搜档网
当前位置:搜档网 › 动点产生的等腰三角形问题

动点产生的等腰三角形问题

动点产生的等腰三角形问题
动点产生的等腰三角形问题

因动点产生的等腰三角形问题

例1 2012年扬州市中考第27题

如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M 有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.

思路点拨

1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.

满分解答

(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),

代入点C(0 ,3),得-3a=3.解得a=-1.

所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.

(2)如图2,抛物线的对称轴是直线x=1.

当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.

设抛物线的对称轴与x轴的交点为H.

由BH PH

BO CO

,BO=CO,得PH=BH=2.

所以点P的坐标为(1, 2).

图2

(3)点M的坐标为(1, 1)、(1,6)、(1,6

-)或(1,0).

考点伸展

第(3)题的解题过程是这样的:

设点M的坐标为(1,m).

在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.

①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.

此时点M的坐标为(1, 1).

②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6

m=±.此时点M的坐标为(1,6)或(1,6

-).

③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.

当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).

图3 图4 图5

例2 2012年临沂市中考第26题

如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.

(1)求点B 的坐标;

(2)求经过A 、O 、B 的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12临沂26”,拖动点P 在抛物线的对称轴上运动,可以体验到,⊙O 和⊙B 以及OB 的垂直平分线与抛物线的对称轴有一个共同的交点,当点P 运动到⊙O 与对称轴的另一个交点时,B 、O 、P 三点共线.

请打开超级画板文件名“12临沂26”,拖动点P ,发现存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形

思路点拨

1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.

2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.

满分解答

(1)如图2,过点B 作BC ⊥y 轴,垂足为C .

在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =

所以点B 的坐标为(2,23)--.

(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4),

代入点B (2,23)--,232(6)a -=-?-.解得3a =. 所以抛物线的解析式为23323(4)y x x =-=. (3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).

①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±

中考数学压轴题,动点--等腰三角形

1.2因动点产生的等腰三角形问题 例1 2012年扬州市中考第27题 如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 图1 思路点拨 1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△P AC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性. 满分解答 (1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3), 代入点C(0 ,3),得-3a=3.解得a=-1. 所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3. (2)如图2,抛物线的对称轴是直线x=1. 当点P落在线段BC上时,P A+PC最小,△P AC的周长最小. 设抛物线的对称轴与x轴的交点为H. 由BH PH BO CO =,BO=CO,得PH=BH=2. 所以点P的坐标为(1, 2). 图2 (3)点M的坐标为(1, 1)、(1,6)、(1,6 -)或(1,0). 考点伸展 第(3)题的解题过程是这样的: 设点M的坐标为(1,m). 在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2. ①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1. 此时点M的坐标为(1, 1). ②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6 m=±.

函数动点问题中等腰三角形存在性问题 优秀教学设计(教案)

课题:函数动点问题中的等腰三角形存在性问题 教学目标:1、通过实际问题的探究,使学生经历画图、演算,列方程等掌握由函数动点问题产生等腰三角形存在性问题一般解题方法 2、掌握数形结合思想,方程思想,分类讨论思想的实际运用、 教学重点:探究出函数动点问题中的等腰三角形存在性问题的一般解题方法 教学难点:分类讨论思想 教学辅助:多媒体课件,圆规,尺子 教学过程: 一、情境引入 函数动点问题是近几年中考中的热点问题,也是中考试卷的压轴题。特别是在函数中由动点产生等腰三角形存在性问题居多。本节课我们将探讨解决此类问题的一般方法。 我们知道有两边相等的三角形是等腰三角形,那么思考以下问题: 1、若△ABC是等腰三角形,请写出相等的边。 2、如图,在平面直角坐标系xOy中,已知线段O D,点P是x 轴上的一个动点,如果△DOP是等腰三角形,请画出P点的位置。说说你的方法。 变式:若其他条件不变,点P是坐标轴上的一个动点。请画出点P 的位置。 (说明:通过写出相等的边,画等腰三角形。让学生回顾:知道一边时,这个边可能是底点也可能是腰,体现分类讨论思想) 二,合作探究 例题:如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D. (1)求抛物线的解析式。 (2)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理 思考(1)、求解析式我们需要求出解析式的什么?有几个未知的需要确定,确定未知的我们需要几个条件。请写出解题过程。

(2)、相似三角形的判定方程法有哪些?根据此题的已知条件,我们选用哪个方法合适? 试试看。请写出证明过程。 (3)存在与否我们怎么确定?用什么方法合适呢?不妨大家先画图试试看。若存在你能求出点P 的坐标吗 小结:通过以上问题的解题过程。你能总结一下解决此类问题都用了那些数学思想方法。 归纳 解题思路: 1、本题点的移动贯穿始终,对于等腰三角形的确定需要分类讨论,如果△PBC 是等腰 三角形,那么存在①PB =PC ,②BP =BC ,③CP =CB 三种情况.(分类讨论) 2、解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合。(数 形结合 ) 解题步骤:几何法一般分三步:分类、画图、计算. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.(方程 思想) 三、课后小结 谈谈本节课你的收获 四、作业。 五、教后反思 附加思考 如图,已知抛物线 与x 轴相交于A 、B 两点,与y 轴相交于点C ,其中点C 的坐标是(0,3),顶点为点D ,联结CD ,抛物线的对称轴与x 轴相交于点E . (1)求m 的值; (2)求∠CDE 的度数; (3)在抛物线对称轴的右侧部分上是否存在一点P ,使得△PDC 是等腰三角形?如果存在,求出符合条件的点P 的坐标;如果不存在,请说明理由. 221y x x m =-++-

因动点产生的等腰三角形问题(三)

因动点产生的等腰三角形问题 1、(2012临沂)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB 的位置. (1)求点B的坐标; (2)求经过点A.O、B的抛物线的解析式; (3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由. 考点:二次函数综合题;分类讨论。 解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°, ∵∠AOB=120°, ∴∠BOC=60°, 又∵OA=OB=4, ∴OC=OB=×4=2,BC=OB?sin60°=4×=2, ∴点B的坐标为(﹣2,﹣2); (2)∵抛物线过原点O和点A.B, ∴可设抛物线解析式为y=ax2+bx, 将A(4,0),B(﹣2.﹣2)代入,得 , 解得, ∴此抛物线的解析式为y=﹣x2+x (3)存在, 如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y), ①若OB=OP, 则22+|y|2=42, 解得y=±2,

当y=2时,在Rt △POD 中,∠PDO=90°,sin ∠POD==, ∴∠POD=60°, ∴∠POB=∠POD+∠AOB=60°+120°=180°, 即P 、O 、B 三点在同一直线上, ∴y=2不符合题意,舍去, ∴点P 的坐标为(2,﹣2) ②若OB=PB ,则42+|y+2|2=42, 解得y=﹣2, 故点P 的坐标为(2,﹣2), ③若OP=BP ,则22+|y|2=42+|y+2|2, 解得y=﹣2, 故点P 的坐标为(2,﹣2), 综上所述,符合条件的点P 只有一个,其坐标为(2,﹣2 ), 2、(湖州中考) 如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点。P (0,m )是线段OC 上一动点(C 点除外),直线PM 交A B 的延长线于点D 。 ⑴求点D 的坐标(用含m 的代数式表示); ⑵当△APD 是等腰三角形时,求m 的值; ⑶设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2),当点P 从点O 向点C 运动时,点H 也随之运动。请直接写出点H 所经过的路径长。(不必写解答过程) 3、(盐城中考)如图,已知一次函数y =- x +7与正比例函数y = 4 3 x 的图象交于点A , 且与x 轴交于点B . (1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴. A O C P B D M x y A O C P B D M x y (第24题图) 图1 图2 E

(预测题)中考数学专题37动态几何之动点形成的等腰三角形存在性问题(含解析)

专题37 动态几何之动点形成的等腰三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。本专题原创编写动点形成的等腰三角形存在性问题模拟题。 在中考压轴题中,动点形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。 1.如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线 1 l:y x 2 上,若以A、B、C三点 为顶点的三角形是等腰三角形,则点C的个数是【】 A.1 B.2 C.3 D.4 【答案】A。 【考点】单动点问题,坐标与图形性质,等腰三角形的判定,含30度角直角三角形的性质。

【解析】如图,AB的垂直平分线与直线 1 l: y x 2 =相交于点C,则以A、B、C三点为顶点的三角形是等腰三角形。 ∴AB=BC=CA。 点C的个数是1。 故选A。 2.如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10. (1)求梯形ABCD的面积; (2)动点P从点B出发,以2个单位/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以2个单位/s的速度沿C→D→A方向向点A运动;过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达终点时另一点也随之停止运动,设运动时间为t秒.问: ①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由. ②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由. 【答案】(1)40;(2)①不存在;②或或. 【解析】 1334 3 t - = 45 t≤<56 t<≤

动点产生的等腰三角形问题

因动点产生的等腰三角形问题 例1 2012年扬州市中考第27题 如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 图1 动感体验 请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M 有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线. 思路点拨 1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性. 满分解答 (1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3), 代入点C(0 ,3),得-3a=3.解得a=-1. 所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3. (2)如图2,抛物线的对称轴是直线x=1. 当点P落在线段BC上时,PA+PC最小,△PAC的周长最小. 设抛物线的对称轴与x轴的交点为H. 由BH PH BO CO ,BO=CO,得PH=BH=2. 所以点P的坐标为(1, 2). 图2

2019-2020年中考数学专题37动态几何之动点形成的等腰三角形存在性问题(含解析)

2019-2020年中考数学专题37 动态几何之动点形成的等腰三角形存在性问题 (含解析) 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的 观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形 的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有 点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就 问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解 这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存 在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相 似三角形存在问题;其它存在问题等。本专题原创编写动点形成的等腰三角形存在性问题模拟题。 在中考压轴题中,动点形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思 想准确地进行分类。 1.如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线 1 l:y x 2 上,若以A、B、C三点 为顶点的三角形是等腰三角形,则点C的个数是【】 A.1 B.2 C.3 D.4 【答案】A。 【考点】单动点问题,坐标与图形性质,等腰三角形的判定,含30度角直角三角形的性质。

全等三角形中动点问题例题精讲(改)

A B C D E F 三角形与动点问题 1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = . 2、如图,在等边ABC ?的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1个单位的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D,E 处,请问(1)在爬行过程中,CD 和BE 始终相等吗? (2)若蜗牛沿着AB 和CA 的延长线爬行,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中CQE ∠ 的大小不变,求证:?=∠60CQE (3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,则爬行过程中,DF 始终等于EF 是否正确

x O E B A y C F x O E B A y C F x O E B A y C F 3、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形. (1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由; (2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形,为什么? 4、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90 ,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ). (1)若m = n 时,如图,求证:EF = AE ; (2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由. 图1 图2 图3

因动点产生的等腰三角形问题

因动点产生的等腰三角形问题 例1、如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 图1 动感体验 请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC 上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线. 思路点拨 1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小. 2.第(3)题分三种情况列方程讨论等腰三角形的存在性. 满分解答 (1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3), 代入点C(0 ,3),得-3a=3.解得a=-1. 所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3. (2)如图2,抛物线的对称轴是直线x=1. 当点P落在线段BC上时,PA+PC最小,△PAC的周长最小. 设抛物线的对称轴与x轴的交点为H. 由BH PH BO CO =,BO=CO,得PH=BH=2. 所以点P的坐标为(1, 2). 图2 (3)点M的坐标为(1, 1)、(1,6)、(1,6 -)或(1,0). 考点伸展 第(3)题的解题过程是这样的: 设点M的坐标为(1,m).

动点问题与等腰三角形

例一:平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是() A. 5 B. 6 C. 7 D. 8 例二:如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点。 (1)求该抛物线的函数解析式; (2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P. ①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l 于点H,连结OP,试求△OPH的面积; ②当m=?3时,过点P分别作x轴、直线l的垂线,垂足为点E,F. 是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。

例三:如图,在平面直角坐标系中,二次函数交x轴于点A(-4,0),B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,-2),连接AE. (1)求二次函数的表达式; (2)若点D为抛物线在x轴负半轴上方的一个动点,求面积的最大值; (3)抛物线的对称轴上是否存在点P,使为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.

例四:如图,在平面直角坐标系中,已知抛物线与x轴交于A,B 两点,与y轴交于点C,直线L经过坐标原点O,与抛物线的一个交点为D,与 抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为,。 (1)求抛物线的函数表达式,并分别求出点B和点E的坐标。 (2)试探究抛物线上是否存在点F,使?若存在,请求出点F的坐标;若不存在,请说明理由。 (3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形。

2017年中考专题复习动点产生的等腰三角形问题

0319动点产生的等腰三角形问题 1.如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有() A.2个 B.3个 C.4个 D.5个 2.如图,抛物线y=x2与直线y=2x在第一象限内有一交点A. (1)你能求出点A的坐标吗? (2)在x轴上是否存在一点P,使△AOP为等腰三角形?若存 在,请求出点P的坐标;若不存在,请说明理由. 3.如图,直线y=ax+b与双曲线y=有一个交点A(1,2)且与x轴、y轴分别交于B,C两点,已知△AOB的面积为3. (1)求双曲线和直线的解析式; (2)在x轴上是否存在一点P,使△ABP是等腰三角形?如果存在,直接写出满足条件的P点坐标;如果不存在,说明理由.

4.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式; (2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0)求d与m的函数关系式(不要求写出自变量m的取值范围); (3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由. 5.如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C 作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形? (2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由. 6.如图,在梯形ABCD中,AD∥BC,∠C=90°,AB=BC=10,AD=16.动点P、Q

动点问题中的等腰三角形问题

N M Q P D C B A F E N M Q P D C B A 4.如图1,梯形A B C D 中,A D ∥B C ,5AB AD D C ===,11B C =.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段B C 方向运动,过点P 作PQ BC ⊥,交折线段BA AD -于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线B C 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(0t >).如图2,当点Q 在线段A D 上运动时,线段PQ 与对角线BD 交于点 E ,将△DEQ 沿BD 翻折,得到△D E F ,连接PF .是否存在这样的t ,使△P E F 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由. 5.如图,矩形ABCD 中,AB=6,BC= 23,点O 是AB 的中点,点P 在AB 的延长线上,且BP=3。一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧。设运动的时间为t 秒(t ≥0)。 (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值; (2)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由。 第26题图1 第26题图 2

因动点产生的等腰三角形问题

因动点产生的等腰三角形问题 1.如图5,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 图5 2.如图6,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标; (2)求经过A、O、B的抛物线的解析式; (3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由. 图6

因动点产生的梯形问题 1.如图:二次函数y =﹣x 2 + ax + b 的图象与x 轴交于A (-2 1,0),B (2,0)两点,且与y 轴交于点C . (1)求该抛物线的解析式,并判断△ABC 的形状; (2)在x 轴上方的抛物线上有一点D ,且A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标; (3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由. 2.已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B . (1)求二次函数的解析式及顶点P 的坐标; (2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由; (3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式. 图1 图 2 A C B 第1题图

二次函数的动点问题(等腰、直角三角形的存在性问题)(可编辑修改word版)

Q _ _P _ G _ O (x - x )2 + ( y - y )2 1 2 1 2 一、技巧提炼 二次函数中的动点问题三角形的存在性问题 1、利用待定系数法求抛物线解析式的常用形式 (1) 、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2) 、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数 y=ax 2+bx+c 与 x 轴是否有交点,可以用方程 ax 2+bx+c = 0 是否有根的情况进行判定; 判 别 式 ? = b 2 - 4ac 二次函数与 x 轴的交点情况 一元二次方程根的情况 △ > 0 与 x 轴 交点 方程有 的实数根 △ < 0 与 x 轴 交点 实数根 △ = 0 与 x 轴 交点 方程有 的实数根 3、抛物线上有两个点为 A (x 1,y ),B (x 2,y ) (1) 对称轴是直线x = x 1 + x 2 2 (2) 两点之间距离公式: 已知两点 P (x 1 , y 1 ),Q (x 2 ,y 2 ), 则由勾股定理可得: PQ = 练一练:已知 A (0,5)和 B (-2,3),则 A B = 。 4、 常见考察形式 1) 已知 A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点 C ,使△A B C 是等腰三角形; 总结:两圆一线 方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个 端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;

h 水平宽 a 2) 已知 A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点 C ,使△A B C 是直角三角形; 总结: 两线一圆 方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段 的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积: (1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, A 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法: B 1 S △ABC = ah ,即三角形面积等于水平宽与铅垂高乘积的一半。 2 铅垂高 C 6、二次函数中三角形的存在性问题 解题思路:(1)先分类,罗列线段的长度;(2)再画图;(3) 后计算

因动点产生的等腰三角形问题

因动点产生的等腰三角形问题 例1. 一次函数y kx b =+过点(1,4),且分别与x 轴、y 轴交于A 、B 两点,点P (a , 0)在x 轴正半轴上运动,点Q (0,b )在y 轴上运动,且PQ ⊥AB (1) 求k 的值,并在直角坐标系中画出一次函数的图像 (2) 求a 、b 满足的等量关系式 (3) 若△APQ 是等腰三角形,求△APQ 的面积 例2. 如图,在正方形ABCD 中,点F 在CD 边上,射线AF 交BD 于点E ,交BC 的延长 线于点G (1) 求证:△ADE ≌△CDE (2) 过点C 作CH ⊥CE ,交FG 于点H ,求证:FH=GH (3) 设AD=1,DF=x ,试问是否存在x 的值使得△ECG 为等腰三角形?若存在,请求出 x 的值,若不存在请说明理由 H G F E D B C A

例3. 如图,在矩形ABCD 中,AB=4,BC=3,点E 是边CD 上任意一点(点E 与点C 、D 不重合),过点A 作AF ⊥AE ,交边CB 的延长线于点F ,连结EF ,交边AB 于点G 设DE=x ,BF=y (1) 求y 关于x 的函数关系式,并写出函数的定义域 (2) 如果AD=BF ,求证:△AEF ≌△DEA (3) 当点E 在边CD 上移动时,△AEG 能否称为等腰三角形?如果能,请直接写出线段 DE 的长,如果不能,请说明理由 G F E D C B A 例4. 如图在矩形ABCD 中,AB=6米,BC=8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 运动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 运动,当P 、Q 两点中其中一点到达终点时则停止运动设P 、Q 两点移动t 秒后,四边形ABQP 的面积为S 平方米 (1) 求面积S 关于时间t 的函数关系式 ,并求出t 的取值范围 (2) 在P 、Q 两点移动的过程中,当△PQC 为等腰三角形时求t 的值 Q P D C B A

等腰三角形的动点问题--经典习题

等腰三角形的动点问题 2017.7.21 【例1】如图,在△ABC 中,AB =AC =5cm ,BC =8,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线PM 交AC 于点M ,使∠APM =∠B ; (1)求证:△ABP ∽△PCM ; (2)设BP =x ,CM =y .求 y 与x 的函数解析式,并写出函数的定义域. (3)当△APM 为等腰三角形时, 求PB 的长. 25、已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°. (1)求证:△ABD ∽△DCE ; (2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长. A P M

考点:等腰三角形的动点、巧用三角比 1、如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上的一个动点(与B 、C 不重合),PE ⊥AB 与E ,PF ⊥BC 交AC 与F ,设PC =x ,△PEF 的面积为y (1)写出图中的相似三角形不必证明; (2)求y 与x 的函数关系式,并写出x 的取值范围; (3)若△PEF 为等腰三角形,求PC 的长。 2、已知在等腰三角形 中, , 是的中点, 是上的动点(不与、重合),连结,过点作射线 ,使 ,射线 交 射线于点,交射线于点. (1)求证:∽; (2)设 . ①用含的代数式表示; ②求关于的函数解析式,并写出的定义域. P E A B F G H M

3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2. (1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长. (2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么 ①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当CE =1时,写出AP 的长(不必写出解题过程). C

动点产生的等腰三角形

中考问题之-因动点产生的等腰三角形 【压轴题型概述】本专题专门探求图形在变化过程中,符合等腰三角形的点的存在性问题. 这个动点可以在x 轴、y 轴上,也可以在正、反比例函数、一次函数、二次函数上;可能是一个点在运动,也有可能两个点同时运动;所以这类题目的解答要根据运动本身的特点,写出符合这个特点的点的坐标或求出线段的长度. 等腰三角形的题目范围较广,题型很多. 数形结合,可以直观地找到解题的捷径;代数方法、几何方法各有千秋,灵活应用才能事半功倍. 这部分考题在中考试卷中的比例很大,约占30%左右. 【策略分级细述】 1. 怎样设动点的坐标 (1)若动点在x 轴上,因为横坐标x 在变化,纵坐标y 没有变化,始终等于0,所以可设动点坐标为(x ,0); 若动点在y 轴上,横坐标x 没有变化,始终等于0,纵坐标y 在变化,所以可设动点坐标为(0,y ). (2)若动点在函数y =f (x )上,则横坐标设为x ,纵坐标设为f (x ). 例如,点A 在反比例函数 y = 3x 的 图像上,设A (x ,y ),因为y = 3x ,所以用 3x 来代替y ,这种情况一般就直接设A (x ,3 x );又如:点 B 在一次函数 y =2 x ─ 12 上,直接设B (x ,2 x ─ 1 2 ). 2. 等腰三角形要分类讨论 如图1-1,一个三角形为等腰三角形时,存在三种情况:AB = AC ;AB = BC ;BC = AC ,所以要分类进 行讨论. 3. 坐标系中三角形边长的表示 如图1-2,若三角形AOB 的三个顶点在平面直角坐标系中,设A (x 1,y 1),B (x 2,y 2)则AB 两点间的距离公式为:AB = (x 1─x 2)2+(y 1─y 2)2 . 用同样的方法,把其他两条边的距离也写出来,OA = x 12+y 12 ,OB = x 22+y 22 . 然后按照图1-1的方法,让三条边两两相等,解方程即可. 我们来具体的解一道反比例函数图像上求等腰三角形的题. 图 1-1 B 图1-3 图 1-2 ) (

动态几何之动点形成的等腰三角形存在性问题

动态几何之动点形成的等腰三角形存在性问题 一、选择题 1.(2013福建龙岩4分)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是【】 A.2 B.3 C.4 D.5 2.(2011年内蒙古巴彦淖尔、赤峰3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是【】 A、2.5秒 B、3秒 C、3.5秒 D、4秒 二、填空题 1.(2013年四川凉山5分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当是腰长为5的等腰三角形时,点P的坐标为▲ 。 , 2. (2012辽宁丹东3分)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有▲ 个. 【答案】5。 【考点】动点问题,正方形的性质,等腰三角形的判定,勾股定理,锐角三角函数定义,特殊角的三角函数值,线段中垂线的性质,等边三角形的判定。 【分析】如图,符合条件的Q点有5个。 3. (2012青海西宁2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标▲ . ∴OK=。 ∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK。 ∴OP:OE=OF:OK,即OP:5=:4,解得:OP=。

等腰三角形(动点问题)

等腰三角形(动点问题) 教学目标: 1、灵活运用等腰三角形的定义及性质解决动点问题。 2、把动态问题变为静态问题来解,抓住变化中的“不变量”。并从特殊位置点着手确定自变量取值范围, 对基本图形进行充分的分析,画出符合条件的各种草图分散难点、降低难度,将复杂问题简单化。 3、专题化,少而精。如动点问题有等腰三角形分类、直角三角形分类、三角形相似分类、四边形存在性等问题,分小专题复习效果更好。 图形中的点、线的运动,构成了数学中的一个新问题 ——动态问题。 它通常分为三种类型:动点问题、动线问题、动形问题。 此类问题常集代数、几何知识于一体,数形结合,有很强的综合性。以函数与三角形和四边形结合的题目为主。 教学过程: 复习等腰三角形的定义及其简单性质。重点是在综合性题目中灵活运用。 1、在平面直角坐标系中, 已知点P (-2,-1). 点T (t ,0)是x 轴上的一个动点。当t 取何值时,△TOP 是等腰三角形?讲解:如何做图,达到不重不漏,分情况讨论,画出图形,老师讲解。 2、如图:已知ABCD 中,AB=7,BC=4,∠A=30° (1)点P 从点A 沿AB 边向点B 运动,速度为1cm/s 。若设运动时间为 t(s),连接PC,当t 为何值时,△PBC 为等腰三角形? (2)若点P 从点A 沿 射线AB 运动,速度仍是1cm/s 当t 为何值时,△PBC 为等腰三角 形?小组合作交流,同学上台展示。 3如图,在梯形ABCD 中,动点M 从B 点出发沿线段 BC 以每秒2个单位长度的速度向终点C 运动; 动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点 D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN ∥AB 时,求t 的值. (3)试探究:t 为何值时,⊿MNC 为等腰三角形.354245AD BC AD DC AB B ∥,,,,∠.

中考数学压轴题专题解析---等腰三角形中的动点问题

中考数学压轴题专题解析---等腰三角形中的动点问题这节课我们学什么 1.动点等腰三角形代数法 2.动点等腰三角形三线合一与锐角三角比 3.动点等腰三角形相似转化 知识点梳理 等腰三角形常见解法: 法一:代数法,利用边相等的原则,采用距离公式,勾股定理等方法,以计算为主;法二:三线合一与锐角三角比,常见辅助线方法是作垂线构造直角三角形求解; 法三:相似转换,利用角相等转换为相似三角形求解 典型例题分析 1.动点等腰三角形----代数法;

例1.如图,已知抛物线21 44 y x bx =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知B 点的坐标为8,0B (). (1)求抛物线的解析式及其对称轴方程; (2)连接AC 、BC ,试判断AOC ?与COB ?是否相似?并说明理由; (3)M 为抛物线上BC 之间的一点,N 为线段BC 上的一点,若//MN y 轴,求MN 的最大值; (4)在抛物线的对称轴上是否存在点Q ,使ACQ ?为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由. 【答案: (1)抛物线的解析式为21 3442 y x x =-++,对称轴方程为直线3x =. (2)AOC COB ?~?. 在AOC ?和COB ?中, 90AOC BOC ∠=∠=? 2,4,8,OA OC OA OC OB OC OB ===∴= ∴AOC COB ??∽ (3)当4x =时MN 有最大值4. (4)∵抛物线的对称轴方程为3x =,可设点(3,)Q t ,则有: AC =AQ CQ = ①当AQ CQ =10,(3,0)t Q =∴ ②当AC AQ = 2,5t =-,此方程无实数根,∴此时不能构成等腰三角形; ③当AC CQ = =,解得4t = ∴Q 点坐标为 23(3,4,(3,4Q Q

专题01 因动点产生的等腰三角形问题(解析版)

备战2020中考数学之解密压轴解答题命题规律 专题01因动点产生的等腰三角形问题 【类型综述】 数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类. 【方法揭秘】 我们先回顾两个画图问题: 1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么? 2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么? 已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C. 已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外. 在讨论等腰三角形的存在性问题时,一般都要先分类. 如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况. 解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢? 如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法. ①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么 1 2 AC=AB cos∠A;③如图3,如果CA=CB,那么 1 2 AB=AC cos∠A. 代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.

二次函数的动点问题(等腰、直角三角形的存在性问题)

_ Q _ G _ P _ O 二次函数中的动点问题 三角形的存在性问题 一、技巧提炼 1、利用待定系数法求抛物线解析式的常用形式 (1)、【一般式】已知抛物线上任意三点时,通常设解析式为,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解; 2、二次函数y=ax 2 +bx+c 与x 轴是否有交点,可以用方程ax 2 +bx+c = 0是否有根的情况进行判定; 判别式ac b 42-=? 二次函数与x 轴的交点情况 一元二次方程根的情况 △ > 0 与x 轴交点 方程有的实数根 △ < 0 与x 轴交点 实数根 △ = 0 与x 轴交点 方程有的实数根 3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2 x 2 1x x += (2)两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:2 21221)()(y y x x PQ -+-= 练一练:已知A (0,5)和B (-2,3),则AB =。 4、 常见考察形式 1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线 方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个 端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;

2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形; 总结: 两线一圆 方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的 两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积: (1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法: S △ABC =1 2ah ,即三角形面积等于水平宽与铅垂高乘积的一半。 6、二次函数中三角形的存在性问题 解题思路:(1)先分类,罗列线段的长度;(2)再画图;(3) 后计算 B C 铅垂高 水平宽 h a A

相关主题