搜档网
当前位置:搜档网 › 补燃循环液体火箭发动机启动过程的模块化仿真

补燃循环液体火箭发动机启动过程的模块化仿真

补燃循环液体火箭发动机启动过程的模块化仿真
补燃循环液体火箭发动机启动过程的模块化仿真

固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述 摘要:概述了国内外固体火箭发动机壳体用先进复合材料研究应用现状,同时对固体火箭发动机壳体的纤维缠绕成型工艺进行了阐述。 关键词:固体火箭发动机复合材料树脂基体纤维缠绕成型 1 固体火箭发动机简介 固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动、可靠、易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但固体火箭发动机部件在工作中要承受高温、高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。标志当代高性能固体发动机的主要特征是:“高能、轻质、可控”,这三者都是以先进材料为基础和支柱的,选用具有优良比强度和卓越耐热性能的先进复合材料已成为提高发动机性能的一项决定性因素。 2 固体火箭发动机壳体用材料 固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,应考虑如下几个基本原则[1]: a. 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标; b. 发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度; c. 作为航天产品,不仅要求结构强度高,而且要求材料密度小; d. 发动机点火工作时,壳体将受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度的敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。评价和鉴定壳体材料的性能水平,固然要以最终产品是否满足使用要求为原则,但从设计选材的角度来说,也应有衡量的指标和

针栓式变推力火箭发动机技术现状与发展探索

针栓式变推力火箭发动机技术现状与发展探索集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

针栓式变推力火箭发动机技术现状与发展探索 岳春国李进贤冯喜平唐金兰 (西北工业大学燃烧、流动和热结构国家级重点实验室,陕西西安 710072) 摘要:随着人类探索太空活动的逐年增加,发展变推力推进技术的重要性愈发明显。本文综 述了针栓式变推力液体火箭发动机国内外的发展现状与趋势,分解了发展针栓式变推力液体 火箭发动机的关键技术,最后提出适合我国国情的变推力液体火箭发动机技术的发展设想。 关键词:变推力火箭发动机;针拴式喷注器;现状;建议 The Research on Technology Actuality and Development of Pintle Injector Variable Thrust Rocket Engine Yue Chun-guo,Li Jin-xian,Feng Xi-ping,Tang Jin-lan (National laboratory of combustion,flow and thermo-structure, Northwestern Polytechnical University., Xi.’an, 710072 China) Abstract: The significance of developing variable thrust propulsive technology becomes more and more obvious with the year after year increase of exploring outer space activity. In the paper, technology actuality and development trend of pintle injector variable thrust rocket engine at home and overseas are summarized. Key technologies of developing variable thrust rocket engine are analyzed. Development advices of developing variable thrust rocket engine that are adapted to the situation of our country are brought forward. Key Words: Variable thrust rocket engine; Pintle injector; Actuality; Advice 1、前言 液体火箭发动机是航天运输系统及空间飞行器推进与操纵控制的主要动力 装置。随着人类认知领域的逐步拓展,探索太空的活动越来越多,对火箭发动 机的要求也越来越高。研究现代火箭技术的先驱之一,早在20世纪初就提出了火箭发动机推力控制的必要性。具有推力控制能力的变推力液体火箭发动机在 航天运输及空间机动飞行的许多情况下都具有技术上的优越性[1]。 变推力液体火箭发动机技术是当今液体火箭推进技术的重要发展领域。航 天运输系统的动力装置采用变推力发动机,可以实现最佳推力控制,从而使运 载能力达到最大;载人航天的主动段飞行使用变推力发动机进行推进,可以严 格控制宇航员的过载,确保宇航员的飞行安全;对于空间飞行器的交会对接与 轨道机动,变推力发动机可以提高操纵控制的灵活性。如果导弹系统采用变推 力发动机进行推进,则可以改善导弹飞行轨道的机动性,从而提高导弹武器的 突防能力。在诸如月球等无大气天体表面的软着陆及机动飞行中,变推力发动 机是目前唯一可用的动力装置。由于火箭发动机是高密度的能量释放器,对其 推力进行设计和控制时需要解决诸多技术上的难题,因此变推力液体火箭发动 机的研究与发展具有不同于普通常推力液体火箭发动机的独特的技术问题。

小推力姿_轨控液体火箭发动机材料的研究进展[1]

收稿日期:2004-06-30;修回日期:2005-08-22 作者简介:张绪虎,1966年出生,高级工程师,主要从事金属材料及工艺的研究工作 小推力姿/轨控液体火箭发动机材料的研究进展 张绪虎 汪 翔 贾中华 胡欣华 吕宏军 (航天材料及工艺研究所,北京 100076) 文 摘 概述了国内外小推力姿/轨控液体火箭发动机新材料的研究和应用进展。姿/轨控液体火箭发动机推力室已从高性能铌/硅化物材料体系向复合材料推力室技术发展,研制出耐高温性能更好的新型材料 体系和高温抗氧化涂层,以及将它们应用于发动机推力室的制造是提高姿/轨控发动机技术水平的有效途径。 关键词 姿/轨控液体发动机,材料,应用 Research Pr ogress ofMaterial of S mall Thruster f or Attitude and O rbit Contr ol Zhang Xuhu W ang Xiang J ia Zhonghua Hu Xinhua L üHongjun (Aer os pace Research I nstitute ofM aterials and Pr ocessing Technol ogy,Beijing 100076) Abstract The research p r ogress of advanced material f or s mall thruster f or attitude and orbit contr ol both a 2br oad and at home is p resented .Comparing with the traditi onalN i obiu m /silicide syste m ,composite thruster has be 2come the research trends .The app licati on of ne w high te mperature structure materials and their coating syste m is ef 2fective way t o i m p r ove the p r operties of the thrusters . Key words A ttitude and orbit contr ol thruster,Material,App licati on 1 前言 小推力液体火箭发动机是为导弹武器和航天器在空间进行轨道控制、姿态控制、航天器的对接和交 会、着陆等提供动力的推进装置;特点是在空间环境多次起动脉冲工作,推力较小,一般为0.001~4500N [1] ,最小脉冲宽度为毫秒,总工作时间(工作时间和间隙时间的总和)可达5~10年。小推力姿/轨控液体火箭发动机技术广泛应用于卫星轨道定位、姿态调整,飞行器(如动能拦截器KK V )的飞行控制和导弹末修和精确定位等,在航天领域中用途广、品种多、数量大、要求高。随着航天器的发展,需要轻质、高性能的小推力双组元液体火箭发动机,以增加卫星有效载荷;适应 动能拦截器不断向快速响应、轻质、低成本和安全化转化的要求,深空探测器推进系统需要高性能、长寿命、多次起动、无羽流污染,对小推力姿/轨控发动机的结构质量和性能提出了更高的要求。通过新材料、新工艺提高推进系统性能,可增大有效载荷,延长航天器工作寿命,保证发动机长期可靠工作。2 国外小推力姿/轨控液体火箭发动机材料研究与 应用 姿/轨控发动机普遍采用双组元推进剂液体火箭发动机。由于推进剂燃烧温度较高(如NT O /MMH 的燃烧温度可达2700℃),一般材料无法承受这样高的燃气温度和环境条件,而姿/轨控发动机以脉冲工作为主,特别是卫星上的发动机需多次起

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

液体火箭发动机工作原理

液体火箭发动机工作原理: 液体火箭发动机是指液体推进剂的化学火箭发动机。 常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。 液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。 推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约200MPa)、温度300℃~4000℃,故需要冷却。 推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。 发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作、关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。 液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。 液体火箭发动机是航天发射的主流,构造上比固体发动机复杂得多,主要由点火装置,燃烧室,喷管,燃料输送装置组成。点火装置一般是火药点火器,对于需要多次启动的上面级发动机,则需要多个火药点火器,如美国战神火箭的J-2X发动机,就具备2个火药点火器实现2次启动功能,我国的YF-73和YF-75也都安装了2个火药点火器,具备了2次启动能力;燃烧室是液体燃料和氧化剂燃烧膨胀的地方,为了获得更高的比冲,一般具有很高的压力,即使是普通的发动机,通常也有数十个大气压之高的压力,苏联的RD-180等发动机,燃烧室压力更是高达250多个大气压。高压下的燃烧比之常压下更为复杂,同时随着燃烧室体积的增加,燃烧不稳定情况越来越严重,解决起来也更加麻烦。目前根本没有可靠的数学模型分析燃烧稳定性问题,主要靠大量的发动机燃烧试验来解决。美国的土星5号火箭的F-1发动机,进行了高达20万秒的地面试车台燃烧测试,苏联能源号火箭的RD-170发动机,也进行了10多万秒的地面试车台燃烧测试,在反复的燃烧测试中不断优化发动机各项参数,

液体火箭发动机设计复习题答案

液体火箭发动机设计复 习题答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第二章 1、总体对发动机设计提出的技术要求包括哪些方面; 飞行器总体对发动机设计提出的技术要求主要在发动机用途、工作性能、质量和结构尺寸、环境条件及经济性等方面,同时在设计任务书中给出对这些参数的具体要求,它们是发动机设计的主要依据。 2、液体火箭发动机系统设计主要有哪四个阶段; 发动机系统设计主要有:系统方案论证、系统方案设计、系统试验和系统定型四个阶段 3、液体火箭发动机主要参数的选择有哪些; 根据导弹或火箭总体设计部门提出的基本要求,可以设计选择发动机一系列可变参数,如推进剂的选择、混合比的选择、燃烧室压力的选择、喷管扩张比的选择、推进剂质量的选择、系统参数平衡等。 4、挤压系统分类、贮箱增压压力的确定; 分类:贮气系统、液体汽化系统、化学反应系统 确定:挤压式系统贮箱增压压力的提高会引起整个供应系统的质量大大增加(主要是贮箱 结构质量),所以挤压式系统的燃烧室压力都不取得很高。一般在比冲和质量的折中考虑下,选取一个合理的较低燃烧室压力,保证贮箱压力较低,同时设计时应力求减少供应系统的流阻损失。(《第2章液发系统设计》ppt P86)5、泵压式系统贮箱增压压力的确定;(《第2章液发系统设计》ppt P114)(1)保证泵不发生汽蚀(2)保证贮箱不破坏(3)对增压气瓶的影响

确定方法:计算得到按系统质量最轻条件的增压压力为P1,满足泵汽蚀条件的增压压力为P2。(1)P1≈P2;(2)P1>>P2;(3)P1<<P2。 综上所述,增压压力的选择应根据以上几个部件的总质量为最轻来确定,然后检验动力系统的工作是否满足来作适当的调整。 6、发动机混合比和推力矢量控制方案; 推力矢量控制:方法的选择取决于所需力矩的大小,也和发动机系统和结构方案有关。 (《第2章液发系统设计》ppt P133) (1)单推力室发动机:燃气舵、辅助射流、二次喷射控制、摆动推力室或喷管 (2)多推力室发动机:两室、三室、四室 发动机混合比:混合比开环控制(混合比控制的最简单形式是在推进剂主管路中设置适当尺寸的校准孔板。)、混合比闭环控制(《第2章液发系统设计》ppt P145) 7、挤压式系统管路特性和组元混合比的调整计算; 挤压系统的管路特性:就是推进剂管路系统的压力损失和系统中推进剂组元流量之间的函数关系。 组元混合比的调整计算:可采用下面两种方法:液路装节流圈、增压气路安装节流元件(《第2章液发系统设计》ppt P153) 8、液体火箭发动机控制系统设计的基本步骤; 第三章 1、推力室的组成

西工大固体火箭发动机知识点精品总结

一、固体火箭发动机:由燃烧室,主装药,点火器,喷管等部件组成。 工作过程:通过点火器将主装药点燃,主装药燃烧,其化学能转变为热能,形成高温高压燃气,然后通过喷管加速流动,膨胀做功,进而将燃气的热能转化为动能,当超声速气流通过喷管排出时,其反作用力推动火箭飞行器前进。工作原理:1能量的产生过程2热能到射流动能的转化过程 优点:结构简单,使用、维护方便,能长期保持在备战状态,工作可靠性高,质量比高。 缺点:比冲较低,工作时间较短,发动机性能受气温影响较大,可控性能较差,保证装药稳定燃烧的临界压强较高。 二、1.推力是发动机工作时内外表面所受气体压力的合力。F=F 内+F 外 F=mu e +Ae(Pe-Pa) 当发动机在真空中工作时Pa=0.这时的推力为真空推力。 把Pe=Pa 的状态,叫做喷管的设计状态,设计状态下产生的推力叫做特征推力。 2.把火箭发动机动,静推力全部等效为动推力时所对应的喷气速度,称为等效喷气速度u ef 。 3影响喷气速度的因素来自两个方面:a).推进剂本身的性质b) 燃气在喷管中的膨胀程度 3.流量系数的倒数为特征速度C ?,他的值取决于推进剂燃烧产物的热力学特性,即与燃烧温度,燃烧产物的气体常数和比热比K 值有关,而与喷管喉部下游的流动过程无关。 4.推力系数C F 是表征喷管性能的参数,影响推力系数的主要因素是面积比和压强比。当Pe=Pa 时,为特征推力系数,是给定压强比下的最大推力系数,Pa=0时为真空推力系数。 5.发动机的工作时间包括其产生推力的全部时间,即从点火启动,产生推力开始,到发动机排气过程结束,推力下降到零为止。确定工作时间的方法:以发动机点火后推力上升到10%最大推力或其他规定推力的一点为起点,到下降到10%最大推力一点为终点,之间的时间间隔。 6.燃烧时间是指从点火启动,装药开始燃烧到装药燃烧层厚度烧完为止的时间,不包括拖尾段。确定燃烧时间的方法:起点同工作时间,将在推力时间曲线上的工作段后部和下降段前部各做切线,两切线夹角的角等分线与曲线的交点作为计算燃烧时间的终点。 7.总冲是发动机推力和工作时间的乘积。总冲与有效喷气速度和装药量有关,要提高总冲,必须用高能推进剂提高动推力。 8.比冲是燃烧一千克推进剂装药所产生的冲量。提高比冲的主要途径是选择高能推进剂,提高燃烧温度,燃气的平均分子量越小,比冲就越大,比冲随面积比变化的规律和推力系数完全相同。当大气压强减小,比冲增大,真空时达到最大,提高燃烧室压强可增加比冲。 9.在火箭发动机中常用实际值对理论值的比值来表示这个差别。这个比值就叫做设计质量系数,亦发动机冲量系数。 1.推力系数的变化规律:(1)比热比、工作高度一定时,随着喷管面积比的增大,推力系数增先大,当达到某一最大值后,又逐渐减小(2)比热比k 、面积比A e A t 一定时,C F 随着发动机工作高度的增加而增大; 2.最大推力分析:Pc 、At 、Pa 一定时,喷管处于完全膨胀工作状态时所对应的面积比,就是设计的最佳面积比,可获得最大推力; 3.比冲的影响因素:(1)推进剂能量对比冲的影响。能量高,R T f 高,c*高,Is 高; (2)喷管扩张面积比Ae/At 对比冲的影响。在达到特征推力系数前,比冲随喷管扩张面积比的增大而增加。(3) 环境压强Pa 对比冲的影响。Pa 减小,Is 增大;(4) 燃烧室压强Pc 对比冲的影响。当喷管尺寸和工作高度一定时,Pc 越高,u ef 越大。(5) 推进剂初温T 对比冲的影响。比冲随初温的增加而增大。 4.火箭发动机性能参数对飞行器性能的影响: V max =I s lnu (1)发动机的比冲Is 越大,火箭可以达到的最大速度Vmax 也越大,射程就越远。(2)火箭的质量数μ越大,火箭可以达到的最大速度Vmax 也越大.(3) 发动机比冲Is 和火箭的质量数μ可以**理 实c c C =ξ理实s s I I =ξN C F F C c C c ξξξ==理理实实**

固体燃料火箭发动机学习笔记1

固体火箭发动机的基本结构:点火装置、燃烧室、装药、喷嘴构成。 固体火箭发动机的工作与空气无关 常见的推进剂有:1.双基推进剂(双基药) 2.复合推进剂(复合药) 3.复合改进双基推进剂(改进双基药)

直接装填! 形式: 自由装填:药柱直接放在燃料室 贴壁浇筑:把燃料直接和燃烧室粘贴在一起(液体发动机发射前现场加注推进剂)固体火箭一旦制造完成即处于待发状态 经过压身或浇注后形成的一定结构形式的装药我们叫他装药或者药柱 药柱的燃烧面积在燃烧过程中随时间变化必须满足一定的规律 完成特定任务所需要的。

装药面积的燃烧规律决定了发动机压强和推力面积的发展规律。 为了满足上述规律需要对装药的表面用阻燃层进行包裹,来控制燃烧面积变化规律。 药柱可以是:当根、多根,也可事实圆孔药,心孔药 燃烧室是一个高压容器! 装药燃烧的工作室。 燃烧时要求要求: 容积、对高温(2000-3000K)高压气体(十几到几十兆帕)的承载能力 与高温燃气直接接触的壳体表面需要采用适当的隔热措施

高温高压燃气的出口 作用: 1.控制燃气流出量保持燃烧室内足够压强。 2.使燃气加速膨胀,形成超声速气流,产生推动火箭前进的反作用推力。

部件作用:进行能量转化 工艺特点: 形状:先收拢后扩张的拉瓦尔喷灌,由收敛段、头部、扩张段、 中小型火箭,锥形喷管(节省成本和时间) 工作时间长、推力大、质量流速大采用高速推进剂的大型火箭采用特制喷管(收敛段和和直线段的母线可能不是直线可能是抛物线双圆弧)仔细设计型面,提高效率 作用:使燃气的流动能够从亚声速加速到超声速流 喉部环境十分恶略,烧蚀沉积现象影响性能(改变喉部尺寸改变性能)。

液体火箭发动机综述

液体火箭发动机发展现状及发展趋势概述 摘要:介绍了液体火箭发动机的优缺点、工作原理,总结了大推力和小推力发动机的国内外发展现状,提出了未来液体火箭发动机的发展方向。 关键词:液体火箭发动机,推进系统,发展现状,发展趋势 1 引言 液体火箭发动机作为目前最为成熟的推进系统之一,具有诸多独特的优势,仍然是各国努力发展的主力推进系统,并且在大推力和小推力方面都取得了诸多成果,本文将美国、俄罗斯、欧洲、日本、中国等国家的发展状况进行了综述,目前美国仍然在大多数推进系统方面领先世界,俄罗斯则继续保持液体推进特别是大推力液体火箭方面的领先地位,欧盟和日本在追赶美国的技术水平,以中国为代表的第三世界国家也开始在液体推进领域同传统强国展开竞争。 2 定义与分类 液体火箭发动机(Liquid Rocket Motor)是指液体推进剂火箭发动机,即使用液态化学物质作为能源和工质的化学火箭推进系统。按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。 3 工作原理 液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却文献综述报告 (火箭发动机热防护作业)

一、再生冷却简史[1] 再生冷却的概念最先苏联人齐奥尔科夫斯基提出来。 齐奥尔科夫斯基的学生格卢什科为液体火箭发动机作了大量的理论与实验研究,并于1930—1931年研制了苏联第一台液体火箭发动机OPM-1,采用四氧化二氮和甲苯,以及液氧煤油推进。采用再生冷却系统。 二、再生冷却的一般涵义[2] 再生冷却是在液体火箭发动机上通用的一种冷却方法。它利用推进剂中的一种组分或者可能是两种组分,在喷入燃烧室之前先通过推力室上的通道进行冷却。 再生冷却的优点是:没有性能损失(被冷却剂吸收的热能返回到喷注器),壁的型面基本上不随时间变化,其持续工作时间没有限制,而且结构较轻。 其缺点是:对绝大部分冷却剂使节流受到限制,对一些冷却剂(如肼)降低了可靠性,在高热流下需要高的压降,推力量级,混合比或喷管面积比可能受到最大容许冷却剂温度的限制。 三、再生冷却的计算模型 1、总论 再生冷却推力室 的传热可以通过隔着 多层隔层的二股运动 着的流体间的传热来 描述。如图1所示。 由燃气通过包括 金属室壁在内的隔层 到冷却液的一般稳态 传热关系式可以用下 式表示: 图 1 冷却系统的温

()()gc aw wg wg wc k h T T q T T t ??-==- ??? (1) ()()h T T h T T aw wg wc co gc c -=- (2) () ()h T T H T T aw wg aw co gc -=- (3) 111H t h k h gc c =++ (4) 式中 q ----热流,()2Btu in s g gc h ----燃气侧总热导率,()2Btu in s F o g g ,没有沉积物时,gc g h h = c h ------冷却剂侧传热系数,()2Btu in s F o g g k ------室壁的热导率,()2Btu in s F o g g t ------室壁厚度 in aw T -----燃气绝热壁温, R o wg T -----燃气侧壁温,R o wc T ----冷却剂侧壁温,R o co T -----冷却剂体积温度, R o H -----总传热系数,()2Btu in s F o g g 冷却剂从冷却通道进入到离开,其体积温度增高,它是所吸收热量和冷却剂流量的函数。为保持室壁温度低于可能发生熔化或应力破坏的温度,使这些参数达到适当的平衡,是设计再生冷却推力室的主要要求之一。通常用于推力室的

液体火箭发动机试验台贮箱增压系统数值仿真

第22卷第1期2007年1月 航空动力学报 Journal of Aerospace Power Vol.22No.1 Jan.2007 文章编号:1000-8055(2007)01-0096-06 液体火箭发动机试验台贮箱 增压系统数值仿真 陈 阳1 ,张振鹏1 ,瞿 骞2 ,朱子环 2 (1.北京航空航天大学宇航学院,北京100083; 2.北京航天试验技术研究所,北京100074) 摘 要:在不考虑传热传质的情况下建立了一种简化的贮箱模型,并采用液体火箭发动机试验台气路系统通用模块化建模与仿真软件对容腔放气过程和某试验台贮箱增压系统在发动机点火工作段的增压过程进行了仿真,计算结果与分析解和试验结果获得了较好的一致,验证了软件的有效性和通用性.对两个系统的建模过程表明软件所采用的模块化建模与仿真方法适用于对复杂管网的建模,在液体火箭发动机系统仿真上具有较好的应用前景.对贮箱增压系统的仿真表明,合理设计P ID 控制参数并根据经验预置与额定流量相近的调节阀初始开度,对于提高增压系统起动过程的平稳性有利. 关 键 词:航空、航天推进系统;液体火箭发动机;试验台贮箱增压系统;数值仿真;P ID 控制中图分类号:V 434 文献标识码:A 收稿日期:2005-12-12;修订日期:2006-05-09 作者简介:陈阳(1979-),男,河南漯河人,北京航空航天大学宇航学院博士生,主要从事液体火箭发动机系统动力学与仿真研究. Numerical simulation for tank pressurization system of LRE test -bed CHEN Yang 1,ZH ANG Zhen -peng 1,QU Qian 2,ZHU Z-i huan 2 ( 1.School of Astr onautics, Beijing U niversity of A ero nautics and Astro nautics,Beijing 100083,China;2.Beijing Institute of Aerospace Testing Technolog y,Beijing 100074,China )Abstract:A simple mo del of propellant tank w as established by neg lecting m ass and heat transfer betw een the pr opellant and pressurant.T hen by employing the modular ization modeling and sim ulation softw are for liquid r ocket engine(LRE)test -bed g as sy stem(LRET-BMM SS -GS),blow dow n of a tank and pressurization of a LO 2tank pr essurizatio n sy stem during engine firing w ere simulated.T he sim ulation r esults ar e in g ood ag reem ent with the analytical solution and test data.Accordingly ,the softw are is validated to be effective and versatile.T he prog ress of m odeling tw o sy stems show s that the m ethod of M M S is suitable for modeling complicated LRE system and can be used to sim ulate all kinds of w orking pro cesses of LRE sy stem.T he simulatio n o f LO 2tank pressurization system indicates that PID control parameters should be set reasonably and the initial opening of pneumatic dia -phragm co ntrol valve should be adjusted to nom inal pressurant mass rate,w hich is effective to improv e stability of pr essurizatio n starting transient. Key words:aerospace propulsion system ;liquid rocket eng ine(LRE);tank pressur ization system of LRE test -bed;num erical sim ulation;PID co ntro l 液体火箭发动机试验台作为液体火箭发动机热试车与热检验的试验检测平台,为满足液体火 箭发动机的各种试验要求,需要在试验台设计阶段、安装调试阶段、热试车阶段开展全面的研究.

10-钝化处理在液体火箭发动机阀门中的应用-程亚威

钝化处理在液体火箭发动机阀门中的应用 程亚威,李小明,张万欣,谢宁 (西安航天动力研究所,西安 710100) 摘要:在某液体火箭发动机的单向阀中,采用铍青铜材料制造的阀芯锈蚀问题成为影响产品性能 和质量的突出问题,通过对表面采用钝化、光亮两种处理方法的阀芯进行专门的抗腐蚀筛选试验,最终确定钝化处理工艺能满足使用要求。 关键词:火箭发动机;单向阀;锈蚀;钝化 Application of Passivatingtreatment to Liquid Rocket Engine Valves Cheng Yawei Li Xiaoming Zhang Wanxin Xie Ning (AASPT, XiAn, 710100,China) Abstract: In a liquid rocket engine using check valve, the corrosion problem of the valve plug made by beryllium bronze is an outstanding issues to affect the product performance and quality. The paper presents two treating methods-passivatingtreatment, brightening-to solve the corrosion problem, and confirms the passivatingtreatment can meet the operation requirements by a screening test. Keywords: liquid rocket engine; check valve; corrosion; passivatingtreatment 1.前言 铍青铜因其良好的耐磨、耐蚀、高强度、高硬度,在某液体火箭发动机的阀门中大量使用,尤其在有相对运动的摩擦副如阀芯、导向套、衬套等零件上广泛采用。但在实际生产中个别批次零件表面出现发绿、变黑、长毛等锈蚀现象,严重影响产品质量。 单向阀的阀芯(图1)是典型的故障零件,该阀芯采用铍青铜(QBe2 YS/T334-1995)材料。在首批交付中,阀芯表面未出现锈蚀现象,工作性能满足要求,但在随后一批交付中,阀芯在机加完成后待检时零件表面出现黑斑、发绿、长毛的锈蚀现象。对零件表面抛光去除腐蚀痕迹,然而表面状态维持不了一周又出现锈蚀。考虑到产品装配到交付发动机使用,贮存周期长,且阀芯导向面与相配合零件的径向间隙小,如果导向面表面有腐蚀物生成,可能导致阀芯卡死,使单向阀失效,为保证产品质量,必需彻底解决零件表面锈蚀问题,提高阀芯在产品长期存放时的可靠性。 为此进行专项试验,选择对零件表面进行钝化、光亮处理,通过对处理后的零件进行抗腐蚀筛选试验,确定零件最终采用的表面处理方法。 图1 单向阀阀芯 2.表面处理方法及筛选试验 2.1 锈蚀原因 铜的标准电极电位是+0.34V,本身属耐蚀的钝态,铜及其合金在干燥大气中较稳定,理论上表面稳定是不易发生腐蚀的,因此在设计之初未对阀芯表面提出保护处理要求,首批交付时阀芯表面正常。在第二批阀芯出现锈蚀后了解到,其它曾经使用过该材料的零件在实际使用中也出现过表面

俄罗斯的液体火箭发动机系列

俄罗斯的液体火箭发动机系列 动力机械科研生产联合体(NPO Energomash)是俄罗斯一家专门从事液体推进剂火箭设计生产的公司。其创建者是苏联20世纪20年代就开始从事火箭发动机研究的瓦朗坦·格鲁什科,1954年,他成立了这家公司,并担任主席,公司当时叫做OKB-456。格卢什科领导设计局长达30多年,给当时的苏联提供了许多性能最好的发动机。公司曾设计了RD-107和RD-108发动机,驱动R-7火箭将卫星号人造卫星送入太空。之后又为“质子号”火箭设计了RD-253发动机,给“能源号”设计了RD-170,给“天顶号”设计了RD-171和RD-120,给“宇宙神”和“安加拉”设计了RD-180和RD-191,给“第聂伯”设计了RD-264,给“旋风号”设计了RD-261等。 R-7是前苏联最早的一种火箭,R-7火箭的设计特点之一是具有一个芯级发动机段(A),其上捆绑了4个助推器(B,V,G和D)形成了第一级。每一级的芯级发动机上都捆绑着4个主发动机和4个游动发动机。对于第一级,一共有20个主燃烧室和12个游动燃烧室,都在同一时刻点火,推举着飞行器离开发射台。当连接器引爆时它们就会分离,剩下芯级发动机继续运行,其上面级称为第二级。 对R-7的早期设计研究集中在以液氧和煤油的混合物为推进剂的单燃烧室发动机上,由格鲁什科负责的OKB-456设计局进行研发。芯级主发动机为RD-106发动机,发射时可以产生约520kN的推力,真空条件下可以产生约645kN的推力。4个捆绑助推器采用RD-105发动机,发射时每个发动机可以产生约540kN的推力。然而,在研发过程中,这些发动机在单燃烧室燃烧稳定性上都暴露出了问题。到1953年,这一问题变得更加突出,使得火箭无法再承受高热核弹头不断增加的质量。1953年前,这种设计思想曾计划用于采用洲际弹道导弹来发射原子弹,但是后来转而用于发射(更重的)氢弹(或热核弹)。从原子弹转到热核弹是运载能力必须增加的主要原因。它必须具有把一个5.4吨的弹头送到8,500千米远的运载能力。令人万分苦恼的是,洲际弹道导弹的质量因此要达到283吨,需要将近3,920kN的推力。 RD-107发动机(左)和RD-108发动机(右)

超声波法测试固体火箭发动机燃速

超声波法测试固体火箭发动机燃速 王凯,贺晓芳,沈飞,翟江源 (西安航天动力测控技术研究所,陕西西安710025) 摘要:为测量固体火箭发动机燃烧过程中推进剂燃速变化情况, 组建可用于固体发动机地面试验特殊环境的超声波测量平台,应用超声波连续脉冲反射法测量,获得发动机不同界面的超声回波波形数据。通过设置区域增益并观察分析实验数据,从复杂的回波数据中提取出推进剂的厚度变化量,通过计算得到不同时刻推进剂的燃速。回 波图可以清晰反映出推进剂端面的燃烧退移过程, 进而可获得推进剂的燃烧规律。利用超声波法实现固体火箭发动机地面试验条件下推进剂燃速测量, 测得实时连续的发动机燃速,可为固体火箭发动机结构设计及装药设计提供重要参数。 关键词:固体火箭发动机;地面试验;超声波;推进剂; 燃速文献标志码:A 文章编号:1674-5124(2017)08-0019-05 Burning rate measurement of solid rocket motor by ultrasonic technology WANG Kai ,HE Xiaofang ,SHEN Fei ,ZHAI Jiangyuan (Xi ’an Aerospace Propulsion Test Institute ,Xi ’an 710025,China ) Abstract:In order to measure changes in the burning process of solid rocket motor propellant burning rate ,seting up an ultrasonic measurement platform for special environment of the engine ground test ,and get the echo data from three interfaces of solid rocket motor by continuous pulse reflection measurement.Extract the propellant thickness from complex echo data by seting regional gain and analyzing experimental data.Thus ,the burning rate of propellant can be acquired.Regress of burning propellant can be reflected in waveforms.It confirmed the feasibility of the experimental program.Further ,can get the burning regular of propellant.The burning rate of solid rocket motor was measured by ultrasonic method ,and the burning is real-time and continuous.It can provide important parameters for structural design and charge design of solid rocket motor.Keywords:solid rocket motor ;ground test ;ultrasonic ;propellant ;burning rate 收稿日期:2017-02-23;收到修改稿日期:2017-03-20 作者简介:王凯(1990-),男,硕士研究生,专业方向为固体 火箭发动机试验测控技术三0引言20世纪60年代瑞典利用超声波测量了其混合火箭发动机固体燃料的燃速三20世纪80到90年代, 法国的Cauty F 等[1]对推进剂样品的燃速进行了测 量,达到了一定的精度,并将超声燃速测量应用于固体发动机地面试验[2-3]三与此同时美国的几家研究机构也在火箭发动机地面试验中使用超声波进行测试[4]三21世纪初,法国阿里安5助推发动机地面试验中采用超声波法测量推进剂燃速,观测到70cm 推进剂的燃烧端面退移数据,并计算出推进剂燃速的变化三近年来,国外超声波燃速测量方法已经趋于成熟[5-6],研中国测试CHINA MEASUREMENT &TEST Vol.43No.8August ,2017 第43卷第8期2017年8月doi : 10.11857/j.issn.1674-5124.2017.08.005 万方数据

相关主题