搜档网
当前位置:搜档网 › 极管的识别与检测精选.(DOC)

极管的识别与检测精选.(DOC)

极管的识别与检测精选.(DOC)
极管的识别与检测精选.(DOC)

晶体三极管的识别和检测

晶体三极管又称半导体三极管,简称晶体管或三极管。在三极管内,有两种载流子:电子与空穴,它们同时参与导电,故晶体三极管又称为双极型晶体三极管,它的基本功能是具有电流放大作用。

一、结构

NPN和PNP型两类三极管的结构如图。它有两个PN结(分别称为发射结和集电结),三个区(分别称为发射区、基区和集电区),从三个区域引出三个电极(分别称为发射极e、基极b和集电极c)。发射极的箭头方向代表发射结正向导通时的电流的实际流向。

为了保证三极管具有良好的电流放大作用,在制造三极管的工艺过程中,必须作到:

①使发射区的掺杂浓度最高,以有效地发射载流子;②使基区掺杂浓度最小,且区最薄,以有效地传输载流子;③使集电区面积最大,且掺杂浓度小于发射区,以有效地收集载流子。

半导体三极管亦称双极型晶体管,其种类非常多。按照结构工艺分类,有PNP和NPN型;按照制造材料分类,有锗管和硅管;按照工作频率分类,有低频管和高频管;一般低频管用以处理频率在3MHz以下的电路中,高频管的工作频率可以达到几百兆赫。按照允许耗散的功率大小分类,有小功率管和大功率管;一般小功率管的额定功耗在1W以下,而大功率管的额定功耗可达几十瓦以上。

1、共射电流放大系数β:β值一般在20~200,它是表征三极管电流放大作用的最主要的参数。

2、反向击穿电压值U(BR)CEO:指基极开路时加在c、e两端电压的最大允许值,一般为几十伏,高压大功率管可达千伏以上。

3、最大集电极电流I CM :指由于三极管集电极电流I C过大使β值下降到规定允许值时的电流(一般指β值下降到2/3正常值时的I C值)。实际管子在工作时超过I CM并不一定损坏,但管子的性能将变差。

4、最大管耗P CM :指根据三极管允许的最高结温而定出的集电结最大允许耗散功率。在实际工作中三极管的I C与U CE的乘积要小于P CM值,反之则可能烧坏管子。

5、穿透电流I CEO:指在三极管基极电流I B=0时,流过集电极的电流I C。它表明基极对集电极电流失控的程度。小功率硅管的I CEO约为0.1mA,锗管的值要比它大1000倍,大功率硅管的I CEO约为mA数量级。

6、特征频率f T:指三极管的β值下降到1时所对应的工作频率。f T的典型值约在100~1000MHz之间,实际工作频率。

二、半导体器件的命名方法

1.中国半导体器件的命名法

根据中华人民共和国国家标准,半导体器件型号由五部分组成,其每一部分的含义见表2-15。

表2-15 国产半导体器件的型号命名方法

第一部分第二部分第三部分第四部

第五部分

用数字表示器件的电极数目用汉语拼音字母表示

器件的材料和极性用汉语拼音字母表示器件

的类别

用数字

表示

器件序

用汉语拼音

母表示规格

符号意义

意义符号意义

4 5

2 二极管 A

B

C

D N型锗材料

P型锗材料

N型硅材料

P型硅材料

P

V

W

C

Z

L

S

N

U

K

普通管

微波管

稳压管

参量管

整流管

整流堆

隧道管

阻尼管

光电器件

开关管

3 三极管 A

B

C

D

E PNP型锗材料

NPN型锗材料

PNP型硅材料

NPN型硅材料

化合物材料

X

G

D

A

U

K

低频小功率管(f T>3MHz,P C<1W)

高频小功率管(f T≥3MHz,P C<1W)

低频大功率(f T≤3MHz,P C≥1W)

高频大功率(f T≥3MHz,P C≥1W)

光电器件

开关管

I

Y

B

J

可控整流器

体效应器件

雪崩管

阶跃恢复管

CS 场效应器件

BT FH PIN JG 半导体特殊器件复合管

PIN型管

激光器件

例如: 3AD50C表示低频大功率PNP型锗管;

3DG6E表示高频小功率NPN型硅管。

2. 美国半导体器件命名法

根据美国电子工业协会(EIA)规定的半导体器件型号命名方法如表2-16所示。

表2-16 美国半导体器件型号的命名法

第一部分第二部分第三部分第四部分第五部分

用符号表示器件的等级用数字表示PN结

数目

用字母表示材

用数字表示器

件登记序号

用字母表示同

一器件的不

同档次

符号意义

意义

意义符号意义

意义

J 军品 1 二极管

N 表示不加

热即半导

体器件

2~4

数字

登记顺

序号

A、

B、

C…

表示器

件改进

无非军品

2 三极管

3 四极管

例如: 1N4148表示开关二极管,

2N3464表示高频大功率NPN型硅管。3.日本半导体器件命名法

表2-17 日本半导体器件命名法

第一部分第二部分第三部分第四

分第五

用数字表示器件的电极数目用字母表示半

导体器件

用拉丁字母表示

器件的结构和类型

用2~3

位数字

表示器

件登记

顺序号

用拉丁字

母表示同

一种型号

器件的改

进型

符号意义符号意

符号意义

0 光电器件S 半导

体器件

1 二极管

A 高频PNP型三极管快速开关三极管

2 三极管 B 低频大功率PNP管

3 有三个PN结

的器件C 高频及快速开关NPN三极管

D 低频大功率NPN管

F P控制极可控硅

G N控制极可控硅

H N基极单结管

J P沟道场效应管

K N沟道场效应管

M 双向可控硅

例如: 2SA53表示高频PNP型三极管,

1S92表示半导体二极管。

4.欧洲半导体器件命名法

由于目前欧洲各国没有明确统一的标准半导体器件型号命名法,故他们大都使用国际电子联合会的标准。半导体器件的型号一般由四部分组成,其基本含义如表2-18。

表2-18 欧洲半导体器件命名法

第一部分第二部分第三部

第四部分

用字母表示器件使用的

材料用字母表示器件的类型及主要特性用数字或字母加

数字表示登记号

用字母表示

对同一型号

器件的改进

符号意义符

意义符

意义符

意义符

意义

A 锗材料 A 检波二极管、开

关二极管、混频

二极管

P 光敏器件三

代表半

导体器件

的登记序

(同一类

型器件使

用一个登

记号)

A

B

C

D

E

表示同

一型号

的半导

体器件

在某一

参数方

面的分

档标志

B 硅材料

B

变容二极管Q 发光器件

C 砷化镓 C 低频小功率三

极管

R 小功率可控硅

D 锑化铟 D 低频大功率三

极管

S 小功率开关管R 复合

材料

E 隧道二极管T 大功率可控硅

F 高频小功率三

极管U 大功率开关管一

代表专用半

导体器件的

登记序号

(同一类型

器件使用一

个登记号)

G 复合器件、其他

X 倍增二极管

器件

H 磁敏二极管Y 整流二极管

K 霍尔器件Z 稳压二极管

L 高频大功率三

极管

补充说明:欧洲半导体器件型号除以上基本组成部分外,为进一步标明器件的特性,或对器件进一步分类,有时还加有后缀,后缀用破折号与基本部分分开。常见的后缀有以下几种。(1)稳压二极管型号后缀的第一部分是一个字母,用来表示器件标称稳定电压值的允许误差范围。其代表的意义如表2-19。

表2-19 稳压二极管后缀字母的含义

符号 A B C D E

允许误差% ±1 ±2 ±5 ±10 ±20

后缀的第二部分是数字,表示稳压二极管的标称稳定电压的整数值;后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。

(2)整流二极管和可控硅型号的后缀是数字,表示其最大反向电压值,单位是伏。例如BZY88-C9V1表示标称稳压值是9.1V、精度为±5%的硅稳压二极管;BTX64-200表示反向耐压为200V的大功率可控硅;BU406D表示大功率硅开关三极管。

三、几种常用半导体三极管的性能

1. 常用小功率半导体三极管 ,常用小功率半导体三极管的特性见表2-20。表2-20 常用小功率半导体三极管特性

型号

极限参数直流参数交流参数

类型P CM

(mW)

I CM

(mA)

V(BR)CEO

(V)

I CEO

(uA)

V CE(sat)

(V)

β

f T

(MHz)

C ob

(pF)

CS9011

E

F

G

H I 300 100 18 0.05 0.3

28

150 3.5 NPN

39

54

72

97

132

CS9012

600 500 25 0.5 0.6 64

150 PNP

E

F G H

78 96 118 144

CS9013

E

F

G H 400 500 25 0.5 0.6

64

150 NPN

78

96

118

144

CS9014

A

B

C D 300 100 18 0.05 0.3

60

150 NPN

60

100

200

400

CS9015

A 310

600 100 18 0.05 0.5 60 50 6

PNP

B C

D

0.7

60

100 100

200

400

CS9016 310 25 20 0.05 0.3 28~

97

500 NPN

CS9017 310 100 12 0.05 0.5

28~

72

600 2 NPN

CS9018 310 100 12 0.05 0.5

28~

72

700 NPN

8050 1000 1500 25

85~

300

100 NPN

8550 1000 1500 25

85~

300

100 PNP

2.常用大功率三极管

大功率三极管具有输出功率大、反向耐压高等特点,主要用于功率放大、电源变换、低频开关等电路中。常用的大功率三极管型号及特性如表2-21所示。

表2-21 常用大功率三极管的主要参数

型号极限参数直流参数交流参数

NPN PNP P CM(W) I CM(A) U(BR)CEO(V

)

βf M(MHz)

2N5758 2N6226

150 6 100 25~100

1

2N5759 2N6227 120 20~80 2N5760 2N6228 140 15~60

2N6058 2N8053

100 8 60

≥1000 4

2N8058 2N8054 80

2N3713 2N3789

150 10 60

≥15 4

2N3714 2N3790 80

2N5832 2N6228 100 25~100

1 2N5633 2N6230 120 20~80

2N5634 2N6231 140 15~60

2N6282 2N6285 60

20 60 750~18k 4

2N5303 2N5745 140 80 15~60 200 2N6284 2N6287 160 100 750~18k 4

2N5031 2N4398

200 30 40

15~60 2

2N5032 2N4399 60

2N6327 2N6330 80

6~30 3

2N6328 2N6331 100

四、半导体三极管的正确使用

1.半导体三极管的管脚判别

在安装半导体三极管之前,首先搞清楚三极管的管脚排列。一方面可以通过查手册获得,另一方面也可利用电子仪器进行测量,下面讲一下利用万用表判定三极管管脚的方法。首先判定PNP型和NPN型晶体管:用万用表的R×1k(或R×100)档,用黑表笔接三极管的任一管脚,用红表笔分别接其他两管脚。若表针指示的两阻值均很大,那么黑表笔所接的那个管脚是PNP型管的基极;如果万用表指示的两个阻值均很小,那么黑表笔所接的管脚是NPN型的基极;如果表针指示的阻值一个很大,一个很小,那么黑表笔所接的管脚不是基极。需要新换一个管脚重试,直到满足要求为止。进一步判定三极管集电极和发射极:首

先假定一个管脚是集电极,另一个管脚是发射极;对NPN于型三极管,黑表笔接假定是集电极的管脚,红表笔接假定是发射极的管脚(对于PNP型管,万用表的红、黑表笔对调);然后用大拇指将基极和假定集电极连接(注意两管脚不能短接),这时记录下万用表的测量值;最后反过来,把原先假定的管脚对调,重新记录下万用表的读数,两次测量值较小的黑表笔所接的管脚是集电极(对于PNP 型管,则红表笔所接的是集电极)。

2.半导体三极管性能测试

在三极管安装前首先要对其性能进行测试。条件允许可以使用晶体管图示仪,亦可以使用普通万用表对晶体管进行粗略测量。

(1)估测穿透电流I CEO: 用万用表R×1k档,对于PNP型管,红表笔接集电极,黑表笔接发射极(对于NPN型管则相反),此时测得阻值在几十到几百千欧以上。若阻值很小,说明穿透电流大,已接近击穿,稳定性差;若阻值为零,表示管子已经击穿;若阻值无穷大,表示管子内部断路;若阻值不稳定或阻值逐渐下降,表示管子噪声大、不稳定,不宜采用。

(2)估测电流放大系数β: 用万用表的R×1k(或R×100)档。如果测PNP型管,可以用潮湿的手指捏住集电极和基极代替。若是测NPN型管,则红、黑表笔对调。对比手指断开和捏住时的电阻值,两个读数相差越大,表示该晶体管的β值越高;如果相差很小或不动,则表示该管已失去放大作用。如果使用数字万用表,可直接将三极管插入测量管座中,三极管的

β值可直接显示出来。

3.使用半导体三极管应注意的事项

(1)使用三极管时,不得有两项以上的参数同时达到极限值。

(2)焊接时,应使用低熔点焊锡。管脚引线不应短于10mm,焊接动作要快,每根引脚焊接时间不应超过两秒。

(3)三极管在焊入电路时,应先接通基极,再接入发射极,最后接入集电极。拆下时,应按相反次序,以免烧坏管子。在电路通电的情况下,不得断开基极引线,以免损坏管子。(4)使用三极管时,要固定好,以免因振动而发生短路或接触不良,并且不应靠近发热元件。(5)功率三极管应加装有足够大的散热器。

五、三极管的检测方法与经验

1中、小功率三极管的检测

A已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏

(a)测量极间电阻:将万用表置于R×100或R×1K挡,按照红、黑表笔的六种不同接法

进行测试。其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。

(b)三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积:ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增

大。而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。

通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下:

万用表电阻的量程一般选用R×100或R×1K挡,对于PNP管,黑表管接e极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。要求测得的电阻越大越好。e-c 间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。

(c)测量放大能力(β):目前有些型号的万用表具有测量三极管hFE的刻度线及其测

试插座,可以很方便地测量三极管的放大倍数。先将万用表量程开关拨到ADJ位置,把红、黑表笔短接,调整调零旋钮,使万用表指针指示为零,然后将量程开关拨到hFE位置,并使两短接的表笔分开,把被测三极管插入测试插座,即可从hFE刻度线上读出管子的放大倍数。

另外:有此型号的中、小功率三极管,生产厂家直接在其管壳顶部标示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表所示,但要注意,各厂家所用色标并不一定完全相同。

国产三极管用颜色表示放大倍数时,一般颜色与放大倍数对应关系如下:

颜色棕红橙黄绿兰紫

hFE 7-15 15-25 25-40 40-55 55-80 80-120

B检测判别电极

(a)判定基极:用万用表R×100或R×1k挡测量三极管三个电极中每两个极之间

的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管。

(b)判定集电极c和发射极e:(以PNP为例)将万用表置于R×100或R×1K挡,

红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,

三极管的识别检测教学方案计划设计

《三极管的识别和检测》 教 学 设 计

江苏省靖江中等专业学校 教学设计思想 对于高职院校五年制大专电子专业的学生来讲,《电子产品的装配与调试》是一门理论与实践紧密结合的课程。这门功课是学生通向就业之路的大门,也是电子类学生必须掌握的一门专业技能课。 《电子产品的装配与调试》在专业学习中占据了比较重要的地位,但是它也是很多学生学习的难点。传统的授课方式无法满足学生的学习需要,实践性强是这门功课最显著的特点,因此,如何改变传统教学模式,围绕教、学、做为一体,项目式、一体化教学一直是我们探索和实践的方向。下面我通过三极管的识别和检测这一教学章节的具体教学实践,具体阐述我的教学思想和方案。 教学思想:采用项目引领,任务驱动的模式,通过任务驱动和教师引导让学生自主学习动手参与。 一、以“情境聚焦”激发学习兴趣 学生的学习兴趣是学生学习的动力,也是学好一门功课的基础。对于一门比较枯燥的专业课来讲,如何激发学生的学习兴趣至关重要。在设计这节课的教学环节时,所

有任务的提出都采用“情境聚焦”的方式,例如:由音乐门铃引出三极管,由实物、图片引出认识三极管。通过我们日常生活中常见的现象引出课题,同时在授课过程中多采用多媒体教学手段,以播放视频、动画等方式让学生集中注意力,这样就可以把学生的学习兴趣激发出来,让他们带着热情去了解枯燥的知识点。 二、以“项目总结”梳理学习要点 这节课的教学过程总共提出了三个学习任务及拓展任务,在每个教学环节结束,我都会根据学生看一看、听一听和做一做等学习步骤得出的结论进一步进行总结和归纳,形成学习要点。学生要做的就是掌握这些知识点并把这些知识点应用到具体的实践操作中去。 三、以“思考实践”巩固学习效果 做中学,教中做,教、做、学一体式本堂课的主要教学特点。课堂中,老师把大量的教学内容用提问的方式给出,引发学生思考,引导他们自己寻求答案,而老师只需要把他们的答案进行系统的总结归纳。学习效果的巩固则依靠操作过程来完成,真正使学生做到融学于做。 教学方案

三极管的测量方法

三级管的在路测量,(1).NPN管的电压正常是:VC>VB>VE.其中PN结电压是0.5V左右,也就是:VB>VE的电压是0.5V,明显大于2V或者VB∠VE,三极管是损坏,(注: VC的电压大小是不固定的,看这个管的承受多大的内压) (2).PNP管的电压正常是:VE>VB>VC. 其中PN结电压是0.5V左右, 也就是: VE>VB 的电压是0.5V,明显大于2V或者VE∠VB, 三极管是损坏,( VC的电压大小是不固定的,看偏置电路是要多大的电压,但一定适上面的VE>VB>VC电压的大小) 2.拆下来时的三极管测量(R*1K档来测量) 根据PN结的原理:和二极管一样,正向电阻一边用万用表测是相通,对调红.黑笔反向来测是不通.拆下来时的三极管,(1) NPN管:任意测三极管的两个脚,当发现固定黑笔接的一脚不动,用红笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,红笔固定的一脚不动,用黑笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极(坏的三极管是对调表笔也是相通的) . (2) PNP管:任意测三极管的两个脚,当发现固定红笔接的一脚不动, 用黑笔分别接另外两脚时,万用表的指针摆动,电阻是相同.反过来对调表笔,黑笔固定的一脚不动, 用红笔分别接另外两脚时,万用表的指针不摆动,电阻是无穷大.哪确定;固定的一脚确定是b极 3(确定C极和E极) 三极管好坏的判断(R*10K档来测量) (1)(确定C极和E极) NPN好坏的判断:上面已确定了B极,R*10K档来测量.用黑笔和红笔分别接触另外两极,保持红笔和黑笔现在状态不变用手指捏b极+红笔接的一极,发现指针摆动的幅度大,放大倍数大,黑笔接的是c极,红笔接的是e极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如;R*10K档的黑笔接C极红笔接E极指针摆动一点,说明是漏电损坏.经验总结:如果是好的三级管,用万用表的R*10K档来测量c.e电阻一边不通,极笔对调后,另一边是相通的有电阻,电阻大的和原来没有用过的同型号的三极管对比.B极E极输出电压偏低的. (2) (确定C极和E极) PNP好坏的判断 R*10K档来测量.用黑笔和红笔分别接触另外两极保持红笔和黑笔现在状态不变用手指捏b极+黑笔接的一极,同时捏两极,发现指针摆动的幅度大,放大倍数大,黑笔接的是e极,红笔接的是c极(坏的三极管,用万用表的R*10K档来测量.红,黑笔测量c.e极,接法和二极管测量相同,一边相通,对调表笔另一边是不通,例如:R*10K档的黑笔接E极红笔接极

贴片三极管引脚-三极管的识别分类及测量

贴片三极管引脚三极管的识别分类及测量 符号:“Q、VT” 三极管有三个电极,即b、c、e,其中c为集电极(输入极)、b为基极(控制极)、e为发射极(输 出极) 三极管实物图: 贴片三极管功率三极管普通三极管金属壳三极管 二、三级管的分类: 按极性划分为两种:一种是NPN型三极管,是目前最常用的一种,另一种是PNP型三极管。按材料分为两种:一种是硅三极管,目前是最常用的一种,另一种是锗三极管,以前这种三极管用的多。三极按工作频率划分为两种:一种是低频三极管,主要用于工作频率比较低的地方;另一种是高频三极管,主要用于工作频率比较高的地方。按功率分为三种:一种是小功率三极管,它的输出功率小些;一种是中功率三极管,它的输出功率大些;另一种是大功率三极管,它的输出功率可以很大,主要用于大功率输出场合。 按用途分为:放大管和开关管。 三、三极管的组成: 三极管由三块半导体构成,对于NPN型三极管由两块N型和一块P型半导体构成,如图A所示,P型半导体在中间,两块N型半导体在两侧,各半导体所引出的电极见图中所示。在P型和N型半导体的交界面形成两个PN结,在基极与集电极之间的PN结称为集电结,在基极与发射极之间的PN结称为发射结。图B是PNP型三极管结构示意图,它用两块P型半导体和一块N型半导体构成。 AB 四、三极管在电路中的工作状态:

三极管有三种工作状态:截止状态、放大状态、饱和状态。当三极管用于不同目的时,它的工作状 态是不同的。 1、截止状态:当三极管的工作电流为零或很小时,即IB=0时,IC和IE也为零或很小,三极管处于 截止状态。 2、放大状态:在放大状态下,IC=βIB,其中β(放大倍数)的大小是基本不变的(放大区的特征)。 有一个基极电流就有一个与之相对应的集电极电流。 3、饮和状态:在饮和状态下,当基极电流增大时,集电极电流不再增大许多,当基极电流进一步增 大时,集电极电流几乎不再增大。 工作状态 定义 电流特征 解流 截止状态 集电极与发射极之间电阻很大IB=0或很小,IC或IE为零或很 小因为IC=βIB 利用电流为零或很小特征,可以判断三极管已处于截止状态 放大状态 集电极与发射极之间内阻受基极电流大小控制,基极电流大,其内阻小IC=βIB IE=(1+β)IB 有一个基极电流就有一个对应的集电极电流和发射极电流,基极电流能有效地控制集电极电流和发射极电 流 饱和状态

如何测量三极管的好坏

下面是三极管的架构以及在电路图中的各种标识方法

万用表打到二极管档(蜂鸣档)对三极管测量时...首先我们要确定哪只脚是b极.于是用红表笔接触其中任意一只脚不动.用黑表笔去接触另外两只脚.如果能够测得两组相近且小于1的数字.说明此时红笔接触的就是b极.如果测得两组数字不相近..那说明此时红笔接触的不是b极..应把红笔换一只脚..黑笔去测另外两只脚...直到找到b极为止...假设我们知道哪只脚是b极...怎样去判断另外两只脚c极和e极呢?如下图:

图中红笔为b极.黑笔在另外两脚分别没得两组相近的数据..其中有一组数据会稍微大一点...此脚即为e极.小的那脚则为c极....并且我们知道此管为NPN三极管.因为红笔在b 极! 而对于PNP型三极管的测量方法也一样...只不过是黑表笔在b极..红笔接触另外两脚能测得两组相近的数据.,如下图: 下面是对场效应管的测量方法 场效应管英文缩写为FET.可分为结型场效应管(JFET)和绝缘栅型场效应管(MOSFET),我们平常简称为MOS管.而MOS管又可分为增强型和耗尽型而我们平常主板中常见使用的也就是增强型的MOS管. 下图为MOS管的标识

我们主板中常用的MOS管G D S三个引脚是固定的。。。不管是N沟道还是P沟道都一样。。。把芯片放正。。。从左到右分别为G极D极S极!如下图: 用二极管档对MOS管的测量。。。首先要短接三只引脚对管子进行放电。。。 1然后用红表笔接S极.黑表笔接D极.如果测得有500多的数值..说明此管为N沟道..

2黑笔不动..用红笔去接触G极测得数值为1. 3红笔移回到S极.此时管子应该为导通...

三极管的识别与检测

10+ 临沂市工业学校教案

附件:【任务书】或【学案】 2

《三极管的识别与检测》任务书 教学过程: 一、知识链接: 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。可用来对微弱信号进行放大和作无触点开关。它具有结构牢固、寿命长、体积小、耗电省等一系列独特优点,故在各个领域得到广泛应用。 二、合作自学: 1、三极管的外形 特点:有三个电极,故称三极管。

2、三极管的结构 三极管是由两个PN结构成的,其基本特性是具有电流放大作用。三极管按其结构不同分为NPN型和PNP型两种。相应的结构示意图及电路符号如图2.1所示。 特点: 有三个区——发射区、基区、集电区; 两个 PN 结——发射结(BE 结)、集电结(BC 结); 三个电极——发射极 e(E) 、基极 b(B) 和集电极 c(C); 两种类型—— PNP 型管和 NPN 型管。 工艺要求:发射区掺杂浓度较大;基区很薄且掺杂最少;集电区比发射区体积大且掺杂少。 三极管内部结构分为发射区、基区和集电区,相应的引出电极分别为发射极e、基极b和集电极c。发射区和基区之间的PN结称为发射结,集电区和基区之间的PN结称为集电结。电路符号中,发射极的箭头方向表示三极管在 正常工作时发射极电流的实际方向。 三极管在制作时,其内部结构特点是: (1) 发射区掺杂浓度高; (2) 基区很薄,且掺杂浓度低; (3) 集电结面积大于发射结面积。 以上特点是三极管实现放大作用的内部条件。 3、晶体三极管的符号 箭头:表示发射结加正向电压时的电流方向。 文字符号:V

实验二极管和三极管的识别与检测实验报告

实验 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 机械万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

如何检测三极管的三个极

如何检测三极管的三个极 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型), 并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧 至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被 测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、 e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为 内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 三极管的管型及管脚的判别 为了迅速掌握测判方法,结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面进行解释。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管; 测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位,红表笔正,黑表笔负。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的

三极管的检测及其管脚的判别

三极管的检测及其管脚的判别 使用数字万用表判断三极管管脚(图解教程) 现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。我倒认为数字万用表在测量三极管时更加的方便。以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。 手头上有一些BC337的三极管,假设不知它是PNP管还是NPN 管。 图1三极管 我们知道三极管的内部就像二个二极管组合而成的。其形式就像下图。中间的是基极(B极)。

图2三极管的内部形式 首先我们要先找到基极并判断是PNP还是NPN管。看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。这时我们可以用数字万用表的二极管档去测基极,看图3。对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。对于NPN表来说则是红表笔(连表内电池正极)连在基极上。从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。

图3万用表的二极管测量档 图4判断BC337的B极和管型(1)

图4判断BC337的B极和管型(2) 找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。 把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。读数,再把它的另二脚反转,再读数。读数较大的那次极性就对上表上所标的字母,这时就对着字母去认BC337的C,E 极。学会了,其它的三极管也就一样这样做了,方便快速。 图5万用表上的hFE档

三极管单元测试题

三极管单元测试题 一、单选题(每题2分) 1. 关于三极管反向击穿电压的关系,下列正确的是( )。 A. EBO BR CBO BR CEO BR U U U )()()(>> B. EBO BR CEO BR CBO BR U U U )()()(>> C. CEO BR EBO BR CBO BR U U U )()()(>> D. CBO BR CEO BR EBO BR U U U )()()(>> 2. 某三极管的V 15,mA 20,mW 100(BR)CEO CM CM ===U I P ,则下列状态下三极管能正常工作的是( )。 A. mA 10,V 3C CE ==I U B. mA 40,V 2C CE ==I U C. mA 20,V 6C CE ==I U D. mA 2,V 20C CE ==I U 3. 放大电路如图所示,已知硅三极管的50=β,则该电路中三极管的工作状态为( )。 A. 截止 B. 饱和 C. 放大 D. 无法确定 4. ( )具有不同的低频小信号电路模型。 A. NPN 管和PNP 管 B. 增强型场效应管和耗尽型场效应管 C. N 沟道场效应管和P 沟道场效应管 D. 三极管和二极管 5. ( )情况下,可以用H 参数小信号模型分析放大电路。 A. 正弦小信号 B. 低频大信号 C. 低频小信号 D. 高频小信号 6. 硅三极管放大电路中,静态时测得集-射极之间直流电压U CE =,则此时三极管工作于( ) 状态。 A. 饱和 B. 截止 C. 放大 D. 无法确定 7. 已知场效应管的转移特性曲线如图所示,则此场效应管的类型是( )。

三极管的识别与检测方法(2)

三极管的识别与检测方法(2) 课型:理论+实践 教学目标 1、熟悉三极管外形,图形符号和文字符号; 2、了解三极管的种类与特点; 3、了解三极管的特性与参数; 4、掌握常用三极管的命名方法; 教学重点与难点 1、掌握三极管的外形,图形符号和文字符号; 2、了解三极管的种类与特点; 教学方法 讲授法、演示法 教学安排:2课时 教学过程 一、项目实施 任务一:普通三极管的识别与检测 工作任务: 1.识别不同类别的三极管 2.测量三极管 工作步骤: 1.识别各种三极管(按功率) (1)普通小功率三极管 普通小功率三极管通常采用TO-92封装,如图所示为9013三极管,其引脚顺序为E、B、C(引脚向下,面向元件型号)。 (2)中功率三极管 图所示为NPN型中功率三极管TIP41,其引脚顺序为B、C、E(引脚向下,面向元件型号),中功率三极管通常采用TO-220封装。 (3)金属外壳三极管 如图所示为开关三极管2N2222A,该三极管为NPN型三极管,采用金属外壳封装TO-18或TO-39,其引脚顺序如图所示,引脚向下,从凸起位置依次为E、B、C。

(4)大功率金属外壳三极管 图为大功率金属外壳三极管,其封装形式通常为TO-3,其外壳通常为集电极(C),另外两个引脚分别为基极(B)和发射极(E)。 (5)贴片三极管 图为贴片三极管8550,8550为小功率PNP三极管,其贴片型号为2TY,引脚顺序如图所示。 2、识别各种三极管(按引脚的现状) (1)色点标志 (2)凸形标记 (3)三角排列 (4)三脚等距平面性 (5)带散热片的三极管 3.用指针式万用表测量三极管 步骤一:判断三极管的基极(B) 用万用表R×1K档或R×100档依次测量三极管各极之间的正反向阻值,并将测得阻值填入表中。然后分析表中测得数据,观察哪一个引脚与其他两个引脚之间的测得的阻值均较小,如果符合这一条件,则这个引脚就是三极管的基极(B)。 步骤二:判断三极管的管型(PNP还是NPN) 将万用表置于R×1K档或R×100档,将万用表的黑表笔接三极管的基极,红表笔在其他极,如果阻值均较小,则表明这是一个NPN型三极管。如果是高阻值,改用红表笔接三极管的基极,黑表笔在其他引脚,若阻值均较小,则表明这是一个PNP型三极管。 步骤三:辨别三极管的集电极(C)和发射极(E) 方法一:将万用表置于R×1K档或R×100档,用“鳄鱼夹”夹持管脚,或用两手分别捏住表笔和管脚,然后用舌尖舔基极,利用人体电阻作为基极偏流电阻,也可进行测量。指针偏转较大的那一次,黑表笔所接为集电极(NPN管),红表笔所接为发射极。PNP管正好相反。 方法二:将万用表置于HFE档,将三极管管按假定的E、C插入万用表的“三极管测量

实验二 二极管和三极管的识别与检测实验报告

实验二二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100 ? R或K R1 ?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 ( 1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100 ? R或K R1 ?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

实验一-万用表测量二极管、三极管

实验一万用表测量二极管、三极管 一、实验目的 1.熟练掌握指针式万用表和数字万用表的使用方法。 1.熟练掌握用指针式万用表测量普通二极管和三极管。 2.熟练掌握用数字万用表测量普通二极管和三极管。 二、主要元件及仪器 1、MF-47指针式万用表 2、VC890D数字万用表 3、1N4001~1N4007系列普通整流二极管 4、1N4735(6.2V)、1N4738(8.2V)稳压二极管 5、9011~9014小功率晶体三极管 二、实验原理 (一)指针式万用表测量二极管: 二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。 在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。 初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试: 把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。 反向特性测试: 把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。 1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 (1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 (2)单向导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300 kΩ左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 2.稳压二极管的检测 (1)正、负电极的判别测量的方法与普通二极管相同,即用万用表R×1k 档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 (2)稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表

实验二二极管和三极管的识别与检测实验报告

实验二 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

实验二极管和三极管的识别与检测实验报告

实验二极管和三极管的识别与检测实验报告实验二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性

机械万用表及其欧姆档的内部等效电路如图所示。 图中E为表内电源,r为等效内阻,I为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到R?100或R?1K档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。

2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型由于基极与发射极、基极与集电极之间,分别是两个PN结,而PN结的反向电阻值很大,正向电阻值很小,因此,可用万用表的R?100或R?1K档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。 (2)判断集电极和发射极 判断集电极和发射极的基本原理是把三极管接成基本单管放大电路,利用测量管子的电流放大系数?值的大小来判定集电极和发射极。以NPN型为例,如图所示。基极确定以后,用万用表两表笔分别接另外两个极,用100K?的电阻一端接基极一端接黑表笔,若电表指针偏转较大,则黑表笔所接的一端为集电极,红表笔接的是发射极。也可用手捏住基极与黑表笔(不能使两者相碰),以人体电阻代替100K?电阻的作用。

三极管的检测方法

三极管的检测方法 1、中、小功率三极管的检测 A、已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏 (a)、测量极间电阻。将万用表置于R×100或R×1k挡,按照红、黑表笔的六种不同接法进行测试。其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。 (b)、三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。 通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下: 万用表电阻的量程一般选用R×100或R×1k挡,对于PNP管,黑表管接e 极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。要求测得的电阻越大越好。e-c间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。 (c)、测量放大能力(β)。目前有些型号的万用表具有测量三极管hFE的刻度线及其测试插座,可以很方便地测量三极管的放大倍数。先将万用表功能开关拨至 挡,量程开关拨到ADJ位置,把红、黑表笔短接,调整调零旋钮,使万用

表指针指示为零,然后将量程开关拨到hFE位置,并使两短接的表笔分开,把被测三极管插入测试插座,即可从hFE刻度线上读出管子的放大倍数。 另外:有此型号的中、小功率三极管,生产厂家直接在其管壳顶部标示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表所示,但要注意,各厂家所用色标并不一定完全相同。 B、检测判别电极 (a)、判定基极。用万用表R×100或R×1k挡测量三极管三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN 型管。 (b)、判定集电极c和发射极e。(以PNP为例)将万用表置于R×100或R×1k挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 C、判别高频管与低频管 高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换的。 D、在路电压检测判断法

三极管三个管脚识别

三极管三个管脚识别1、由三极管外形判断三个管脚

2、用万用表测量判断 可以用万用表来初步确定三极管的好坏及类型(NPN 型还是PNP 型),并辨别出e(发射极)、b(基极)、c(集电极)三个电极。测试方法如下: ①用指针式万用表判断基极 b 和三极管的类型: 将万用表欧姆挡置"R ×100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e: 仍将指针式万用表欧姆挡置"R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、 C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为c 、e 问电阻值小说明通过万用表的电流大, 偏置正常。 ③用数字万用表 测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在0.6V 左右), 则假设的基极是正确的, 且被测三极管为NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时, 先确认晶体管类型, 然后将被测管子e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。

三极管的识别与检测

晶体三极管的识别和检测 晶体三极管又称半导体三极管,简称晶体管或三极管。在三极管内,有两种载流子:电子与空穴,它们同时参与导电,故晶体三极管又称为双极型晶体三极管,它的基本功能是具有电流放大作用。 一、结构 NPN和PNP型两类三极管的结构如图。它有两个PN结(分别称为发射结和集电结),三个区(分别称为发射区、基区和集电区),从三个区域引出三个电极(分别称为发射极e、基极b和集电极c)。发射极的箭头方向代表发射结正向导通时的电流的实际流向。 为了保证三极管具有良好的电流放大作用,在制造三极管的工艺过程中,必须作到: ①使发射区的掺杂浓度最高,以有效地发射载流子;②使基区掺杂浓度最小,且区最薄,以有效地传输载流子;③使集电区面积最大,且掺杂浓度小于发射区,以有效地收集载流子。

半导体三极管亦称双极型晶体管,其种类非常多。按照结构工艺分类,有PNP和NPN型;按照制造材料分类,有锗管和硅管;按照工作频率分类,有低频管和高频管;一般低频管用以处理频率在3MHz以下的电路中,高频管的工作频率可以达到几百兆赫。按照允许耗散的功率大小分类,有小功率管和大功率管;一般小功率管的额定功耗在1W以下,而大功率管的额定功耗可达几十瓦以上。 1、共射电流放大系数β:β值一般在20~200,它是表征三极管电流放大作用的最主要的参数。 2、反向击穿电压值U(BR)CEO:指基极开路时加在c、e两端电压的最大允许值,一般为几十伏,高压大功率管可达千伏以上。

3、最大集电极电流I CM :指由于三极管集电极电流I C过大使β值下降到规定允许值时的电流(一般指β值下降到2/3正常值时的I C值)。实际管子在工作时超过I CM并不一定损坏,但管子的性能将变差。 4、最大管耗P CM :指根据三极管允许的最高结温而定出的集电结最大允许耗散功率。在实际工作中三极管的I C与U CE的乘积要小于P CM值,反之则可能烧坏管子。 5、穿透电流I CEO:指在三极管基极电流I B=0时,流过集电极的电流I C。它表明基极对集电极电流失控的程度。小功率硅管的I CEO约为0.1mA,锗管的值要比它大1000倍,大功率硅管的I CEO约为mA数量级。 6、特征频率f T:指三极管的β值下降到1时所对应的工作频率。f T的典型值约在100~1000MHz之间,实际工作频率。 二、半导体器件的命名方法 1.中国半导体器件的命名法 根据中华人民共和国国家标准,半导体器件型号由五部分组成,其每一部分的含义见表2-15。 表2-15 国产半导体器件的型号命名方法 第一部分第二部分第三部分第四部 分 第五部分 用数字表示器件的电极数目用汉语拼音字母表示 器件的材料和极性用汉语拼音字母表示器件 的类别 用数字 表示 器件序 号 用汉语拼音 字 母表示规格 号 符号意义 符 号 意义符号意义 4 5

三极管的工作原理及检测方法.

三极管的工作原理及检测方法 三极管的工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7 V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻R b就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 三、开关作用 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻 Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态

相关主题