搜档网
当前位置:搜档网 › 安徽省太和二中高二期末数学复习例题讲解

安徽省太和二中高二期末数学复习例题讲解

安徽省太和二中高二期末数学复习例题讲解
安徽省太和二中高二期末数学复习例题讲解

安徽省太和二中高二期末数学复习例题讲解

1.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大

值为b ,若13a =7b ,则m = ( B )

A 、5

B 、6

C 、7

D 、8

2.已知函数()f x =22,0ln(1),0

x x x x x ?-+≤?+>?,若|()f x |≥ax ,则a 的取值范围是( D )

A .(,0]-∞

B .(,1]-∞

C .[-2,1]

D .[-2,0]

3. 设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=______

4. 若函数()f x =22(1)()x x ax b -++的图像关于直线x =-2对称,则()f x 的最大值是______16

5. 已知函数f(x)=x 3+ax 2+bx+c ,下列结论中错误的是( C )

(A )? x 0∈R,f (x 0)=0

(B )函数y=f(x)的图像是中心对称图形

(C )若x 0是f(x)的极小值点,则f(x)在区间(-∞, x 0)单调递减 (D )若x 0是f (x )的极值点,则()0'0f x =

6. 设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C

的方程为( C )

(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x

(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x

7. 已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b (a >0)将△ABC 分割为面积相等的两部分,

则b 的取值范围是( B )

(A )(0,1)(B)1122??- ? ???( C) 1123??- ? ?? (D) 11,32?????? 8. 若函数()211=,2f x x ax a x ??++∞ ???

在是增函数,则的取值范围是( D ) (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[3,)+∞

9. 已知正四棱锥1111

112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )

(A )23 (B (C )3

(D )13

10. 椭圆22

122:1,,46

x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(B )

(A )1324??????, (B )3384??????, (C )112??????, (D )314

??????, 11. 已知函数()=cos sin 2,f x x x 下列结论中错误的是(C )

(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π

==的图像关于对称 (C )

(

)f x (D )()f x 既是奇函数,又是周期函数 12. 已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于

,0,A B MA MB k == 两点,若则(D )

(A )12 (B

)2

(C

(D )2 13. 记不等式组0,34,

34,x x y x y ≥??+≥??+≤?所表示的平面区域为.D 若直线

()1y a x D a =+与有公共点,则的取值范围是 . 12??????

,4 13. 已知数列{}n a 满足{}12430,,103n n n a a a a ++==-

则的前项和等于(C ) (A )()10613--- (B )

()101139-- (C )()10313-- (D )()10313-+ 14.()()342211+x y x y +的展开式中的系数是(D )

(A )56 (B )84 (C )112 (D )168

15. 复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( (D ) )

A. 2+i

B.2-i

C. 5+i

D.5-i

16. 函数y=xcosx + sinx 的图象大致为

(A ) (B ) (C) (D)

【答案】 D

17. 过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 (A )

(A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0

18.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 (B )

(A )243 (B )252 (C )261 (D )279

的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p= (D )

B. C. D.

21. 已知向量AB 与AC 的夹角为120 ,且||3,||2,AB AC == 若,AP AB AC λ=+ 且AP BC ⊥ ,则实数λ的值为 【答案】

712 22. 定义“正对数”:0,01ln ln ,1x x x x +<

≥?,现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=

②若0,0a b >>,则ln ()ln ln ab a b +++=+

③若0,0a b >>,则ln ()ln ln a a b b +++

≥-

④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++

其中的真命题有: (写出所有真命题的编号) 【答案】①③④

23. 已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解

集是____________.(7,3)-

24. 如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,

P 为△ABC 内一点,∠BPC =90°

(1)若PB=12

,求PA ; (2)若∠APB =150°,求tan ∠PBA

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高二上学期数学期末考试卷含答案

【一】选择题:本大题共12小题,每题5分,总分值60分,在每题给出的四个选项中,只有一项为哪一项符合要求的. 1.命题〝假设2x =,那么2 320x x -+=〞的逆否命题是〔 〕 A 、假设2x ≠,那么2320x x -+≠ B 、假设2320x x -+=,那么2x = C 、假设2320x x -+≠,那么2x ≠ D 、假设2x ≠,那么2 320x x -+= 2.〝直线l 垂直于ABC △的边AB ,AC 〞是〝直线l 垂直于ABC △的边BC 〞的 〔 〕 A 、充分非必要条件 B 、必要非充分条件 C 、充要条件 D 、既非充分也非必要条件 3 .过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.假设AB 中点M 到抛物线 准线的距离为6,那么线段AB 的长为〔 ) A 、6 B 、9 C 、12 D 、无法确定 4.圆 042 2=-+x y x 在点)3,1(P 处的切线方程为 ( ) A 、023=-+y x B 、043=-+y x C 、043=+-y x D 、023=+-y x 5.圆心在抛物线x y 22=上,且与x 轴和抛物线的准线都相切的一个圆的方程是 〔 〕 A 、0 122 2 =+--+y x y x B 、041 222=- --+y x y x C 、0 122 2 =+-++y x y x D 、 041222=+ --+y x y x 6.在空间直角坐标系O xyz -中,一个四面体的顶点坐标为分别为(0,0,2),(2,2,0), (0,2,0),(2,2,2).那么该四面体在xOz 平面的投影为〔 〕

高二数学上学期期末考试题及答案

高二数学上学期期末考试题 一、 选择题:(每题5分,共60分) 2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( ) (A )18, (B )6, (C )23, (D )243 3、与不等式x x --23≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)00的解集是(–21,3 1),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程?? ?-=+=θθsin 43cos 45y x 为(θ为参数),则其标准方程为 .

16、已知双曲线162x -9 2 y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离心率互为倒数,则椭圆的方程为 . 三、 解答题:(74分) 17、如果a ,b +∈R ,且a ≠b ,求证: 4 22466b a b a b a +>+(12分) 19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。(12分) 21、某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池 222、131719x=x 2 000000将 x 44)1(2,2200=+==y x y y x 得代入方程 即14 22 =+y x ,所以点M 的轨迹是一个椭圆。 21、解:设水池底面一边的长度为x 米,则另一边的长度为米x 34800, 又设水池总造价为L 元,根据题意,得 答:当水池的底面是边长为40米的正方形时,水池的总造价最低,

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高二数学上学期期末考试试题 文38

双鸭山第一中学高二期末数学(文)试题 一.选择题(共60分) 1.已知复数(23)=+z i i ,则复数z 的虚部为( ) A .3 B .3i C .2 D .2i 2. 已知命题[]:0,2,sin 1p x x π?∈≤,则( ) A .[]:0,2,sin 1p x x π??∈≥ B .[]:2,0,sin 1p x x π??∈-> C .[]:0,2,sin 1p x x π??∈> D .[]:2,0,sin 1p x x π??∈-> 3.命题:sin sin p ABC B C B ?∠∠>在中,C >是的充要条件;命题22:q a b ac bc >>是的充分 不必要条件,则( ) A .p q 真假 B .p q 假假 C .p q “或”为假 D .p q “且”为真 4.执行下面的程序框图,输出的S 值为( ) A .1 B .3 C .7 D .15 5.执行上面的算法语句,输出的结果是( ) A.55,10 B.220,11 C.110,10 D.110,11 6.已知变量,x y 满足约束条件1330x y x y x +≥?? +≤??≥? ,则目标函数2z x y =+的最小值是( ) A .4 B .3 C .2 D . 1 7. 动圆圆心在抛物线24y x =上,且动圆恒与直线1x =-相切,则此动圆必过定点( ) A .()2,0 B .()1,0 C .()0,1 D .()0,1- 8.一圆形纸片的圆心为O ,F 是圆内一定点(异于O ),M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 9.设斜率为2的直线l 过抛物线()2 0y ax a =≠的焦点F ,且和y 轴交于点A ,若O A F ?(O 为坐标原点)的面积为4,则抛物线方程为( ) A.24y x =± B. 28y x =± C.24y x = D.28y x = 10. 曲线1y =与直线()24y k x =-+有两个交点,则实数k 的取值范围是( ) A .50, 12?? ??? B .5,12??+∞ ??? C .13,34?? ??? D .53,124?? ??? 11.双曲线()2222:10,0x y C a b a b -=>>的左右焦点分别是12,F F ,过1F 作倾斜角为0 30的直线交 双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( ) A . 3 12.过双曲线 ()2222:10,0x y C a b a b -=>>的左焦点1F ,作圆222 x y a +=的切线交双曲线右支于 点P ,切点为点T ,1PF 的中点M 在第一象限,则以下结论正确的是( ) A .b a MO MT -=- B. b a MO MT ->- C .b a MO MT -<- D .b a MO MT -=+

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高二数学上期末考试卷及答案

(选修2-1) 说明: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试时间120分钟。 第Ⅰ卷(选择题 共36分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、座号、考试科目涂写在答题卡上。 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,在试题卷上作答无效。 一.选择题(本大题共12小题,每小题3分,共36分。) 1.下列命题是真命题的是 A 、“若0=x ,则0=xy ”的逆命题; B 、“若0=x ,则0=xy ”的否命题; C 、若1>x ,则2>x ; D 、“若2=x ,则0)1)(2(=--x x ”的逆否命题 2.已知p:522=+,q:23>,则下列判断中,错误..的是 A 、p 或q 为真,非q 为假; B 、p 且q 为假,非p 为真; C 、p 且q 为假,非p 为假; D 、p 且q 为假,p 或q 为真; 3.对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0, )16 C 、开口向右,焦点为(1,0) D 、开口向右,焦点为1(0, )16 4.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ?是B ?的 A 、充分条件 B 、必要条件 C 、充要条件 D 、既不充分也不必要条件 5.经过点)62,62(-M 且与双曲线1342 2=-y x 有共同渐近线的双曲线方程为 A .18622=-y x B .18 62 2=-x y C . 16822=-y x D .16822=-x y 6.已知△ABC 的顶点B 、C 在椭圆13 43 2=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 A.23 B. 8 C.34 D. 4

哈尔滨市高二上学期数学期末考试试卷(I)卷

哈尔滨市高二上学期数学期末考试试卷(I)卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共9题;共18分) 1. (2分)圆心为点(3,4)且过点(0,0)的圆的方程() A . B . C . D . 2. (2分)直线的倾斜角为() A . B . C . D . 3. (2分)若向量、的坐标满足,,则·等于() A . 5 B . -5 C . 7 D . -1 4. (2分)已知直线l方程为2x-5y+10=0,且在轴上的截距为a,在y轴上的截距为b,则|a+b|等于() A . 3

B . 7 C . 10 D . 5 5. (2分) (2019高三上·长治月考) 已知实数,,则“ ”是“ ”的() A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 6. (2分)已知x、y满足约束条件,则的最小值为() A . 17 B . -11 C . 11 D . -17 7. (2分)已知直线;平面;且,给出下列四个命题: ①若,则;②若,则;③若,则;④若,则 其中正确的命题是() A . ①④ B . ②④ C . ①③④ D . ①②④

8. (2分) (2018高一下·鹤壁期末) 点到直线的距离为,则的最大值是() A . 3 B . 1 C . D . 9. (2分) (2017高二上·佳木斯月考) 已知为双曲线的左、右焦点,点在上, ,则() A . B . C . D . 二、填空题 (共6题;共6分) 10. (1分)求以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,)的椭圆的标准方程________. 11. (1分) (2017高二上·莆田月考) 下列命题: ①“四边相等的四边形是正方形”的否命题; ②“梯形不是平行四边形”的逆否命题; ③“若,则”的逆命题. 其中真命题是________.

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

高二上学期数学期末考试试卷及答案

高二上学期数学期末考试试卷及答案 考试时间:120分钟试题分数:150分 卷Ⅰ 一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.对于常数、,“”是“方程的曲线是双曲线”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.命题“所有能被2整除的数都是偶数”的否定是 A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数 3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 A.B.C.D. 4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.B.C.D. 5.若双曲线的离心率为,则其渐近线的斜率为 A.B.C.D. 6.曲线在点处的切线的斜率为

A.B.C.D. 7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为 A.B.C.D. 8.设是复数,则下列命题中的假命题是 A.若,则 B.若,则 C.若,则 D.若,则 9.已知命题“若函数在上是增函数,则”,则下列结论正确的是 A.否命题“若函数在上是减函数,则”是真命题 B.逆否命题“若,则函数在上不是增函数”是真命题 C.逆否命题“若,则函数在上是减函数”是真命题 D.逆否命题“若,则函数在上是增函数”是假命题 10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的 A.充分条件 B.必要条件 C.充分必要条件 D.既不充分也不必要条 件 11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线 对称轴距离的取值范围为 A.B.C.D. 12.已知函数有两个极值点,若,则关于的方程的不同实根个数 为 A.2 B.3 C.4 D.5 卷Ⅱ 二、填空题:本大题共4小题,每小题5分,共20分.

高二上学期数学期末考试试卷真题

高二上学期数学期末考试试卷 一、解答题 1. 直线的倾斜角的大小为________. 2. 设直线,, . (1)若直线,,交于同一点,求m的值; (2)设直线过点,若被直线,截得的线段恰好被点M平分,求直线的方程. 3. 如图,在四面体中,已知⊥平面, ,,为的中点. (1)求证:; (2)若为的中点,点在直线上,且, 求证:直线//平面. 4. 已知,命题{ |方程 表示焦点在y轴上的椭圆},命题{ |方程

表示双曲线},若命题“p∨q”为真,“p∧q”为假,求实数的取值范围. 5. 如图,已知正方形和矩形所在平面互相垂直, ,. (1)求二面角的大小; (2)求点到平面的距离. 6. 已知圆C的圆心为,过定点 ,且与轴交于点B,D. (1)求证:弦长BD为定值; (2)设,t为整数,若点C到直线的距离为,求圆C的方程. 7. 已知函数(a为实数). (1)若函数在处的切线与直线 平行,求实数a的值; (2)若,求函数在区间上的值域; (3)若函数在区间上是增函数,求a的取值范围. 8. 设动点是圆上任意一点,过作轴的垂线,垂足为,若点在线段上,且满足.

(1)求点的轨迹的方程; (2)设直线与交于,两点,点 坐标为,若直线,的斜率之和为定值3,求证:直线必经过定点,并求出该定点的坐标. 二、填空题 9. 命题“对任意的”的否定是________. 10. 设,,且// ,则实数________. 11. 如图,已知正方体的棱长为a,则异面直线 与所成的角为________. 12. 以为准线的抛物线的标准方程是________. 13. 已知命题: 多面体为正三棱锥,命题:多面体为正四面体,则命题是命题的________条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”之一) 14. 若一个正六棱柱的底面边长为,侧面对角线的长为,则它的体积为________. 15. 函数的单调递减区间为________.

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高二数学上学期期末考试题及答案

高二数学上学期期末考试题及答案 Revised on November 25, 2020

高二数学上学期期末考试题 一、 选择题:(每题5分,共60分) 2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( ) (A )18, (B )6, (C )23, (D )243 3、与不等式 x x --23 ≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)00 6、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( ) (A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π (C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π43 7、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( ) (A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=0 8、直线y=x+23被曲线y=21 x 2截得线段的中点到原点的距离是 ( ) (A )29 (B )29 (C ) 429 (D )2 29 11、双曲线: 的准线方程是19 162 2=-x y ( ) (A)y=± 7 16 (B)x=± 516 (C)X=±7 16 (D)Y=±516 12、抛物线:y=4ax 2的焦点坐标为 ( ) (A )( a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a 161 ,0)

二、填空题:(每题4分,共16分) 13、若不等式ax 2+bx+2>0的解集是(– 21,3 1 ),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程???-=+=θθ sin 43cos 45y x 为(θ为参数),则其标准方程 为 . 16、已知双曲线162x -9 2 y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆 与双曲线的离心率互为倒数,则椭圆的方程为 . 三、 解答题:(74分) 17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分) 19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。(12分) 21、某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1㎡的造价为150元,池壁每1㎡的造价为120元,问怎样设计水池能使总造价最低,最低造价是多少元(13分) 22、某家具厂有方木料90m 3,五合板600㎡,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1m 3,五合板2㎡,生产每个书橱需方木料0.2m 3,五合板1㎡,出售一张书桌可获利润80元,出售一个书橱可获利润120元,问怎样安排同时生产书桌和书橱可使所获利润最大(13分) 一、 选择题: 2、(B ), 3、(B ),6、(A ), 7、(B ), 8、(D ), 11、(D ), 12、(B )。

高中一年级数学数列部分经典习题及答案

.数 列 一.数列的概念: (1)已知* 2()156n n a n N n = ∈+,则在数列{}n a 的最大项为__(答:125 ); (2)数列}{n a 的通项为1 += bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,数λ的取值围(答:3λ>-); 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 (1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值围是______(答: 8 33 d <≤) 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2 n n n S na d -=+ 。 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+ ≥∈,32n a =,前n 项和15 2 n S =-,求1a ,n (答:13a =-,10n =); (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答: 2* 2* 12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且率为公差d ;前n 和 211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____ (答:27) (2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则

高中数列经典例集

一、 经典例题剖析 考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b n a +++= (n=1,2,3…), (1)求证{ b n }为等差数列的充要条件是{a n }为等差数列。 (2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题2.已知数列{}n a 的首项 121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。 (1)证明:{}n b 从第2项起是以2为公比的等比数列; (2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。 例题4. 已知数列{}n a 满足411=a ,()),2(2 111N n n a a a n n n n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21 n n a b =,求数列{}n b 的前n 项和n S ; (Ⅲ)设2 )12(sin π-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74+1; ⑶ 求证:),2(21111111*21N n n a a a n ∈≥<++++++< 例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈

相关主题