坏;

4) 带约束的金属波纹管膨胀节的类型

带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点处,而是由约束波纹管膨胀节用的金属部件承受。

(1) 单式铰链型膨胀节,由一个波纹管及销轴和铰链板组成,用于吸收单平面角位移;

(2) 单式万向铰链型膨胀节,由一个波纹管及万向环、销铀和铰链成,能吸收多平面角位移;

(3) 复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能吸收多平面横向位移和拉

杆问膨胀节本身的轴向位移;

(4) 复式铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收单平面横向

位移和膨胀节本身的轴向位移;

(5) 复式万向铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收互相垂

直的两个平面横向位移和膨胀节本身的轴向位移;

(6) 弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连接的两个工作波纹管及一个平衡波纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道内压,工作波纹付和平衡波纹管外端间装有拉杆。此种膨胀节能吸收轴向位移和/或横向位移。拉杆能

约束波纹管压力推力. 常用于管道方向改变处;

(7) 直管压力平衡型膨胀节,一般位于两端的两个工作波纹管及有效面积等于二倍工作波纹管有效面积、位中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹管相互连拔起来。此种膨胀节能吸收轴向位移。拉杆能约束波纹管压力推力。

5) 波纹管膨胀节在施工安装中应注意的问题

(1) 膨胀节的施工和安装应与设计要求相一致;

(2) 膨胀节的安装使用应严格按照产品安装说明书进行;

(3) 禁止采用使膨胀节变形的方法来调整管道的安装偏差;

(4) 固定支架和导向支架等应严格按照设计图纸进行施工,需要改动时应经原分析设计人员认

可;

(5) 膨胀节上的箭头表示介质流向,应与实际介质流向相一致,不能装反;

(6) 安装铰链型膨胀节时,应按照施工图进行,铰链板方向不能装错;

(7) 在管道系统(包括管道、膨胀节和支架等)安装完毕,系统试压之前,应将膨胀节的运输保护装置拆除或松开。按照国标GB/T 12777的规定,运输保护装置涂有黄色油漆,应注意不能将其

他部件随意拆除;

(8) 对于复式大拉杆膨胀节,不能随意松动大拉杆上的螺母,更不能将大拉杆拆除;

(9) 装有膨胀节的管道,做水压试验时,应考虑设置适当的临时支架以承受额外加到管道和膨胀

节上的荷载。试验后应将临时支架拆除。

3. 套管式或球形补偿器

套管式或球形补偿器因填料容易松弛,发生泄漏,在石化企业中很少采用。在有毒及可燃介质

管道中严禁采用填料函式补偿器。

4. 冷紧

1) 冷紧

冷紧可降低操作时管道对连接设备或固定点的推力和力矩,防止法兰连接处弯矩过大而发生泄漏。冷紧是将管道的热应变一部分集中在冷态,在安装时(冷态)使管道产生一个初位移和初应

力的一种方法。

当管道沿坐标轴X、y、Z方向的冷紧比不同时,每个方向的冷紧值应根据该方向的冷紧进行计算。当管道上有几个冷紧口时,沿坐标轴X、y、Z方向的冷紧值分别为各冷紧口在相应坐标轴

方向冷紧值的代数和。

管道采用冷紧时,热态冷紧有效系数取2/3,冷态取1。

2) 连接转动设备的管道不应采用冷紧

由于施工误差使得冷紧量难于控制,另一方面,在管道安装完成后要将与敏感设备管口相连的管法兰卸开,以检查该法兰与设备法兰的同轴度和平行度,如果采用冷紧将无法进行这一检查。

3) 自冷紧

如果热胀产生的初应力较大时,在运行初期,初始应力超过材料的屈服强度而发生塑性变形,

或在高温持续作用下,管道上产生应力松弛或发生蠕变现象,在管道重新回到冷态时,则产生反方向的应力,这种现象称为自冷紧。但冷紧不改变热胀应力范围。

4) 冷紧比

冷紧比是冷紧值与全补偿量的比值。

对于材料在阳变温度下工作的管道,冷紧比宜取0.7。对于材料在非蠕变温度下工作的管道,

冷紧比宜取0.5

耐火材料的六大使用性能

耐火材料的六大使用性能 耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。 (一般)耐火度 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。 耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。因此,耐火度是多相体达到某一特定软化程度的温度。 耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。耐火度是判定材料能否作为耐火材料使用的依据。国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。 (二)荷重软化温度

荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。 荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关 (三)重烧线变化(高温体积稳定性) 首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。 耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。 耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。重烧体积变化也称残余体积变形,

耐火材料的发展历程

一、耐火材料的起源 古代、中世纪、文艺复兴时代的耐火材料,工业革命前后高炉、焦炉、热风炉用耐火材料,近代后期新型耐火材料及其制造工艺,现代耐火材料制造技术及主要技术进步,以及对未来耐火材料发展的展望,耐火材料与高温技术相伴出现,大致起源于青铜器时代中期。 耐火材料的三大发展阶段 东汉时期(公元25~220)已用粘土质耐火材料做烧瓷器的窑材和匣钵。 20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时发展了完全不需烧成、能耗小的不定形耐火材料和高耐火纤维(用于1600℃以上的工业窑炉)。前者如氧化铝质耐火混凝土,常用于大型化工厂合成氨生产装置的二段转化炉内壁,效果良好。 50年代以来,原子能技术、空间技术、新能源开发技术等的迅速发展,要求使用耐高温、抗腐蚀、耐热震、耐冲刷等具有综合优良性能的特种耐火材料 二、耐火材料在中国的发展 20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时出现了完全不需烧成、能耗小的不定形耐火材料和耐火纤维。现代,随着原子能技术、空间技术、新能源技术的发展,具有耐高温、抗腐蚀、抗热振、耐耐火材料冲刷等综合优良性能的耐火材料得到了

应用。在中国有许多工厂生产耐火材料产品。中国有丰富的资源,也正因为这方面的原因,各大外国投资商也来到国内一展身手,展露头角。 在中国的东北部,是耐火材料供应商极其丰茂的地区,导致其他国外投资商对其的出口低价格产生了质疑,从而在2003年由欧盟提出对中国耐火材料新产品的反倾销,限制了产品对欧盟的出口。2006年中国为保护原材料资源的大量流失,对部分行业进行了减免出品退税,以此极大地限制产品的出口。但这并不能在很大程度上限制一些国外的品牌销售,因为它们拥有几十甚至上百年的销售生产经验,并极大地占有了市场,也创立了它们在各大洲的品牌效应。 三、发展具有综合技术水平的耐火材料产业 综合技术水平的耐火材料产业,不仅指生产出的耐火材料产品具备质量好、环保、轻质等优质特点,同时也指生产耐火材料的匹配设备具有寿命长、性能好、产量高等优质特点。综合技术水平的评定因素,涉及耐火产品和生产设备等一整套工艺流程,以及高水平的产品研发、监督管理人员等因素,这些因素综合评估的结果决定了耐火材料产业的综合技术水平。 此外,耐火材料整体承包企业还必须对钢铁企业要拥有一定的耐火材料新产品开发和质量改进的自主权,方可以根据钢企高温设备不同部位对耐火材料侵蚀损坏的差异,依靠企业技术优势对不同部

中钢集团洛阳耐火材料厂实习报告

生产实习报告(耐火材料) 前言: 赴中钢耐火材料厂实习是材料科学与工程专业本科生必修课程之一;是学生理论联系实际的一次机会;是对教学的必要补充。为了更好的掌握所学的专业知识并能够将这些知识融会贯通于实际工作中。 一、实习目的 我参加了中钢洛阳耐火材料厂的生产实习,生产实习的主要目的是: (1)使学生了解我国当前的耐火材料行业的发展趋势。 (2)通过对生产车间,管理单位及部门的接触,使学生对耐火材料等无机非金属材料制品的整个生产工艺流程、常用设备、生产原材料的选用等有关情况,有一个清楚的认识,初步掌握耐火材料的具体生产过程,掌握耐火砖胚的形成工程,掌握各种生产设备的工作原理和作用,为毕业打下良好的基础。 (3)实习期间学生到生产第一线,深入生产实际参加施工技术组织、施工管理及技术经济等方面的实际工作,培养学生理论联系实际的能力,锻炼学生的分析问题和解决问题的能力,并进一步巩固和深化所学的理论知识。为后续的毕业设计以及今后的工作打下良好的基础。 (4)通过生产实习,密切接触工人师傅和工程技术人员,学习他们的优秀品质和献身社会主义建设事业的精神,使学生进一步培养自己的专业素质,明确自己的社会责任和历史使命。 二、实习时间:2010年08月30日至2010年9月8日 三、实习地点:河南洛阳

四、实习单位:中钢洛阳耐火材料有限公司(高铝分厂,硅质分厂,镁质分厂,不定型分厂)中钢洛阳耐火材料研究院,洛阳工艺美术陶瓷厂 五、实习内容: 1.实习单位简介 中国耐火材料行业协会的会长单位--中钢集团耐火材料有限公司,是国内规模最大、品种最全的国有耐火材料生产厂家;是入选中国520家重点企业的唯一耐火材料企业;是国家统计局最新排定的中国大型企业之一;河南省高新技术企业。中钢集团耐火材料有限公司主要生产各种定型和不定型耐火材料,产品有 10 大系列、126个标准、350个牌号、4万多个型号。现主导产品有氧化物及非氧化物复合陶瓷耐火材料,优质高铝质、硅质制品,高档碱性制品,铝碳、铝镁碳连铸制品,轻质隔热制品,不烧制品,陶瓷窑具制品,不定型耐火材料制品等,许多产品填补了国内空白,达到并超过了国外同类产品质量。 5.1.1硅质分厂简介 硅砖中钢集团耐火材料有限公司硅质分厂硅砖生产线始建于1958年,有着40余年的生产发展史,存在丰富的生产技术经验,是中国目前实力最强的硅砖制造厂家。之所以选取洛阳为建厂地是因为洛阳市所属的新安县铁门镇有非常优质硅石原料。硅质分厂硅质品种比较齐全,有焦炉用优质硅砖,玻璃窑用优质硅砖,热风炉用优质硅砖及配套的轻质硅砖,以及小批量生产热修补焦炉用零膨胀硅砖,年生产能力9余万吨。硅质分厂通过ISO9001质量体系认证,有着完善的质量管理体系和先进的管理理论,实施过程控制,可追溯式管理和可识化管理。中钢集团耐火材料有限公司生产硅砖有着得天独厚的优势:丰富的原料资源——铁门硅石,存在结晶硅石的特点。硅质分厂硅砖存在外形尺寸精确,化学组成稳定,强度高、蠕变小、残余石英含量低等优点。

北京科技大学+耐火材料期末复习

基质:基质是耐火材料中大晶体或骨料间隙中存在的物质。 主晶相:主晶相是指构成耐火制品结构的主体且熔点较高的晶相 耐火度:耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性能。 显微结构:在光学和电子显微镜下分辨出的试样中所含有相的种类及各相的数量、形状、大小、分布取向和它们相互之间的关系,称为显微结构。 陶瓷结合:又称为硅酸盐结合,其结构特征是耐火制品主晶相之间由低熔点的硅酸盐非晶质和晶质联结在一起而形成结合。 直接结合:指耐火制品中,高熔点的主晶相之间或主晶相与次晶相间直接接触产生结晶网络的一种结合,而不是靠低熔点的硅镁酸盐相产生结合。 混练:使两种以上不均匀的物料的成分和颗粒均匀化,促进颗粒接触和塑化的操作过程称混炼。 液相烧结:凡有液相参加的烧结过程;液相起到促进烧结和降低烧结温度的作用。 低水泥浇注料:由水泥带入的CaO含量一般在1.0-2.5%之间的反絮凝浇注料。 热硬性结合剂:热硬性结合剂是指在常温下硬化很慢和强度很低,而在高于常温但低于烧结温度下可较快的硬化的结合剂 水硬性结合剂:水硬性结合剂是必须同水进行反应并在潮湿介质中养护才可逐渐凝结硬化的结合剂 气硬性结合剂:气硬性结合剂是在大气中和常温下即可逐渐凝结硬化而具有相当高强度的结合剂 减水剂:保持浇注料流动值基本不变的条件下,可显著降低拌和用水量的物质称为减水剂弹性后效:坯体压制时,外部压力被内部弹性力所均衡,当外力取消时,内部弹性力被释放出来,引起坯体膨胀的作用称为弹性后效 荷重软化点:以压缩0.6%时的变形温度作为被测材料的荷重软化温度,即荷重软化点 镁碳砖:镁碳砖是以烧结镁砂或电熔镁砂为主要原料,并加入适量的石墨和含碳质有机结合剂而制成的镁质制品。 电熔镁砂:由天然菱镁矿、水镁石、轻烧镁砂或烧结镁砂在电弧炉中高温熔融而成的镁质原料 矿化剂:加入耐火材料中,在烧成过程中能促进其他物质转变或结晶的少量物质。 防氧化剂:含碳耐火材料采用金属添加剂的作用在于抑制碳的氧化,被称为防氧化剂 可塑性: 物料受外力作用后发生变形而不破裂,在所施加使其变形的外力撤除后,变形的形态仍保留而不恢复原状,这种性质称为可塑性。 熔铸莫来石制品:由高铝矾土或工业氧化铝、粘土或硅石进行配料,在电弧炉内熔融,再浇铸成型及退火制成的耐火制品称为熔铸莫来石制品。 再结晶碳化硅制品:再结晶碳化硅制品是一种无结合物的碳化硅制品,它是在不加入结合剂的条件下,靠碳化硅晶粒的再结晶作用制成的。 水玻璃的模数:氧化硅与氧化钠的分子比称为水玻璃的模数。 捣打料:以粉粒状耐火物料与结合剂组成的松散状耐火材料称为捣打料。 耐火泥:耐火泥也叫铝酸盐水泥,是以铝矾土和石灰石为原料,经煅烧制得的以铝酸钙为主要成分、氧化铝含量约为50%的熟料,再磨制成的水硬性胶凝材料。

防火材料的应用

冰火板材料在现代中大型装饰工程中的位置 1、防火等级 常用室内装修材料按照燃烧性能等级分A级不燃性、B1级难燃性、B2级可燃性、B3级易燃性;各部位材料(A级),主要是大理石、水泥制品、石膏板、玻璃、面砖、瓷砖、钢铁、不锈钢制品、铝制品等。主要包括防火装饰板、难燃双面刨花板、防火板、PVC板等等。 2、建筑行业应用 目前全国各个省份城市化进程都在加快,城市建设过程中建筑材料的好坏至关重要,许多城市建筑、公路桥梁后来出现的诸多问题都是由于建设过程中材料选择失当的问题,建筑材料行业长久以来缺乏创新性,后劲不足。江苏金鹏防火板业有限公司经过大量实验研发的有机环保防火板(本公司生产的玻镁板材料成分:活性高纯氧化镁(MgO)、优质氯化镁(MgCl2)、抗碱玻纤布、柔性极佳的植物纤维、不燃质轻的珍珠岩、化学稳定立德粉、高分子聚合物、高性能改性剂)综合性能优越,短板少,无论是防火性能还是后期加工都比传统人造木质板更加优秀,也为建筑防火材料领域注入了新鲜的血液。 3、产品特点 产品特点: 玻镁板具有耐高温、阻燃、吸声、防震、防虫、、防水防潮、轻质防腐、无毒无味无污染、可直接上油漆、直接贴面,可用气钉、直接上瓷砖,表面有较好的着色性,强度高、耐弯曲有韧性、可钉、可锯、可粘,装修方便。还可以与多种保温材料复合制成复合保温板材。

产品用途:可作为墙板,吊顶板,防火板,防水板,包装箱等使用,可替代木质胶合板做墙裙,窗板、门板,家具等室内装饰用具,也可根据需要做调和漆,清水漆,并可加工成各种类型的板面,同时可用于地下室,人防和矿井等潮湿环境的工程,还可以与多种保温材料复合,制成复合保温板材。玻镁板的使用:玻镁板可以通过锯、刨、钉等加工工艺,也可制成各种装饰作品的结构,通过面饰乳胶漆、壁纸、陶瓷墙砖做终饰,完成装饰工程。 4、行业发展趋势 冰火板相比现有技术装饰板,本实用新型基材板为无纤维水泥基材板,不含、甲醛及苯等有害物质,具有高强度、大幅面、轻质、防火、防水、隔音、保温节能等优点,浸胶纸牢固复合在基材板上,所以饰面板表面可以呈现多种艺术效果尤其可仿真木纹或石的纹理效果,且其坚固程度显著地优于以木质人造板为基材的饰面板,更加适宜于在部分对饰面板坚固程度要求较高的场所中使用。

垃圾焚烧炉用耐火材料的使用现状及发展趋势

摘要:简要地介绍了垃圾焚烧炉的结构、特征和使用技术,阐述了焚烧炉用耐火材料的种类、性能及其使用效果,并指出焚烧炉用耐火材料今后的发展方向。 关键词:垃圾焚烧炉;耐火材料;现状与发展 随着世界人口的不断增加和经济的高速发展,城市垃圾和工业废物的数量急剧增多。垃圾的存在不仅占用大量的空间,而且对地球环境造成严重污染,危害人类和动植物的环境。因而城市垃圾和产业废弃物的处理是一个亟待解决的问题。 目前,世界各国为实现“综合的垃圾经济”所做的努力越来越多,这一概念的主要内容是避免产生垃圾和重新利用垃圾。西方一些国家对垃圾处理所做的努力取得了显著成绩,研究开发了各种处理垃圾的方法:生物处理、热处理以及生物处理和热处理相结合。比较研究各种垃圾处理的方法后表明,目前还没有哪一种技术能够代替焚烧法,该法具有减容量大、处理及时、无害化程度高且可以回收热能等一系列优点而倍受关注,已成为发达国家处理垃圾的主要方式。 为适应环保产业的日益发展,满足焚烧炉的需要,世界各国开发使用了各种优质耐火材料,并取得了显著的使用效果,因而继续研究开发性能优异的耐火材料已成为当务之举。 1垃圾焚烧炉的类型和特点 常见的焚烧炉有:间歇式焚烧炉、炉箅式焚烧炉、CAO焚烧系统、流化床式焚烧炉、回转炉式焚烧炉等。图1是垃圾焚烧设备的流程图。 图1垃圾焚烧设备流程图 1.平台; 2.垃圾装入门; 3.垃圾坑; 4.垃圾吊车; 5.垃圾料斗; 6.焚烧炉; 7.锅炉; 8.反应塔; 9.除尘装置;10.抽风机;11.烟囱;12.强制鼓风机;13.蒸汽式空气预热器;14.运灰机; 15.磁选机;16.灰坑;17.灰吊车;18.金属运送机;19.金属坑;20.除尘粉尘运送机;21.反应塔下粉尘运送机;22.集中粉尘运送机;23.飞灰处理装置;24.飞灰坑;25.防止白烟用鼓风机;26.蒸汽式空气加热器;27.垃圾污水槽;28.垃圾水中间槽;29.高压蒸汽储汽器; 30.蒸汽汽轮机;31.中央控制室;32.控制传感器室;33.受电变电室;34.锅炉副机室;35.闸门操作室 间歇式焚烧炉 间歇式焚烧炉一般分为小型炉和大型炉,目前使用的焚烧炉多半是小型炉,一次性投入垃圾,焚烧结束后,再次投入垃圾,日处理垃圾量在25t以下,一般按规定的时间出灰。炉下部设有炉箅、气体冷却、废气排出和送风装置;若是大型炉,常设有垃圾投入和排灰装置。无论是大型炉还是小型炉,其特点为:结构简单,建设费用少、使用时间长;但气体量和气体温度波动大,热量有效利用差,灰份残渣多等。 炉箅式焚烧炉 炉箅式焚烧炉也称炉排式焚烧炉,是一种连续式焚烧炉,因其优良的使用性能而逐渐取代了间歇式焚烧炉。目前城市垃圾焚烧炉大多数为这种焚烧炉(约占70%),其日处理量为80-200t,大型炉为300-600t。炉箅式焚烧炉底部设有多段炉算,炉箅上堆放用料斗供给的垃圾,在移动炉箅的同时,在其下部吹入燃烧空气,进行干燥、燃烧。炉箅式焚烧炉的特点是:炉身高大,造价较高;只有一个燃烧室,对进入炉内的垃圾不必分选、破碎;固体垃圾在炉内停留约1-3h,气体停留约几秒种;垃圾的表层温度为800℃,烟气温度为800-1000℃;要求炉排耐高温、耐腐蚀、机械性能好。 为减少焚烧炉产生的有害气体(如二恶英、NO、NO2、CO等),日本钢管公司采用NKK技术开发了双回流炉箅式焚烧炉,使来自副烟道的还原性气体与主烟道的燃烧气体进行再燃烧,从而抑制NOx气体的发生,促进燃气的完全燃烧,减少二恶英的发生。

雷法耐火材料公司简介

雷法耐火材料技术水泥有限公司简介 雷法公司简介 中国代表处简介 雷法公司简介 雷法公司的历史可以追溯到战后的1947年,当时卡尔阿尔博特开始利用震动式手工制造运用于水泥窑的化学结合耐火砖。 由于当时大量的战后重建,使得卡尔阿尔博特耐火砖工厂得到了进一步的发展。1953年,改名为现在的雷法耐火技术有限公司。 雷法公司组建后,尤其是1968年后,业绩有了飞速的发展。水泥生产厂与耐火材料制造商之间的密切合作,对雷法公司的发展起着重要的作用。雷法公司凭借自有的强大的技术力量,通过开发及改良的产品,以及不断完善的售后服务,这已树立了众所周知的良好口碑。进一步的发展,使得雷法公司特别是在水泥工业用耐火材料领域开始处于领先的地位。 雷法公司的产品应用于下列工业领域:水泥及石灰工业,钢铁工业,有色金属工业,垃圾及废品处理工业。 雷法公司现今已成为德国当今最大的耐火材料制造者之一,其产品的绝大部分应用于水泥工业,其中75%的雷法产品出口到全球的八十多个国家,并在世界水泥工业中占有很大的部分。

雷法耐火材料技术有限公司生产厂: 1). 哥廷根分厂 第一工厂在哥廷根市,同时公司的总部也在这里。在第一工厂(哥廷根)生产镁炭砖和特殊碱性砖,年产量在10万吨。生产流程是百分之百的自动化。 现代化的由计算机控制的压制及煅烧技术保证了最高质量的相同形状的产品的质量。雷法公司的研究与科研开发中心也设在此地,此科研基地开发的产品和技术也促使雷法公司处于世界耐火材料与技术的领先地位。 2). 高赫斯海姆 在高赫斯海姆生产高品质的镁质耐火砖,年产量为10万吨。其生产的全过程同样是全自动化的,最现代化的计算机控制的压制和煅烧技术同样可以保证最高质量,相同形状的产品的质量。 3). 雷法耐火技术依比利卡公司(西班牙巴塞罗那市附近)。 这里的工厂是兼并了原先的一个耐火材料厂后改造而成的。其主要生产轻质耐火砖,高铝和铝质耐火砖。年产量为6万吨。现代化的技术同样确保了在西班牙工厂的产品的最好质量。 4). 贝麦克矿产有限公司(加拿大卡尔加里市附近)。 为了更好的选择优质原材料,雷法公司于1979年在加拿大购买了贝麦克矿产公司,那里拥有世界上最著名的结晶镁矿藏。

耐火材料行业应用解决方案

耐火材料行业应用解决方案 一、耐火材料的简介 耐火度高于1580℃的无机非金属材料。耐火度指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。耐火材料与高温技术相伴出现,大致起源于青铜器时代中期。中国东汉时期已用粘土质耐火材料做烧瓷器的窑材和匣钵。20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时出现了完全不需烧成、能耗小的不定形耐火材料和耐火纤维。现代,随着原子能技术、空间技术、新能源技术的发展,具有耐高温、抗腐蚀、抗热振、耐冲刷等综合优良性能的耐火材料得到了应用。 (一)耐火材料的分类 耐火材料种类繁多,通常按耐火度高低分为普通耐火材料(1580~1770℃)、高级耐火材料(1770~2000℃)和特级耐火材料(2000℃以上);按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。此外,还有用于特殊场合的耐火材料。 现在对于耐火材料的定义,已经不仅仅取决于耐火度是否在1580℃以上了。目前耐火材料泛指应用于冶金、石化、水泥、陶瓷等生产设备内衬的无机非金属材料。 (二)不同耐火材料的化学组成成分 酸性耐火材料以氧化硅为主要成分,常用的有硅砖和粘土砖。硅砖是含氧化硅93%以上的硅质制品,使用的原料有硅石、废硅砖等,其抗酸性炉渣侵蚀能力强,荷重软化温度高,重复煅烧后体积不收缩,甚至略有膨胀;但其易受碱性渣的侵蚀,抗热振性差。硅砖主要用于焦炉、耐火材料熔窑、酸性炼钢炉等热工设备。粘土砖以耐火粘土为主要原料,含有30%~46%的氧化铝,属弱酸性耐火材料,抗热振性好,对酸性炉渣有抗蚀性,应用广泛。 中性耐火材料以氧化铝、氧化铬或碳为主要成分。含氧化铝95%以上的刚玉制品是一种用途较广的优质耐火材料。以氧化铬为主要成分的铬砖对钢渣的耐蚀性好,但抗热振性较差,高温荷重变形温度较低。碳质耐火材料有碳砖、石墨制品和碳化硅质制品,其热膨胀系数很低,导热性高,耐热振性能好,高温强度高,抗酸碱和盐的侵蚀,不受金属和熔渣的润湿,质轻。广泛用作高温炉衬材料,也用作石油、化工的高压釜内衬。 碱性耐火材料以氧化镁、氧化钙为主要成分,常用的是镁砖。含氧化镁80%~85%以上的镁砖,对碱性渣和铁渣有很好的抵抗性,耐火度比粘土砖和硅砖高。主要用于平炉、吹氧转炉、电炉、有色金属冶炼设备以及一些高温设备上。 在特殊场合应用的耐火材料有高温氧化物材料,如氧化铝、氧化镧、氧化铍、氧化钙、氧化锆等,难熔化合物材料,如碳化物、氮化物、硼化物、硅化物和硫化物等;高温复合材料,主要有金属陶瓷、高温

耐火材料的发展历史

耐火材料的发展历史,研究现状,发展趋势,资源的回收与利用 时间: 2010-10-10 来源:国炬高温科技点击: 587 次 中国在4000多年前就使用杂质少的粘土,烧成陶器,并已能铸造青铜器。东汉时期(公元25~220)已用粘土质耐火材料做烧瓷器的窑材和匣钵。20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时发展了完全不需烧成、能耗小的不定形耐火材料和高耐火纤维(用于160 耐火材料 0℃以上的工业窑炉)。前者如氧化铝质耐火混凝土,常用于大型化工厂合成氨生产装置的二段转化炉内壁,效果良好。50年代以来,原子能技术、空间技术、新能源开发技术等的迅速发展,要求使用耐高温、抗腐蚀、耐热震、耐冲刷等具有综合优良性能的特种耐火材料,例如熔点高于2000℃的氧化物、难熔化合物和高温复合耐火材料等。 耐火材料-分类分为普通和特种耐火材料两大类。普通耐火材料按化学特性分为酸性、 耐火材料 中性和碱性。特种耐火材料按组成分为高温氧化物、难熔化合物和高温复合材料此外,按照耐火度强弱可分为普通耐火制品(1580~1770℃)、高级耐火制品(1770~2000℃)和特级耐火制品(2000℃以上)。按照制品的外形可分为块状(标准砖、异形砖等)、特种形状(坩埚、匣钵、管子等)、纤维状(硅酸铝质、氧化锆质和碳化硼质等)和不定形状(耐火泥、浇灌料和捣打料等)。按照烧结工艺分为烧结制品、熔铸制品、熔融喷吹制品等。 耐火材料-主要品种在普通和特种耐火材料中,常用的品种主要有以下几种: 酸性耐火材料 耐火材料 用量较大的有硅砖和粘土砖。硅砖是含93%以上SiO2的硅质制品,使用的原料有硅石、废硅砖等。硅砖抗酸性炉渣侵蚀能力强,但易受碱性渣的侵蚀,它的荷重软化温度很高,接近其耐火度,重复煅烧后体积不收缩,甚至略有膨胀,但是抗热震性差。硅砖主要用于焦炉、玻璃熔窑、酸性炼钢炉等热工设备。粘土砖中含30%~46%氧化铝,它以耐火粘土为主要原料,耐火度1580~1770℃,抗热震性好,属于弱酸性耐火材料,对酸性炉渣有抗蚀性,用途广泛,是目前生产量最大的一类耐火材料。 中性耐火材料 高铝质制品中的主晶相是莫来石和刚 耐火材料 玉,刚玉的含量随着氧化铝含量的增加而增高,含氧化铝95%以上的刚玉制品是一种用途较广的优质耐火材料。铬砖主要以铬矿为原料制成的,主晶相是铬铁矿。它对钢渣的耐蚀性好,但抗热震性差,高温荷重变形温度较低。用铬矿和镁砂按不同比例制成的铬镁砖抗热震性好,主要用作碱性平炉顶砖。 碳质制品是另一类中性耐火材料,根据含碳原料的成分和制品的矿物组成,分为碳砖、石墨制品和碳化硅质制品三类。碳砖是用高品位的石油焦为原料,加焦油、沥青作粘合剂,在1300℃隔绝空气条件下烧成。石墨制品(除天然石墨外)用碳质材料在电炉中经2500~2800℃石墨化处理制得。碳化硅制品则以碳化硅为原料,加粘土、氧化硅等粘结剂在1350~1400℃烧成。也可以将碳化硅加硅粉在电炉中氮气氛下制成氮化硅-碳化硅制品。

耐火材料分类及应用

第八章耐火材料 第二节耐火材料产品分类及统计指标结构 (1) 一、耐火材料产品统计指标结构 (1) 二、有关名词解释 (4) 第三节耐火材料产品产量统计 (19) 二、耐火材料产品产量 (20) 三、耐火材料产品产量的统计范围 (31) 第四节耐火材料主要技术经济指标计算方法 (42) 一、耐火材料合格率 (43) 二、耐火材料原料消耗 (57) 三、耐火材料综合能耗 (66) 四、耐火材料工序单位能耗 (71) 五、烧成耐火制品标煤单耗 (79) 六、耐火材料电耗 (86) 七、耐火材料工人实物劳动生产率 (94) 八、压砖机台班产量 (99) 九、烧成窑有效容积利用系数 (107) 十、倒焰窑平均周转时间 (115) 十一、耐火材料成品率 (122)

第二节耐火材料产品分类及统计指标结构 一、一、耐火材料产品统计指标结构 耐火材料产品统计指标如如图 粘土制品 高铝制品 烧成耐火制品硅质制品 镁质制品 其它烧成制品 不烧高铝质砖 不烧耐火制品不烧硅质砖 镁碳砖 耐火材料刚玉制品 氧化铬制品 氧化铝制品 特种耐火材料氧化镁制品 氧化铍制品 ┋ 复吹转炉(电炉)用底吹供气元件 精炼钢包底吹用透气塞 功能耐火材料连铸用滑板 连铸用整体塞棒、长口水、浸入式水口 熔融石英质水口 耐火泥浆料 不定形耐火材料捣打料 可塑料 浇注料 二、有关名词解释 1)烧成耐火制品。将粒状、粉末状耐火原料和结合剂经混练、成型、干燥、高温烧成而制得的耐火材料。 2)不烧耐火制品。采用粒状、粉末耐火原料和合适的结合剂,经成型,但不烧成而直接使用的耐火材料。 3)特种耐火材料。由高熔点氧化物、难熔非氧化物和碳素中的一种或多种复合,经特殊烧烤工艺制成的具有某种特殊性质的耐火材料。 4)不定形耐火材料(散状耐火材料或耐火混凝土)。有合理级配的粒状、粉状耐火原料与结合剂及多种外加剂组成的不经高温烧成,而在现场通过混练、成型和烧烤后直接使用的耐火材料。

耐火材料的发展历史

1. 耐火材料的发展历史,研究现状,发展趋势,资源的回收与利用 时间:2010-10-10来源:国炬高温科技点击:587次 1.1. 概述 中国在4000多年前就使用杂质少的粘土,烧成陶器,并已能铸造青铜器。东汉时期(公元25~220)已用粘土质耐火材料做烧瓷器的窑材和匣钵。20世纪初,耐火材料向高纯、高致密和超高温制品方向发展,同时发展了完全不需烧成、能耗小的不定形耐火材料和高耐火纤维(用于1600℃以上的工业窑炉)。前者如氧化铝质耐火混凝土,常用于大型化工厂合成氨生产装置的二段转化炉内壁,效果良好。50年代以来,原子能技术、空间技术、新能源开发技术等的迅速发展,要求使用耐高温、抗腐蚀、耐热震、耐冲刷等具有综合优良性能的特种耐火材料,例如熔点高于2000℃的氧化物、难熔化合物和高温复合耐火材料等。 耐火材料-分类分为普通和特种耐火材料两大类。普通耐火材料按化学特性分为酸性耐火材料、中性耐火材料和碱性耐火材料。特种耐火材料按组成分为高温氧化物、难熔化合物和高温复合材料此外,按照耐火度强弱可分为普通耐火制品(1580~1770℃)、高级耐火制品(1770~2000℃)和特级耐火制品(2000℃以上)。按照制品的外形可分为块状(标准砖、异形砖等)、特种形状(坩埚、匣钵、管子等)、纤维状(硅酸铝质、氧化锆质和碳化硼质等)和不定形状(耐火泥、浇灌料和捣打料等)。按照烧结工艺分为烧结制品、熔铸制品、熔融喷吹制品等。 耐火材料-主要品种在普通和特种耐火材料中,常用的品种主要有以下几种: 酸性耐火材料 中性耐火材料 碱性耐火材料 用量较大的有硅砖和粘土砖。硅砖是含93%以上的硅质制品,使用的原料有硅石、废硅砖等。硅砖抗酸性炉渣侵蚀能力强,但易受碱性渣的侵蚀,它的荷重软化温度很高,接近其耐火度,重复煅烧后体积不收缩,甚至略有膨胀,但是抗热震性差。硅砖主要用于焦炉、玻璃熔窑、酸性炼钢炉等热工设备。粘土砖中含30%~46%氧化铝,它以耐火粘土为主要原料,耐火度1580~1770℃,抗热震性好,属于弱酸性耐火材料,对酸性炉渣有抗蚀性,用途广泛,是目前生产量最大的一类耐火材料。 高铝质制品中的主晶相是莫来石和刚玉,刚玉的含量随着氧化铝含量

中国耐火材料百强企业

序号公司名称销售收入(亿元) 1 营口青花耐火材料股份有限公司34.45 2 海城市后英经贸集团有限公司21.00 3 濮阳濮耐高温材料(集团)股份有限公司20.20 4 武汉钢铁(集团)耐火材料有限责任公司19.57 5 营口金龙集团15.51 6 海城镁矿耐火材料总厂14.79 7 瑞泰科技股份有限公司13.89 8 浙江自立股份有限公司12.10 9 山东鲁阳股份有限公司9.79 10 奥镁贸易(大连)有限公司9.50 11 北京利尔高温材料股份有限公司9.19 12 通达耐火技术股份有限公司9.10 13 维苏威高级陶瓷(苏州)有限公司8.93 14 济南钢铁集团耐火材料有限责任公司8.18 15 中钢集团洛阳耐火材料研究院有限公司7.91 16 中钢集团耐火材料有限公司7.83 17 山东耐火材料集团有限公司7.15 18 攀钢冶金材料有限责任公司7.14 19 海城华宇集团 6.71 20 辽宁奥镁有限公司 6.70 21 辽宁群益集团耐火材料有限公司 6.51 22 辽宁金鼎镁矿集团有限公司 6.41 23 摩根陶瓷中国 6.08 24 巩义市第五耐火材料总厂 6.00 25 马鞍山钢铁股份有限公司耐火材料公司 5.99 26 郑州安耐克实业有限公司 5.89 27 辽宁中兴矿业集团有限公司 5.55 28 无锡市南方耐材有限公司 5.50 29 辽宁富城特种耐火材料有限公司 5.50 30 济南新峨嵋实业有限公司 5.45 31 江苏苏嘉集团新材料有限公司 5.00 32 江苏嘉耐高温材料有限公司 4.91 33 营口欣立耐材科技有限公司 4.52 34 海城市峰驰耐火材料总公司 4.50 35 浙江金磊高温材料股份有限公司 4.22 36 河南春胜耐材有限公司 4.15 37 郑州振东科技有限公司 4.13 38 济南镁碳砖厂有限公司 4.00 39 湖南湘钢宜兴耐火材料有限公司 3.80 40 山东鲁桥新材料股份有限公司 3.60 41 唐山市国亮特殊耐火材料有限公司 3.60 42 郑州汇特耐火材料有限公司 3.60 43 开封特耐股份有限公司 3.60

耐火材料厂实习报告

实习报告 实习单位山东耐火材料有限公司 实习时间 学院 专业 班级 学生 学号 指导教师

摘要 本文叙述了本人在厂实习的经历及体会,学习理解耐火材料的实际生产流程,分析和掌握耐火材料生产过程中存在的问题以及如何改善和优化耐火材料的性能,同时了解工厂的管理体制及其经营的基本规律,并通过撰写实习报告,学会综合应用所学知识,提高应用专业知识的能力。为了更多地了解社会,为以后步入社火打下基础,在实践中接收教育,锻炼解决生产中实际问题的能力,通过在相关部门的实习,进一步理解了耐火材料的工艺过程,这对我的人生有很大的帮助。 关键词:耐火材料工艺工程

目录 摘要 .......................................................................................................................... - 1 - 前言 ............................................................................................................................ - 3 - 一、实习目的 .................................................................................................................. - 4 - 二、实习内容 .................................................................................................................. - 4 - 1.实习单位简介 ............................................................................................................... - 4 - 2.实习内容 .................................................................................................................... - 5 - 2.1 耐火材料的发展 ................................................................................................... - 5 - 2.2 耐火材料的种类 ................................................................................................... - 6 - 2.3 耐火材料产品 ....................................................................................................... - 7 - 2.4工艺流程 ................................................................................................................ - 9 - 2.5 主要设备及原理 ................................................................................................. - 10 - 三、实习总结与体会 .................................................................................................... - 14 -

耐火材料学

耐火材料学 1、耐火材料定义:耐火材料为物理与化学性质适宜于在高温下使用的非金属材料,但不排除某些产品可含有一定量的金属材料。 2、耐火材料按性质分类为酸性、碱性、中性耐火材料。 3、耐火材料中的气孔可分为三类:开口气孔(显气孔)、贯通气孔、闭口(封闭)气孔。 真密度:带有气孔的干燥材料的质量与其真体积之比值。 显气孔率:带有气孔的材料中所有开口气孔体积与其总体积之比。 吸水率:带有气孔的材料中所有开口气孔所吸收的水的质量与其干燥材料质量之比。4、耐火材料的强度包括耐压强度与抗折强度。耐火材料的耐压强度是单位面积上所能承受而不破坏的极限载荷;耐火材料的抗折强度是指将规定尺寸的长方体试样在三点弯曲装置上能够承受的最大应力。 5、热膨胀系数:耐火材料的热膨胀系数通常是指平均热膨胀系数,即从室温升至试验温度,温度每升高1℃试样长度的相对变化率。线膨胀系数:有时也称为线弹性系数,指温度每变化1℃材料长度变化的百分率。 6、耐火材料的使用性质: ①耐火度:耐火材料在无荷重条件下抵抗高温而不熔化的特性。 ②高温蠕变:耐火材料在一定的压力下随时间的变化为产生的等温变形称为耐火材料的高温蠕变或者压蠕变。 ③耐火材料的高温体积稳定性。重烧线变化是指试样在加热到一定的温度保温一段时间后,冷却到室温后所产生的残余膨胀或收缩。 ④耐火材料的抗热震性。其测试方法是加热—冷却法,将一定的试样直接放入已经达到规定温度的炉内保温达到规定的时间后,迅速从炉中取出,在水等介质中或空气中淬冷。 7、耐火材料的抗渣性:耐火材料在高温下抵抗熔渣侵蚀的性能称为抗渣蚀性能。 8、渣向耐火材料中的渗透: ①通过开口气孔与裂纹向耐火材料内部渗透。 ②通过晶界向耐火材料内部渗透。 ③渣中的离子进入到构成耐火材料的氧化物中,通过晶格扩散进入耐火材料中。 以上三种方式通过气孔与裂纹的渗透是最大的。 9、实验室最常用的抗渣性试验方法为坩埚法。其优点是简单易行,可以在同一个炉子中进行多个坩埚的抗渣性试验;缺点是:耐火材料试样静止不动,试样周围的侵蚀介质(熔渣)变化小,很容易达到饱和状态,在耐火材料内部不存在温度梯度。 10、耐火材料配方设计: ①化学与相组成的设计。②颗粒组成的设计。 11、耐火材料泥料颗粒组成设计原则: ①临界粒度的确定。②最紧密堆积原理。 ③结构、性能与生产过程的综合考虑。 12、硅酸铝质耐火材料是以Al2O3和SiO2为基本化学组成的耐火材料。根据Al2O3含量的高低,硅酸铝质耐火材料又可分为:半硅质耐火材料,Al2O3含量为15%~30%;黏土质耐火材料,Al2O3含量为30%~45%;高铝质耐火材料,Al2O3含量大于45%。氧化铝质耐火材料是Al2O3含量在95%以上的耐火材料。 13 莫来石—高硅氧玻璃复合材料:在Al2O3·—SiO2系材料的低铝区域,存在于耐火材料中的主要相成分为莫来石,方石英及玻璃相。由于方石英的存在这类制品的抗热震性差。如果将方解石融入玻璃相中,不仅可以消除因方石英的相转变而导致的抗热震性差,而且可以获得SiO2含量高的玻璃相。生产莫来石—高硅氧玻璃复合材料有两种方法(1)直接将黏土等

耐火材料公司安全生产操作规程

. 页脚 晨阳耐火材料安全生产操作规程

2008年10月 目录 一、煤气使用、维修安全技术操作规程 二、气焊工安全操作规程 三、电工安全操作规程 四、柴油发电机安全操作规程(配电室) 五、装载机安全操作规程 六、调窑操作规程 七、装出窑操作规程 八、热工仪表应注意事项

九、煤气流量、压力测量仪器仪表安全操 作规程 十、煤气输送管道安全操作规程 十一、八大重点作业操作规程(动火作业、动土作业、设备作业、电气作业、盲板 抽堵作业、高处作业、吊装作业、断路 作业) 十二、其他应注意事项 一、煤气使用、维修安全技术操作规程 (一)岗位潜在的危险 已通入煤气的管线或含有残留煤气的管道属于危险源。若煤气管线泄露(或对泄露点维修时)可能发生人员窒息死亡、火灾、爆炸等重大恶性事故。为保证安全生产,制定本规程。适用于煤气使用操作人员和维修人员。 (二)安全技术操作规程 公司相关部门应做好安全用气知识和急救知识的宣传教育、定期对煤气管线、阀门、可燃/有毒气体检测仪、氧气呼吸器等进行定期或使用前的检查。所有员工应接受煤气防火、防爆、防毒、紧急响应、心脏复等安全技术知识和急救知识的培训,并掌握人身急救的方法,

做到安全使用煤气。 煤气操作或维修作业属特种高危作业,作业人员应经过安全技术培训。 (三)工作前的准备 1、工作前应穿戴好工作服、工作鞋、氧气呼吸器或口罩后方可进入作业区。 2、检查各阀门、管线有无泄漏点。 3、检查灭火器材是否完备。 4、初次进行供气前,厂方停止一切电气焊等动火作业,除相关作业人员外,其他所有人员撤离出厂房。 5、供气或长期停气后的再次供气,点火前应通知供气单位公司人员来现场取样检测煤气的浓度,得到检测合格通知单后,方可进行铝矾土煅烧炉点火操作。 6、厂煤气管线维修时,应保证室通风良好,打开天窗、厂房大门和窗户。 (四)工作中应注意事项 1、铝矾土煅烧炉在点火前必须敞开炉门,开启管道前,启动风机吹扫;操作人员使用“气体检测仪”对炉膛和炉外周边煤气浓度进

耐火材料的发展趋势和新技术

本科课程论文 题目:耐火材料的发展趋势和新技术 学院: 材料与冶金学院 专业: 无机非金属材料工程 学号: 2009021280 学生姓名: 指导教师: 日期: 2012.12.26

摘要 作为现代工业窑炉不可或缺的耐火保温材料,硅酸铝纤维在倡导节能高效的今天显得尤为重要。传统硅酸铝纤维材料主要以定形制品如板、毡、毯为主,受到强度及施工条件的限制,不能广泛的应用于需满足一定强度和施工条件较为复杂的窑炉部位。 本文概述了近年来定型和不定型耐火材料的总体发展趋势和新技术,为耐火材料的研究和使用提供参考。

目录 1 耐火材料的总体发展趋势 (1) 2 定型耐火材料的发展趋势和新技术 (2) 2.1 定形耐火材料的发展趋势 (2) 2.2 定形耐火材料新技术 (2) 3 不定形耐火材料的发展趋势和新技术 (3) 3.1 不定形耐火材料的发展趋势 (3) 3.2 不定形耐火材料新技术 (4) 4 纤维浇注料的强度研究 (5) 4.1 硅酸铝纤维的基本性能 (6) 4.2 骨料对纤维浇注料强度的影响 (8) 4.3 基质对纤维浇注料强度的影响 (9) 4.5 硅酸铝纤维的导热性研究 (12) 5 硅酸铝纤维施工方式的研究 (13) 5.1 模块结构及层铺结构 (13) 5.2 纤维喷涂结构 (13) 6 课题的提出 (13) 参考文献 (14)

1 耐火材料的总体发展趋势 近年来,随着冶炼技术和钢铁工业的快速发展,耐火材料也实现了一系列重大技术变革,正逐步由依赖于天然原料、大批量生产的原始制品群向以多品种、小批量、人工原料、开发和设计等为原则的精密、高级制品系列转变,即由古典耐火材料向多样化的新型耐火材料转变。这些表征着近年来耐火材料总体发展趋势的变革,概括起来可以归结为以下几点: (1)高纯度化 在各国的耐火原料中,那些纯度较低的天然原料,由于所含大量杂质的不良影响和使用性能的不足,其用量正日趋减少,如硅石、粘土等。相应地,那些杂质少、性能优异的高纯度天然原料或经过提纯的天然原料,如锆英石、石墨等,用量正日趋增加。同时,电焙镁石、碳化硅、尖晶石等人工合成原料的开发和应用,也日益受到各研究和应用部门的关注与重视。 (2)致密化 由于使用过程中,对耐火制品的强度和高温性能的要求越来越高,耐火制品,特别是耐火砖,正走向致密化、长尺寸、大型化的方向发展。相应地,高压成型、高温烧成技术也在不断发展。 (3)精密化 随着冶炼技术和钢铁等工业的发展,耐火制品的形状日趋复杂,性能要求也日趋精细。因而,各国耐火材料的配比、性能和生产工艺的设计,甚至施工技术都日趋精密化。其中,连铸用耐火材料是精密化趋势最为集中最为突出的代表;同时还在朝着功能化的方向发展。 (4)含碳耐火材料不断普及 由于炭素材料具有吸收高温下因高强度、热膨胀或急剧温度变化而产生的应力,能防止熔融金属或炉渣浸润的特性,含碳耐火材料在各国都得到了相当程度的普及和应用,而且正在不断发展,其典型代表是镁碳砖、镁钙碳砖。 (5)氧化物与非氧化物复合材料的开发 70 年代后期以来,世界耐火材料发展的一个突出成就是碳结合耐火材料的兴起和迅速发展,如镁碳砖、镁钙碳砖、铝碳材料、铝锆碳材料等。然而,碳结合材料的弱点是抗氧化性和强度较低。综合考虑高温性能,可以发展成为具有优良高温性能的高技术耐火制品,可用于条件复杂、苛刻的特定高温部位的氧化物与非氧化物复合材料的开发,成为耐火材料近年来和今后的又一发展方向。其中,氧化物包括氧化铝、锆刚玉、莫来石、氧化锆、锆英石、氧化镁等;非氧化物包括碳化硅、氮化硼、赛隆、硼化锆等。氧化物与非氧化物复合材料,有直接结合、反应结合和碳结合等不同的工业途径。近年来的开发研究结果表明,与碳结合材

相关主题