搜档网
当前位置:搜档网 › 城市交通噪声原始记录

城市交通噪声原始记录

城市交通噪声原始记录

城市交通噪声监测原始记录表

监测目的:监测日期:方法依据:GB3096-2008 声级计型号:***仪器编号:***天气情况:风速:m/s

声级校准器型号:*** 校准器编号:***监测前校准值:dB(A)监测后校准值:dB(A)

监测:校核:审核:

第页共页

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

相位噪声性能测试

LMK04000 系列产品的相位噪声性能测试 30082862 加权函数H(f)是低通闭环传递函数,其中包含了诸如电 荷泵增益、环路滤波器响应、VCO增益和反馈通路( 数器等参数。该式表示了图1所示的每一级PLL AN-1910 30082801 图1 具有抖动清除能力的双PLL时钟合成器的架构 https://www.sodocs.net/doc/149556166.html, ? 2009 National Semiconductor Corporation 300828

https://www.sodocs.net/doc/149556166.html, 2 A N -1910 2.0 LMK04000系列产品介绍 图2示出了LMK04000精密时钟去抖产品系列的详细的框图。其PLL1的冗余的参考时钟输入(CLKin0,CLKin1),可以支持高达400 MHz 的频率。参考时钟信号可以是单端或者差分式的信号,为了实现操作中稳定性,还可以启用其中的自动开关模式。驱动OSCin 端口的VCXO 的最大容许频率为250 MHz 。OSCin 端口的信号被反馈到PLL2相位比较器上,而且也作为相位和频率基准注入到PLL2中。虽然在图中并未示出,其内部还是可以支持分立形式的、采用外接晶振的VCXO 。PLL2的相位比较器的基准信号输入端还提供了一 个可选用的频率倍增器,这可以使得相位比较的频率得以增加一倍,从而降低了PLL2的带内噪声。PLL2集成了一个内置的VCO ,以及可选的内置环路滤波器部件,这一部分可以提供PLL2环路滤波器的3阶和4阶极点。VCO 的输出带有缓冲,最终由Fout 引脚向外提供信号,该信号也可以经过一个VCO 分频器路由到内部的时钟分发总线上。时钟分发部分则对时钟信号进行缓冲,并将其分配给各个可以独立配置的通道。每个通道具有一个分频器、延迟模块和输出缓冲器。在时钟输出端,各信号格式的组合关系可以根据具体的器件编号来确定。 30082802 图2 LMK04000系列时钟电路的框图 下面的表格示出了LMK04000系列中目前已发布的器件。正如表1所示的那样,其中包含了2个VCO 频带以及 两种可配置的时钟输出格式。本报告中所测量的器件是LMK04031。 表1 LMK04000系列产品的器件编号、输出格式和VCO 频段 NSID 工艺2VPECL/LVPECL 输出 LVDS 输出 LVCMOS 输出 VCO 频率范围LMK04011BISQ BiCMOS 51430~1570 MHz LMK04031BISQ BiCMOS 22 2 1430~1570 MHz LMK04033BISQ BiCMOS 2 2 2 1840~2160 MHz

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

水准测量记录表(路基顶面)

施工单位:广西壮乡建设集团有限公司 监理单位:南宁鸣发工程建设咨询有限责任公司 工程名称南宁市邕宁区蒲庙镇州同村土地整治 项目 施工时间 2014 年11月12 日 桩号及部位改建生产路02 K0+000~K0+159.38 测量时间 2014年11月19 日 测量点 水准尺读数 仪器高实测标高设计标高偏差值后视间视前视 K0+000 1.813 40 2.004 1.635 73.596 73.587 0.009 K0+040 1.813 40 2.004 1.635 74.096 74.080 0.016 K0+080 1.813 40 2.004 1.635 73.244 73.248 -0.004 K0+120 1.813 40 2.004 1.635 71.826 71.815 0.011 K0+159.38 1.813 40 2.004 1.635 70.394 70.404 -0.010 误差分析:路基水准测量设计允许偏差±20mm,经测量误差结果分析符合设计要求。 测量:记录员: 专业监理工程师:现场监理:

施工单位:广西壮乡建设集团有限公司 监理单位:南宁鸣发工程建设咨询有限责任公司 工程名称南宁市邕宁区蒲庙镇州同村土地整治 项目 施工时间 2014年11月12 日 桩号及部位改建生产路03 K0+000~K0+361.180 测量时间 2014年11月 19 日 测量点 水准尺读数 仪器高实测标高设计标高偏差值后视间视前视 K0+000 1.705 40 1.790 1.635 74.935 74.926 0.009 K0+040 1.705 40 1.790 1.635 73.864 73.859 0.005 K0+080 1.705 40 1.790 1.635 72.791 72.792 -0.001 K0+120 1.705 40 1.790 1.635 71.730 71.726 0.004 K0+160 1.705 40 1.790 1.635 70.737 70.735 0.002 K0+200 1.70540 1.790 1.63570.603 70.606 -0.003 K0+240 1.70540 1.790 1.63571.549 71.543 0.006 K0+280 1.70540 1.790 1.63573.509 73.513 -0.004 K0+320 1.70540 1.790 1.63575.084 75.076 0.008 K0+360 1.70540 1.790 1.63575.107 75.126 -0.019 K0+361.180 1.70540 1.790 1.63575.132 75.117 0.015 误差分析:(路基顶面)水准测量设计允许偏差±20mm,经测量误差结果分析符合设计要求。 测量:记录员: 专业监理工程师:现场监理:

噪声测量实验

实验1 噪声测量实验 目 的 1.掌握声压级的测量方法。 2.掌握噪声的测量方法。 原 理 声音是大气压上的压强波动,这个压强波动的大小简称为声压,以p 表示,其单位是Pa (帕)。从刚刚可以听到的声音到人们不堪忍受的声音,声压相差数百万倍。显然用声压表达各种不同大小的声音实属不太方便,同时考虑了人耳对声音强弱反应的对数特性,用对数方法将声压分为百十个等级,称为声压级。 声压级的定义是:声压与参考声压之比的常用对数乘以20,单位是dB (分贝)。其表达式为: L p =20lg 0 p p 式中,p 为声压,p 0是参考声压,它是人耳刚刚可以听到的声音。值得注意的是两个声压级或多个声压级相加不是dB 的简单算术相加,是按照对数的运算规律相加。 声压级只反映声音的强度对人耳的响度感觉的影响,而不能反映声音频率对响度感觉的影响。利用具有一个频率计权网络的声学测量仪器,对声音进行声压级测量,所得到的读数称为计权声压级,简称声级,单位为dB 。声学测量仪器中,模拟人耳的响度感觉特性,一般设置A 、B 和C 三种计权网络。声压级经A 计权网络后就得到A 声级,用L A 表示,其单位计作dB(A)。经大量实验证明,用A 声级来评价噪声对语言的干扰,对人们的吵闹程度以及听力损伤等方面都有很好的相关性。另外,A 声级测量简单、快速,还可以与其它评价方法进行换算,所以是使用最广泛的评价尺度之一。如金属切削机床通用技术条件规定:高精度机床噪声容许小于75dB(A);精密机床和普通机床噪声容许小于85dB(A)。 实际测量中,除了被测声源产生噪声外,还有其它噪声存在,这种噪声叫做背景噪声。背景噪声会影响到测量的准确性,需要对结果进行修正。初略的修正方法是:先不开启被测声源测量背景噪声,然后再开启声源测量,若两者之差为3dB ,应在测量值中减去3dB ,才是被测声源的声压级;若两者之差为4~5dB ,减去数应为2dB ;若两者之差为6~9dB ,减去数应为1dB ;当两者之差大于10dB 时,背景噪声可以忽略。但如果两者之差小于3dB ,那么最好是采取措施降低背景噪声后再测量,否则测量结果无效。 测量环境中风、气流、磁场、振动、温度、湿度等因素都会给测量结果带来影响。特别是风和气流的影响。当存在这些影响时,应使用防风罩或鼻锥等测量附件来减少影响。 声级计一般都是由传声器单元、放大分析单元、显示仪表单元三大部分组成。其工作原理方框图见图00-1。 图1-1 声级计原理方框图 1.传声器单元。传声器单元由传声器和前置放大器组成。传声器是将声信号转换成电信号的换能器,要求频率范围宽、频率响应平直、失真小、动态范围大、尤其是稳定性要好。前置放大器起阻抗变换作用,要求具有输入阻抗高,输出阻抗低,以便与长延伸电缆连接。

相位噪声基础及测试原理和方法

摘要: 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义 以载波的幅度为参考,在偏移一定的频率下的单边带相对噪声功率。这个数值是指在1Hz的带宽下的相对噪声电平,其单位为dBc/Hz。该定义最早是基于频谱仪法测试相位噪声,不区分调幅噪声和调相噪声。 单边带相位噪声L(f)定义为随机相位波动单边带功率谱密度Sφ(f)的一半,其单位为dBc/Hz。其中Sφ(f)为随机相位波动φ(t)的单边带功率谱密度,其物理量纲是rad2/Hz。

环境监测原始记录表

环境监测原始记录表 环境保护监测中心站 2012年

目录 1. 地表水采样原始记录表19.离子选择电极原始记录表 2. 大气采样原始记录表20.分光光度法分析原始记录表 3. 降水采样原始记录表21.原子吸收分光光度法分析原始记录表 4. 降尘采样原始记录表22.气相色谱分析原始记录表 5. 土壤采样原始记录表23.离子色谱分析原始记录表 6. 底质(底泥、沉积物)采样原始记录表24.细菌总数测定原始记录表 7. 污染源废水采样原始记录表25.粪大肠菌群测定原始记录表 8. 固定污染源排气中气态污染物采样原始记录表26.区域环境噪声监测原始记录表 9. 固定污染源排气中颗粒物采样原始记录表27.城市交通噪声监测原始记录表 10.烟气烟色监测现场记录表28.污染源噪声监测原始记录表 11.pH值分析原始记录表29.机动车排气路检原始记录表 12.电导率分析原始记录表30.一般试剂配制原始记录表 13.色度分析原始记录表(铂钴比色法)31.校准曲线配制原始记录表 14.色度分析原始记录表(稀释倍数法)32.标准溶液配制与标定原始记录表 15.重量分析原始记录表33.样品交接记录表 16.容量法分析原始记录表34.样品分析任务表 17.五日生化需氧量分析原始记录表35.样品前处理原始记录表 18.一氧化碳分析原始记录表36.大气采样器流量校准原始记录表

xx 省环境监测原始记录表( 1 ) 地表水采样原始记录表 采样目的: 方法依据:GB12998-91 采样日期: 年 月 日 枯 丰 平 pH 计型号及编号: DO 仪型号及编号: 电导仪型号及编号: 采样: 送样: 接样: .第 页 共 页

噪声测量方法

监测方法 按GB 12349执行。 工业企业厂界噪声标准测量方法 GB 12349-90 Method of measuring noise at boundary of industrial enterprises 本标准为执行GB 12348《工业企业厂界噪声标准》而制订。 本标准适用于工厂及有可能造成噪声污染的企事业单位的边界噪声的测量。 1 名词术语 1.1 A声级用A计权网络测得的声级,用LA表示,单位dB(A)。 1.2 等效声级 在某规定时间内A声级的能量平均值,又称等效连续A声级,用Leq表示,单位为dB(A)。 按此定义此量为: Leq=10Lg() 式中:LA-t时刻的瞬时A声级。 T-规定的测量时间。 当测量是采样测量,且采样的时间间隔一定时,式(1)可表示为: Leq=10Lg() 式中:Li-第i次采样测得的A声级; n-采样总数。 1.3 稳态噪声,非稳态噪声在测量时间内,声级起伏不大于3dB(A)的噪声视为稳态噪声,否则称为非稳态噪声。 1.4 周期性噪声 在测量时间内,声级变化具有明显的周期性的噪声。 1.5 背景噪声 厂界外噪声源产生的噪声。 2 测量条件 2.1 测量仪器 测量仪器精度为Ⅱ级以上的声级计或环境噪声自动监测仪,其性能符合GB 3875《声级计电声性能及测量方法》之规定,应定期校验。并在测量前后进行校准,灵敏度相差不得大于0.5dBA,否则测量无效。测量时传声器加风罩。 2.2 气象条件测量应在无雨、无雪的气候中进行,风力为5.5m/s以上时停止测量。

2.3 测量时间 测量应在被测企事业单位的正常工作时间内进行。分为昼、夜间两部分,时段的划分可由当地人民政府按当地习惯和季节划定。 2.4 采样方式 2.4.1 用声级计采样时,仪器动态特性为“慢”响应,采样时间间隔为5s。 2.4.2 用环境噪声自动监测仪采样时,仪器动态特性为“快”响应,采样时间间隔不大于1s。2.5 测量值2.5.1 稳态噪声测量1min的等效声级。 2.5.2 周期性噪声测量一个周期的等效声级。 2.5.3 非周期性非稳态噪声测量整个正常工作时间的等效声级。 2.6 测点位置的选择 2.6.1 测点(即传声器位置。下同)应选在法定厂界外1m,高度1.2m以上的噪声敏感处。如厂界有围墙,测点应高于围墙。 2.6.2 若厂界与居民住宅相连,厂界噪声无法测量时,测点应选在居室中央,室内限值应比相应标准值低10dB(A)。 3 测量记录及数据处理 3.1 测量记录围绕厂界布点。布点数目及间距视实际情况而定。在每一测点测量,计算正常工作时间内的等效声级,填入工业企业厂界噪声测量记录表(见附表)。 3.2 背景值修正 背景噪声的声级值应比待测噪声的声级值低10dB(A)以上,若测量值与背景值差值小于10dB(A),按下表进行修正。 附录A工业企业厂界噪声测量记录表(补充件)

声学环境噪声测量方法

声学环境噪声测量方法 Acoustics一Measurement method of environmental noise GB/T 3222-94 代替GB 3222-82 本标准参照采用国际标准ISO 1996/1《声学环境噪声的描述和测量第1部分:基本量与测量方法》;ISO 1996/2《声学环境噪声的描述和测量第2部分:与土地使用有关的数据采集》。 1 主题内容与适用范围 本标准规定了环境噪声测量与评价方法。 本标准适用于城市区域(含县、建制镇)环境噪声、道路交通噪声的测量。 2 引用标准 GB 3947 声学名词术语 GB 3785 声级计的电、声性能及测试方法 SJ/Z 9151 积分平均声级计 JJG 176 声校准器检定规程 JJG 669 积分声级计检定规程 JJG 778 噪声统计分析仪检定规程 3 术语 3.1 A[计权]声级 用A计权网络测得的声级,用LpA表示,单位dB。 注:通常简单地用LA表示。 3.2 累积百分声级 在规定测量时间T内,有N%时间的声级超过某一LpA值,这个LpA值叫做累积百分声级,用LN,T表示,单位dB。例如L95,1h表示1小时内,有95%的时间超过的A声级。 累积百分声级用来表示随时间起伏无规噪声的声级分布特性。 注:通常简单地用LN表示,如L95。 3.3 等效「连续]A声级 等效[连续]A声级是在某规定时间内A声级的能量平均值,用LAeq,T表示,单位dB。按此定义此量为: (1) 式中:LpA(t)棗某时刻t的瞬时A声级,dB; T -规定的测量时间,s。 当规定的时间T内,要分时间段测量时,如T=T1+T2+…………+Tm,则T时间内的等效A声级,计算式为: (2) 式中:LAeq,Ti棗第i段时间测得的等效A声级; Ti-第i段时间,s。 由于环境噪声标准中都用A声级,故如不加说明,则等效声级就是等效[连续]A声级、并常简单地用符号Leq表示。 3.4 昼夜等效声级 在昼间和夜间的规定时间内测得的等效A声级分别称为昼间等效声级Ld或夜间等效声级Ln,。昼夜等效声级为昼间和夜间等效声级的能量平均值,用Ldn表示,单位dB。

相位噪声的测试方法

胡为东系列文章之七 相位噪声的时域测量方法 美国力科公司胡为东摘要:相位噪声主要是衡量因信号的相位变化而带来的噪声,在频域中表现为噪声的频谱,在时域中又表现为信号边沿位置的抖动,因此在实际应用中,相位噪声和信号的抖动其实本质是相同的。本文就将对相位噪声以及TIE抖动(Time Interval Error,时间间隔误差,也叫相位抖动)的概念及相互关系做一简要介绍并详细介绍了使用力科示波器如何测量TIE 抖动并将其转换为相位噪声的。 关键词:力科相位噪声TIE 抖动 一、相位噪声的基本概念 一个时钟信号或者一个时钟信号的一次谐波可以用一个如下的正弦波形来表示: (),其中为时钟频率,为初始相位,如果为常数,那么的傅里叶变换频谱图应该为一条谱线,如图1中的左图所示,但是如果发生变化,则原本规则的周期正弦信号在变化的过程中将会出现拐点,且频谱也将变得不仅仅是一条谱线,而是可能由分布在时钟频率周围的很多条谱线构成的更为复杂的频谱图,如图1中的右图所示,其中频谱波形在fc附近多出的谱线即为相位噪声谱(或者叫做相位抖动谱)。因为初始相位的变化而引起的噪声称为相位噪声,因此对于一个正弦时钟信号或者时钟信号的一次谐波来说,在理论上应该是为零的,此时上述公式中的则完全为相位噪声成分。 fc A fc A 图1 正弦信号的频谱(无相位变化以及有相位变化的可能情形)为了更为精确的描述相位噪声,通常定义其为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。如一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值,即在fm频率处1Hz范围内的面积与整个噪声频下的所有面积之比,如下图2所示。

噪声检测方法

建筑施工噪声测量方法 建筑施工场界噪声测量方法 Measurement method for noise from construction site GB 12524-90 本标准适用于城市建筑施工作业期间,由建筑施工场地产生的噪声测量。 1 名词术语 1.1 建筑施工场地的边界 由政府有关部门限定的建筑施工场地最外面的边界线。 1.2 建筑施工场地 指工程限定的边界范围以内的区域,以及规定界线以外的确实用于建筑或拆毁的其他中间准备区域。 1.3 噪声敏感区域 受到建筑施工噪声影响的住宅区、机关、学校、商业区以及公共场所等,其背景噪声比建筑施工场地产生的噪声级低的区域。 1.4 背景噪声 当建筑场地停止施工时,上述区域的环境噪声。 2 测点的确定 2.1 根据城市建设部门提供的建筑方案和其他与施工现场情况有关的数据确定建筑施工场地边界线。并应在测量表中标出边界线与噪声敏感区域之间的距离。 2.2 根据被测建筑施工场地的建筑作业方位和活动形式,确定噪声敏感建筑或区域的方位,并在建筑施工场地边界线上选择离敏感建筑物或区域最近的点作为测点。由于敏感建筑物方位不同,对于一个建筑施工场地,可同时有几个测点。 3 测量条件 3.1 测量仪器 测量仪器为积分声级计,其性能至少应符合GB 3785《声级计的电、声性能及测试方法》中对Ⅱ型仪器的要求。在测量前后要对使用的声级计进行校准。 如有条件,也可使用环境噪声自动监测仪,但仪器的动态范围应不小于50dB,以保证测量数据的准确性。 3.2 传声器设置 测量时声级计或传声器可以手持,也可以固定在三角架上,传声器处于距地面高1.2m的边界线敏感处。如果边界处有围墙,为了扩大监测范围也可将传声器置于1.2m以上的高度,但要在测量报告中加以注明。 3.3 气象条件 测量应选在无雨、无雪的气候时进行。当风速超过1m/s时,要求在测量时加防风罩,如风速超过5m/s时,应停止测量。 3.4 测量时间 分为昼间和夜间两部分,时间的划分可由当地人民政府确定。 4 测量参数的定义 测量参数为等效连续A声级L eq,单位为dB(A)。 等效连续声级代表声级的能量平均值,即随时间变化噪声的等能量稳态声级。 按定义此量为: (1) 式中:LA(t)棗某测量时刻t的瞬时A声级,dB; T-规定的测量时间,s。 当测量是采样测量,且采样的时间间隔一定时,式(1)可表示为: (2)

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: * HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义: 式2. 在这个定义中,噪声由两个因素产生。一个是到达射频系统输入的干扰,与需要的有用信号不同。第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为: PNA = kTΔF,

使用实时采样示波器测量相位噪声——

使用实时采样示波器测量相位噪声——第一部分 来源:互联网 什么是相位噪声? 维基百科对相位噪声的定义是:“波形相位在频域中的快速、短期、随机波动,由时域的不稳定(抖动)引起。”噪声一词的定义说明该术语不涉及任何杂散项或确定项。上面定义中的“短期”旨在将该定义与其他确定时钟源纯净度的方式相区别,例如每百万稳定点,即 ppm。后者通常在较长的一段时间测得,例如数秒或数分钟。 相位噪声通常以对数频率图表示,例如下图(图 1),图中幅度单位为 dBc/Hz(分贝与 1 Hz 带宽载波功率的比值)。x 轴表示相对于标称信号或“载波”频率的频率偏移。 图 1 为什么使用示波器? 在说明如何使用示波器测量相位噪声之前,最好先了解一下为什么使用实时示波器。现在已经有了专门测量相位噪声的仪器,例如 Keysight E5052B 信号源分析仪(SSA),它拥有比任何示波器都低的相位噪声测量本底噪声。SSA 能够执行准确测量,更接近相位噪声偏

移值,测量速度也比任何示波器都快。但是该仪器也有一些测量限制,例如对最大频率偏移范围有所要求。相位噪声分析仪的典型最大偏移为 100MHz。对大于 100 MHz 的时钟频率,有时也要测量更高的频率偏移,但这超出了此类仪器的测量范围。但示波器可以测量传递到数据信号上的相位噪声,而不仅仅测量时钟。 示波器使用简单如果也足以满足测量要求,当预算不足以购买专用的相位噪声测量设备时更是上佳选择。 相位提取 示波器可以捕捉整个信号波形并对其进行数字化,有多种方法可以从数字化波形中提取相位噪声信息。本文将简要介绍两种方法: 1.时钟恢复 2.通过矢量信号分析软件执行相位解调 通过串行数据时钟恢复执行相位解调 示波器分析信号是否达到设定的电压阈值,并将其与参考时钟边沿对比,从而测量串行数据或时钟信号的时序变化(抖动)。对于相位噪声,我们希望参考时钟为理想的固定频率时钟。大部分现代示波器都具有时钟恢复算法,可以从信号中提取时钟。在许多情况下,我们希望通过算法实现锁相环(PLL)仿真,但在这里,我们只需要提取一个固定周期的理想时钟,因此我们不会像 PLL 那样“追查出”任何相位变化。建立时钟恢复的示例如下图。(图 2)算法可设置为根据每次采样结果调整标称信号频率和相位。

相位噪声和抖动是对同一种现象的两种不同的定量方式

相位噪声和抖动是对同一种现象的两种不同的定量方式。在理想情况下,一个频率固定的完美的脉冲信号(以1 MHz为例)的持续时间应该恰好是1微秒,每500ns有一个跳变沿。但不幸的是,这种信号并不存在。如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。这种不确定就是相位噪声,或者说抖动。 相位噪声是频率域的概念。相位噪声是对信号时序变化的另一种测量方式,其结果在频率域内显示。用一个振荡器信号来解释相位噪声。如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。 相位噪声产生的原因 信号源热噪声,内部损耗电阻热噪声,混频器件电流散弹噪声及本振相位噪声,具体是温度过热关系。 相位噪声的定义 定义1: 相位噪声是指单位Hz的噪声密度与信号总功率之比,表现为载波相位的随机漂移,是评价频率源(振荡器)频谱纯度的重要指标源自: 有线数字电视传输特性与故障解析《中国有线电视》2005年赵雨境,王恒江 定义2: 相位噪声是指光的正弦振荡不稳定,时而出现某处相位的随机跳变.相位噪声导致光源线宽变宽.光强度噪声是指因自发辐射光强的随机变化和外界温度的变化,导致发射光强的起伏 源自: Fabry-Perot干涉式光纤温度传... 《传感器技术》2001年曹满婷 来源文章摘要:分析了温度对相位的调制作用以及Fabry -Perot干涉结构检测相位变化的原理,提出了一种具有高灵敏度和高分辨率的相位调制型全光纤结构,并进行了系统的噪声分析。 定义3: 是一随机量通常把信号的相似随机起伏中(t)称为相位噪声.(t)随时间变化的随机过程是一平稳的随机过程并使随机量的概率密度分布符合正态分布 源自: 受多项噪声影响的二级方差估值的置信度《四川教育学院学报》1997年林时昌 来源文章摘要:有限次(m次)采样测量的二级方差估值(,m)随机地偏离其真值<)。这种随机不确定性不仅和m有关,而且和噪声的性质有关。计算出单项噪声所产生的不确定度;分析了多项噪声对总不确定度的影响,并引用置信度的概念表征测量的不确定度。 定义4: (t)〕sin[2兀厂t+小(t)]相位噪声是指频率信号中由频率源内部噪声调制(调相或调频)产生的随机相位起伏.当被测相位噪声比频谱分析仪自身的相位噪声大时,可直接利用频谱分析仪来测量相位噪声,这是一种简单、方便的相位噪声测量方法 源自: 频谱分析仪在测量相位噪声过程中的数值修正《国外电子测量技术》2002年曹芸 来源文章摘要:本文介绍了在使用频谱分析仪测量相位噪声时,影响其测量结果的因素并讨论了如何对频谱分析仪输出结果进行修正。 定义5: 则()rk的相角为()kknkqj+q+,其中()nkq是噪声()nk对相位的干扰,称为相位噪声.可见,kq中包含了全部的载波相位信息,kj包含了大量甚至全部的码字信息 源自: 相位处理载波恢复算法研究《信息与电子工程》2003年袁清升,刘文 来源文章摘要:针对数字信号传输同步接收机的数字化实现,提出一种载波同步新算法即相位处理载波恢复算法。它直接对接收信号的相角进行处理,完成载波频率的快速捕获和载波相位跟踪。理论分析和计算机仿真表明,该算法简单有效,运算量小,便于用DSP器件来实现,适用性强。 定义6: 2个调相边带功率之和是总功率的一半,2个调幅边带功率之和是总功率的另一半,换句话说,总噪声功率N0的一半功率转换到调相边带,另一半转换到调幅边带,转换到调相边带的噪声称为相位噪声 源自: 卫星通信系统中相位噪声之理论及测试《电信科学》2000年殷琪

噪声源测量方法

噪声源测量方法 发布时间:2014-02-11 来源于:互联网 噪声源测量是一种多用途测量方法,这种方法能测量与次临界中子增殖因子相关的量。 噪声源测量 (1)主要是测量噪声源的辐射功率和指向性。测量方法有混响室法、消声室(或半消声室)法和比较法等。 混响室法只能测量噪声源的辐射声功率。将被测的噪声源放在混响室(见声学实验室)中,当噪声源辐射声功率W随时间的改变量不大时,即 在混响室的混响场中声压的均方根的平方: (2) 或声源辐射的声功率级(分贝): (3) 式中ρ为室内空气密度;c为室内声速;V为混响室的体积;A=S峞,S为混响室总面积;峞为平均吸声系数;岧p为混响场中的平均声压级。ρc值取温度为15℃时空气中的值为415。 在混响室的混响场中取n个点,在这些点上测声压级,取其平均值岧p代入(3)式。混响室的平均吸声系数可由混响时间的测量得到。 在实际测量时,声源应放在离开墙壁λ/4的距离以外,测点之间的距离不小于λ/2,各测点与墙壁之间的距离应大于λ/2。λ是相应于测量的频率的波长。 消声室法(或半消声室法)在消声室内,可以同时测量噪声源的辐射声功率和指向性。在自由场内,声强(I)与声压p之间的关系为: (4) 将被测的噪声源放在消声室内,以它为中心,作一球面,将球面等分为n个面元,在每个面元的中心测量声压级Lpj,取这些测量值的平均值岧p,按声强与声功率之间的关系计算声功率级LW: (5) 式中r为测量球面的半径,ρc值取温度为15℃时空气中的值。再按 (6) 计算指向性指数DI。θ和φ是以球心为中心的方位角。 在半消声室中的测量与在消声室中的测量相似。将被测的噪声源尽可能按实际的安装放置在半消声室的地面上,以声源为中心在自由场内作半球面,将半球面分成n个相等面元,在每个面元中心测声压级Lpj,取它们的平均值岧p,按下式计算辐射声功率级: (7) 及按(6)式计算指向性指数。 比较法是一种工程方法。对测量环境除要求安静、不影响声压级测量数据以及有一个用以比较的标准声源以外,没有其他要求。比较法可以在安装机器(设备)的现场,或在其他环境进行。测量时,以机器或设备为中心,在地面上作一半球面,将它分成n个相等的面元,在每个面元的中心测量一个声压级,计算其平均声压级岧p。机器或设备如能移开,将

相位噪声分析及对电路系统的影响

相位噪声分析及对电路系统的影响 1. 概述 相位噪声就是短期频率稳定度,一个物理现象的两种表示方法,相位噪声为频域表示,短期频率稳定度为时域表示。相位噪声一般是指在系统内各种噪声作用下所引起的输出信号相位随机起伏。相位的随机起伏必然引起频率随机起伏,这种起伏速度较快,所以又称之为短期频率稳定度,用单边带,1Hz 带宽内的相位噪声功率谱密度£(?m )表示。而时域一般用在一定时间间隔内,频率变化量的相对值表示,它是测量时间τ的函数,一般用方差><)(2τσ描述频率稳定度,可分长期稳定度和短期稳定度,目前没有严格界限。 频率源的相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的性能影响很大,从频域看它分布在载波信号两旁按幂律谱分布。用这种信号不论做发射激励信号,还是接收机本振信号以及各种频率基准时,这些相位噪声将在解调过程中都会和信号一样出现在解调终端,引起基带信噪比下降。在通信系统中使话路信噪比下降,误码率增加;在雷达系统中影响目标的分辨能力,即改善因子。接收机本振的相位噪声,当遇到强干扰信号时,会产生“倒混频”使接收机有效噪声系数增加。所以随着电子技术的发展,对频率源的相位噪声要求越来越严格,因为低相位噪声,在物理、天文、无线电通信、雷达、航空、航天以及精密计量、仪器、仪表等各种领域里都受到重视。 2. 相位噪声及频率稳定度分析 2.1 相位噪声分析 任何信号的频谱都不可能绝对纯净,总会受到噪声的调制产生调制边带。噪声可分为:闪变噪声、干扰噪声和白噪声,1Hz 带宽内的热噪声功率N o 在常温17℃时为-174dBm/Hz 。这些噪声连续分布,假设对一纯净信号?o 进行调制,取1Hz 带宽内的噪声功率,频率为)(0f f ?+,在时间小于1秒时,可以认为噪声电压也是正弦波。这样可用矢量法来分析这两个正弦信号的调制结果,用图1表示。图1中用V 2表示?0幅度,用02N 表示噪声正弦波幅度,把?0信号看成静止,则噪声分量以 f ?=?πω2的角速度旋转。 由图1看出,当噪声矢量按ω?旋转时,?0信号既产生调幅又产生调相。在图1中a 、c 状态只产生调幅,b 、d 状态只产生调相。调幅的峰值为 ,调相峰值也叫相位最大抖动,为: V N t n 01-=ωθ 单位rad/Hz (1) 当θ值很小时,例如随机噪声调制情况下,调制指数很小,这时调相近似线性。使用迭加原理将各自独立的相位噪声功率相加,而各自独立的噪声电压按平方或平方根组合在一起。例V N M 0= '

噪声系数测量的三种方法

Maxim > App Notes > BASESTATIONS / WIRELESS INFRASTRUCTURE WIRELESS, RF, AND CABLE Keywords: rf, rfic, wireless, noisefigure measurement, gain, meter, y factor, rf ics, rfics Nov 21, 2003 APPLICATION NOTE 2875 Three Methods of Noise Figure Measurement Abstract: Three different methods to measure noise figure are presented: Gain method, Y-factor method, and the Noise Figure Meter method. The three approaches are compared in a table. Introduction In wireless communication systems, the "Noise Figure (NF)," or the related "Noise Factor (F)," defines the noise performance and contributes to the receiver sensitivity. This application note describes this important parameter and details ways to measure it. Noise Figure and Noise Factor Noise Figure (NF) is sometimes referred to as Noise Factor (F). The relationship is simply: NF = 10 * log10 (F) Definition Noise Figure (Noise Factor) contains the important information about the noise performance of a RF system. The basic definition is: From this definition, many other popular equations of the Noise Figure (Noise Factor) can be derived. Below is a table of typical RF system Noise Figures: Category MAXIM Products Noise Figure*Applications Operating Frequency System Gain LNA MAX26400.9dB Cellular, ISM400MHz ~ 1500MHz15.1dB LNA MAX2645HG: 2.3dB WLL 3.4GHz ~ 3.8GHz HG: 14.4dB LG: 15.5dB WLL 3.4GHz ~ 3.8GHz LG: -9.7dB Mixer MAX268413.6dB LMDS, WLL 3.4GHz ~ 3.8GHz1dB Mixer MAX998212dB Cellular, GSM825MHz ~ 915MHz 2.0dB Receiver System MAX2700 3.5dB ~ 19dB PCS, WLL 1.8GHz ~ 2.5GHz< 80dB * HG = High Gain Mode, LG = Low Gain Mode Measurement methods vary for different applications. As shown in the table above, some applications have high gain and low noise figure (Low Noise Amplifiers under HG mode), some have low gain and high noise figure (mixers and LNAs under LG mode), some have very high gain and wide range of noise figure (receiver systems). Measurement methods have to be chosen carefully. In this article, a Noise Figure Meter as well as two other popular methods - "gain method" and "Y factor method" - will be discussed.

相关主题