搜档网
当前位置:搜档网 › 第22讲 数论综合三

第22讲 数论综合三

第22讲 数论综合三
第22讲 数论综合三

第22讲数论综合三

内容概述

需要运用代数式来处理的复杂数论问题;数论证明题。

典型问题

兴趣篇

1.(1)求所有满足下列条件的三位数:在它左边协商40后所得的五位数是完全平方数。(2)求满足下列条件的最小自然数;在它左边写上80后所得的数是完全平方数。

2. 已知n!+3是一个完全平方数,试确定自然数n的值。(n!=1×2×3×…×n)

3. 一个完全平方数是四位数,且它的各位数字均小于7。如果把组成它的每个数字都加上3,便得到另外一个完全平方数,求原来的四位数。

4. 请写出所有各位数字互不相同的三位奇数,使得它能被它的每一个数位上的数字整除。

5. 在一个两位数的十位与个位数字之间插入一个数字0,得到一个三位数(例如21变成了201),结果这个三位数恰好能被原来的两位数整除,请问:所有满足条件的两位数之和是多少?

6. 用2、3、4、5、6、7六个数字组成两个三位数,要使这两个三位数与540的最大公约数尽可能的大,这两个三位数应该分别是多少?

7. 一个自然数,它与99的乘积的各位数字都是偶数,求满足要求的最小值。

8. 有3个自然数,其中每一个数都不能被另外两个数整除,而且其中任意两个数的乘积都能被第三个数整除,满足上述条件的3个自然数之和最小是多少?

9. 小明与小华玩游戏,规则如下:开始每天都是1分,每局获胜的小朋友都可以把自己的分数乘以3,输的小朋友保持分数不变,最后小明获胜,他比小华多的分数是99的倍数,那么他们至少玩了多少局?

10. 对于一个自然数N,如果具有这样的性质就称为“破坏数”;把它添加到任何一个自然数的右端,形成的新数都不能被N+1整除,那么在1至2008这2008个自然数中有多少个“破坏数”?

1.(1)求满足下列条件的最小自然数,使得它的平方的前两位是20;

(2)求满足下列条件的最小自然数,使得它的平方的后两位是04;

(3)求满足下列条件的最小自然数,使得它的平方的前两位是20,后两位是04.

2. 已知n!+4等于两个相邻自然数的乘积,试确定自然数n的值。(n!=1×2×3×…×n)

3. 找出三个小于20的自然数,它们的最大公约数是1,但是两两均不互质,请写出所有可能的情况。

4. 三个两位奇数,它们的最大公约数是1,但是两两均不互质,且三个数的最小公倍数共有18个约数,求所有满足要求的情况。

5. 1×4×7×10×…×2008的末尾有多少个连续的零?

6. 一个四位数除以它后两位数字组成的两位数,余数恰好是它前两位数字组成的两位数,如果它后两位数字组成的两位数是质数,那么原来的四位数是多少?

7. 任意一些末两位是25的数相乘,它们的乘积末两位数仍是25,我们就称25是“变不掉的两位数尾巴”。显然000是“变不掉的三位数尾巴”,请写出所有的“变不掉的三位数尾巴”。

8. 在3和5之间插入6、30、20三个数,可以得到3、6、30、20、5这样一串数,其中每相邻两个数的和都可以整除它们的乘积,请你在4与3之间插入三个非零自然数,使得其中每相邻两个数的和都可以整除它们的乘积。

9. M、N是互为反序的两个三位数,且M>N,请问:

(1)如果M和N的最大公约数是7,求M;

(2)如果M和N的最大公约数是21,求M.

10. 用1、2、3、4、5、6这六个数字组成两个三位数A和B,那么A、B、540这三个数的最大公约数最大可能是多少?

11. 请将1、2、3、4、5、6、7、8、9、10、11按合适的顺序写成一行,使得这一行数中的任何一个都是它前面所有数之和的约数。

12. 一根红色的长线,将它对折,再对折,……,经过m,次对折后将所得到的线束从中间剪断,得到一些红色的短线;一根白色的长线,经过n次对折后将所得到的线束从中间剪断,得到一些白色的短线,已知红色短线比白色短线多,而且它们的数量之和是100的倍数,请问:红色短线至少有多少条?

1.求出所有正整数n,使得25+n能整除25×n.

2.一个自然数至少有4个约数,并且该数等于其最小的4个约数的平方之和,请找出这样

的自然数。

3.一个四位数的各位数字互不相同,将其千位与个数数字调换后形成新的四位数,新四位

数与原数的最大公约数是63,则原四位数可能是多少?

4.一个不超过200的自然数,如果用四进制表示,那么它的数字和是5;如果用六进制表

示,那么它的数字和是8;如果用八进制表示,那么它的数字和是9.如果用十进制表示,这个数是多少?

5.把一个两位质数写在另一个不同的两位质数右边,得到一个四位数,这个四位数能被这

两个质数之和的一半整除,这样的两个质数乘积最大是多少?最小是多少?

6.用1、2、3、4、5各一个可以组成120个五位数,你能否从这120个数里面找出11个

数来,使得它们除以11的余数互不相同?如果五个数字是1、3、4、6、8呢?

7.用1、2、3、4、5、6这6个数字各一次组成三位数A和B,请问:A、B、630这三个

数的最大公约数最大可能是多少?最小公倍数最小可能是多少?

8.我们将具有如下性质的自然数K称为“巨人数”:如果一个整数M能被K整除,则把

M的各位数字按相反顺序重写时所得的数也能被K整除,请求出所有的“巨人数”。

(完整版)小学奥数中的数论问题

小学奥数中的数论问题 在奥数竞赛中有一类题目叫做数论题,这一部分的题目具有抽象,思维难度大,综合运用知识点多的特点,基本上出现数论题目的时候大部分同学做得都不好。 一、小学数论究包括的主要内容 我们小学所学习到的数论内容主要包含以下几类: 整除问题:(1)整除的性质;(2)数的整除特征(小升初常考内容) 余数问题:(1)带余除式的运用被除数=除数×商+余数.(余数总比除数小) (2)同余的性质和运用 奇偶问题:(1)奇偶与加减运算;(2)奇偶与乘除运算质数合数:重点是质因数的分解(也称唯一分解定理)约数倍数:(1)最大公约最小公倍数两大定理 一、两个自然数分别除以它们的最大公约数,所得的商互质。 二、两个数的最大公约和最小公倍的乘积等于这两个数的乘积。 (2)约数个数决定法则(小升初常考内容) 整数及分数的分解与分拆:这一部分在难度较高竞赛中常

出现,属于较难的题型。二、数论部分在考试题型中的地位 在整个数学领域,数论被当之无愧的誉为“数学皇后”。翻开任何一本数学辅导书,数论的题型都占据了显著的位置。在小学各类数学竞赛和小升初考试中,系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。 出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。三、孩子在学习数论部分常常会遇到的问题 数学课本上的数论简单,竞赛和小升初考试的数论不简单。 有些孩子错误地认为数论的题目很简单,因为他们习惯了数学课本上的简单数论题,比如:例1:求36有多少个约数? 这道题就经常在孩子们平时的作业里和单元测试里出现。可是小升初考题里则是:例2:求3600有多少个约数? 很多孩子就懵了,因为“平时考试里没有出过这么大的数!”(孩子语)于是乎也硬着头皮用课堂上求约数的方法去求,白白浪费了大把的时间,即使最后求出结果也并不划

数论综合(四)

整数可以分成奇数和偶数两大类。能被2整除的数叫做偶数,不能被2整除的数叫做奇数。偶数通常可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。 任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =????L ,其中k p p p ,?,,21为质数,k a a a ,?,,21为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式。 奇数与偶数有如下的运算性质: (1)偶数±偶数=偶数,奇数±奇数=偶数; (2)偶数±奇数=奇数; (3)偶数个奇数相加得偶数; (4)奇数个奇数相加得奇数; (5)偶数×奇数=偶数, 奇数×奇数=奇数。 质因数: 如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。 分解质因数: 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如:30235=??.其中2、3、5叫做30的质因数.又如21222323=??=?,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数及约数的和的时候都要用到这个标准式.分解质因数往往是解数论类题目的突破口,它可以帮助我们分析数字的特征。 例1 有苹果、橘子各一筐,苹果有240个,橘子有313个,把这两筐水果平均分给小朋友,已知苹果分到最后还剩2个,橘子分到最后还剩7个,那么最多有多少个小朋友? 分析与解:从240个苹果中去掉2个,即将238个苹果平均分给这些小朋友,没有剩余;从313个橘子中去掉7个,即将306个橘子平均分给这些小朋友,也没有剩余。那么238和306都是这些小朋友人数的倍数,这些小朋友的人数是238和306的公约数。求最多有多少个小朋友,实际上就是在求238与306的最大公约数。 (238,306)=34,所以最多有34个小朋友。 答:最多有34个小朋友。

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

小学数学数论问题

小升初数论问题 概念:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做最小公倍数。 从分解质因数中我们可以发现:两个数(或多个数)的公倍数必须具备: ①公倍数必须包含这几个数中所有的质因数,而根据这几个数质因数的关系,我们将这些质因数分为三类,一类是公有的质因数,一类是独有的质因数,一类是大家都没有的(如果大家都没有的个数为0,那么这时的公倍数就是最小公倍数)。 ②而最小公倍数又必须同时满足:每组公有的质因数只取一个,这几个数独有的质因数要全部取完,除此之外,不得含有其它的质因数,将这些取出的质因数全部乘起来所得的积就是这几个数的最小公倍数。 精典例题 例1:三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于多少?(1998年小学数学奥林匹克初赛试题) 思路点拨:想一想:三个数的最小公倍数与这三个数有什么关系?友情提示:从分解质因数的角度来思考! 模仿练习:三个连续的自然数的最小公倍数是9828,这三个自然数的和等于多少?(1998年小学数学奥林匹克初赛试题) 例2:有一个数在700到800之间,用15、18和24去除,都不能整除。如果在

这个数上加1,就能同时被15、18和24整除,这个数是多多少? 思路点拨:想一想:如果在这个数加1,就能被15、18、24整除说明这个数加1所得到的数一定是这三个数的…… 模仿练习:一个四位数,千位上的数字和百位上的数字都被擦掉了,只知道十位上数字是1,个位上数字是2.如果这个数减去7就能被7整除,减去8就能被8整除,减去9就能被9整除,那么这个四位数是多少?(北京市第二届“迎春杯”刊赛试题) 例3:甲数是36,甲、乙两数的最小公倍数是288,最大公约数是4,乙数应该是多少? 思路点拨:想一想:两个数的最大公约数与它们的最小公倍数以及这两个数之间有什么关系? 模仿练习:甲数是60,甲乙两数的最小公倍数是180,最大公约数是30,乙数应该是多少?

数论综合

数论综合 A卷 1.两个连续奇数的和乘它们的差,积是304,这两个奇数分别是()和()。 2.一个数分别与相邻的两个奇数相乘,得到的两个乘积相差40,这个数是()。 3.有两个质数,它们之和既是一个小于100的奇数,又是17的倍数,这两个质数的积是()。 4.如果P,P+10,P+20是质数,那么P+2011=()。 5.在89,121,135,480,483中,是3的倍数的有()个。 6.若1a219b7是99的倍数,则a+b的值为()。 7.把91,85,77,65,51,33这六个数分为两组,每组三个数,使两组的积相等,则两组之差为()。 8.已知三个连续偶数的和比其中最大的一个偶数的2倍还多2,这三个偶数分别是()()()。 9.小明在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加,重复这样做,每次所得的和都是7,8,9,10中的一个数,并将这4个数都能取到,猜猜看,小明在这4张纸片上写的数分别是()。 10.一个三位数,各位数字分别为A,B,C,它们互不相等,且都不为0,用A,B,C排得6个不同的三位数,若这6个三位数之和是2664,则这6个三位数中最大的可能是()。

11.已知在一个除法算式中,被除数能被除数整除,除数与商都是质数,被除数,除数和商的积为441.则被除数为()。 12.1到1000的自然数中,不能被3也不能被5整除的数共有()个。 13.一个三位数,既能被8整除,又能被9整除,且5是它的因数,则这个三位数最小是()。 14.一个三位小数四舍五入到百分位约是2.96,这个三位小数最大是()。 15.1008乘一个正整数a,积是一个完全平方数,则a的最小值为()。 16.能被3整除的最小的四位数是()。 17.三个质数的和为140,则这三个质数乘积的最大值是()。 B卷 1.在10以内任意选两个不同的质数,就可以写一个分数,其中最小的是(),能化成有限小数的最简真分数是()。 2.任意两个连续的自然数中,两个数都是质数的有()组。 3.两个质数的倒数相加的和的分子是31,和的分母是()。 4.三个质数的倒数之和为,这三个质数的和是()。 5.在1~~2015这2015个数中,与21互质的数共有()个。 6.12345678987654321除本身之外的最大因数是()。 7.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是()。

六年级奥数.数论.整除问题(abc级).学生版

数的整除 知识框架 一、整除的定义: 当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b 不整除a,记作b a. 二、常见数字的整除判定方法 1.一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2.一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。 8.若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被 13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」

第20讲 数论综合二完整版

第20讲数论综合二 兴趣篇 1.有4个不同的正整数,它们中任意2个数的和都是2的倍数,任意3个数的和都是3的倍数,要使这4个数的和尽可能小,请问:这4个数应该分别是多少? 答案:1、7、13、19 解析:“任意2个数的和都是2的倍数”说明四个数奇偶性相同,“任意3个数的和都是3的倍数”说明四个数除以3的余数相同.若这四个数为奇数,第一个数为1,依次加6可得四个数为1、7、13、19.若这四个数为偶数,第一个数为2,依次加6可得四个数为2、8、14、20.显然第一组更小. 2.已知算式(1+2+3+…+n)+ 2007的结果可表示为n(n>l)个连续自然数的和.请问:共有多少个满足要求的自然数n? 答案:5个 解析:1+2+3+…+n是项数为n的等差数列之和,我们考虑将2007平均分成n份,加到每一项上即可.2007=32×223,有6个约数,分别为1、3、9、223、669、2007。其中1舍去,有5个满足要求的自然数。 3.有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有4种,请问:所有满足上述条件的自然数中最小的一个是多少? 答案:11 解析:因为有四种表示方法,至少涉及四个质数,最小的四个质数是2、3、5、7,最小的四个合数是4、6、8、9,恰好有11=7+4=5+6=3+8= 2+9.因此满足条件最小的数是11. 4.甲、乙两个自然数的乘积比甲数的平方小2008.请问:满足上述条件的自然数有几组? 答案:4组 解析:由题目条件得,甲×甲-甲×乙=甲×(甲-乙)2008,将2008写成两个

数乘积的形式,有如下几种:2008=2008×1=1004×2=502×4=251×8.因此满足条件的甲、乙数为(2008,2007)、(1004,1102)、(502,498)、(251,243),共有4组. 5.两个不同两位数的乘积为完全平方数,请问:它们的和最大可能是多少? 答案:170 解析(1)两个数均为平方数,则它们的乘积仍为平方数,这种情况和最大为81+64=145.(2)两个数均不是平方数,则这两个数为a×m2,a×n2(其中m不等于n).对可能的情况进行讨论:当a=2时,这两个数最大是2×72、2×62,和为98+72=170.当a=3时,这两个数最大是3×25、3×16,和为75+48=123.当a=5时,这两个数最大是5×16、5×9,和为80+45=125.当a=6时,这两个数最大是6×16、6×9,和为96+54=150.……经讨论,和最大为170. 6.n个自然数,它们的和乘以它们的平均数后得到2008.请问:n最小是多少? 答案:502 解析:由于2008=2008×1=1004×2=502×4=251×8,如果这挖个数的和为2008,平均数为1,那么n为2008.如果这n个数的和为1004,平均数为2,那么n为502.知果这n个数的和为502,平均数为4,那么这不可能,如果这n 个数的和为251,平均数为8,那么这不可能,因此n最小是502. 7.一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=52-32,16就是一个“智慧数”,请问:从1开始的自然数列中,第2008个“智慧数”是多少? 答案:2680 解析:通过尝试可以发现如下规律:相邻两个平方数的差为3,5,7,9,

六年级奥数-第十讲.数论之余数问题.教师版

第十讲:数论之余数问题 余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。 许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!” 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。 知识点拨: 一、带余除法的定义及性质: 一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: r=时:我们称a可以被b整除,q称为a除以b的商或完全商 (1)当0 r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商 (2)当0 一个完美的带余除法讲解模型: 如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在 要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了 c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且 可以看出余数一定要比除数小。 二、三大余数定理: 1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等 于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2. 2.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 3.同余定理

{小学数学}小六数学第21讲:数论综合教师版-——李寒松[仅供参考]

2021年{某某}小学 小 学 数 学 学 习 资 料 教师: 年级: 日期:

第二十一讲数论综合 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 基本公式 1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。 2.已知c|ab,(b,c)=1,则c|a。 3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即 n= p11a× p22a×...×p k k a(#) 其中p1

6.自然数是否能被3,4,25,8,125,5,7,9,11,13等数整除的判别方法。 7.平方数的总结: ①平方差:A2-B2=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。 ②约数:约数个数为奇数个的是完全平方数。约数个数为3的是质数的平方。 ③质因数分答案:把数字分答案,使他满足积是平方数。 ④立方和:A3+B3=(A+B)(A2-AB+B2)。 8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。 9.周期性数字:abab=ab×101 1.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。 2.牢记基本公式,并在解题中灵活运用公式。 例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这24个四位数中最大的一个。 答案:不妨设这4个数字分别是a>b>c>d 那么从小到大的第5个就是dacb,它是5的倍数,因此b=0或5,注意到b>c>d,所以b=5; 从大到小排列的第2个是abdc,它是不能被4整除的偶数;所以c是偶数,c<b=5,c=4或2 从小到大的第二十个是adbc,第五个是dacb,它们的差在3000-4000之间,所以a=d+4; 因为a>b,所以a至少是6,那么d最小是2,所以c就只能是4。而如果d=2,那么abdc的末2位是24,它是4的倍数,和条件矛盾。因此d=3,从而a=d+4=3+4=7。 这24个四位数中最大的一个显然是abcd,我们求得了a=7,b=5,c=4,d=3 所以这24个四位数中最大的一个是7543。 例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数? 答案:现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要具体的数字,而现在没有,所以我们选择先从数字和入手。 5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8。这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989符合条件。

10数论问题的常用方法(教师版)

数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系。数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一。下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示n 个整数1a ,2a ,…,n a 的最大公约数。用[1a ,2a ,…,n a ]表示 1a ,2a ,…,n a 的最小公倍数。对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ] 表示x 的小数部分。对于整数b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为 )(mod m b a ≡。对于正整数m ,用)(m ?表示{1,2,…,m }中与m 互质的整数的个数, 并称)(m ?为欧拉函数。对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系。 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得 yb xa d +=. 定理2 (1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(mod 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若)(mod m b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3 (1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑ ≥1 k k p n .

数学思维导引-六年级-数论综合三(21)

第22讲数论综合三 典型问题 ◇◇兴趣篇◇◇ 1.(1)求所有满足下列条件的三位数:在它左边写上40后所得的五位数是完全平方数。 (2)求满足下列条件的最小自然数:在它左边写上80后所得的数是完全平方数。 【分析】(1)设这个三位数为abc 根据题意有240abc n =,即240000abc n +=,22200(200)(200)abc n n n =-=+-当201n =时,401abc =,五位数是220140401 =当202n =时,804abc =,五位数是220240804 =当203n =时,abc 不是三位数(舍去) 所以满足条件的三位数是401,804 (2)当这个自然数是一位数时,有280a n =,229841=,228784=,因此一位数不 存在,同理两位数不存在当这个自然数是三位数时,有280abc n =,280000abc n =-,228480656=,所以最小自然数是656 2.已知!n 3 是一个完全平方数,试确定自然数n 的值。(n n !123 ) 【分析】当6n ≥时,!()n m 3331 ,不可能是完全平方数,因此n 只能取1到5间的数, 经试验1n =或3 3.一个完全平方数是四位数,且它的各位数字均小于7。如果把组成它的每个数字都加上3,便得到另外一个完全平方数。求原来的四位数。 【分析】根据题意有2abcd m =,2(3)(3)(3)(3)a b c d n ++++=,因此223333n m -=,即 ()()311101n m n m +-=??,且,n m 都是两位数,因此()()33101n m n m +-=?,所

五年级奥数春季实验班第7讲 数论综合之高难度因数与倍数问题

第七讲数论综合之高难度因数与倍数问题 模块一、因数与倍数的综合问题 例1.对于正整数a 、b ,[a ,b ]表示最小公倍数,(a ,b )表示最大公约数,求解下列关于未知数m ,n 的方程: [,]55 (,)[,](,)70 m n m n m n m n m n m n ?++=???-=??>??? ① ②③。 解:设m =ap ,n =bp ,a ,b 互质,则[m ,n ]=abp ,(a ,b )=p , 则5570 ab ap bp abp p ++=??-=?,由p ×(ab ?1)=70,所以p |70,70=2×5×7, 若p =2,则ab =36,a ≠b ,得a =12,b =3,代入①式矛盾,舍去; 若p =7,则ab =11,a ≠b ,得a =11,b =1,代入①式矛盾,舍去; 若p =5,则ab =15,a ≠b ,得a =5,b =3,于是m =25,n =15,[m ,n ]=75,(m ,n )=5, 所以原方程的解是2515 m n =??=?。 例2.n 为非零自然数,a =8n +7,b =5n +6,且最大公约数(a ,b )=d >1,求d 的值。 解:用辗转相除的方法,(8n +7,5n +6)=(3n +1,5n +6)=(3n +1,2n +5)=(n ?4,2n +5)=(n ?4,n +9)=(13,n +9), 所以(a ,b )=13. 例3.M n 为1、2、3、……、n 的最小公倍数,对于样的正整数n ,M n ?1=M n 。 解:如果n 是一个合数,且n 不是某一整数的k 次方,则M n ?1=M n 。 因为n 是一个合数,所以n =a ×b ,a ,b 都小于n ,且a 、b 互质,于是a 10,所以[a 1,a 2,a 3,……10, 当a 1≥2时,先看a 1,a 2;a 2>a 1,若a 1、a 2互质,a 2>2,则它们的公倍数大于等于2a 1。 若a 2的因数中含有a 1的因数,则取p =(a 1,a 2),a 2=mp ,m ≥2,它们的公倍数为ma 1≥2a 1, 同理研究[a 1,a 2]与a 3的关系,若a 3是质数,则a 3>4,所以三个数的公倍数大于3a 1, 若a 3是合数,则a 3至少可以分解为两个因数的和,若因数都不是a 1或a 2的约数,那么公倍数一定大于3a 1,若这两个因数分别是a 1和a 2的因数,则这两个因数最小是2与3,同样可以推出,公倍数一定大于3a 1; 以此类推,可知10个数的最小公倍数不小于10a 1. 模块三、因数、倍数与计数的综合问题 例5.在1~300的全部自然数中,与30互质的数共有个。 解:30=2×3×5,在1~300中,是2的倍数的有150个,是3的倍数的有100个,是5的倍数的有60个; 既是2的倍数,又是3的倍数的有50个,既是2的倍数,又是5的倍数的有30个,既是3的倍数,又是5的倍数的有20个,同时是2、3、5的倍数的有10个, 所以至少含有2、3、5一个约数的数有300?(150+100+60)+(50+30+20)?10=80(个)。 所以与30互质的有80个。 例6.270000共有100个因数,其中数字和为18的共有个。

几个精彩的数论问题

几个精彩的数论问题 从同事那里借来了一本单墫教授?主编的《初等数论》奥数书,看到很多精彩的问题,在这里做个笔记,与大家一同分享。不少问题和答案都有过重新叙述,个别问题有所改动。 问题:找出所有使得 2n - 1 能被 7 整除的正整数 n 。 答案:由于 2n的二进制表达为1000…00 (n 个 0),因此 2n - 1 的二进制表达为111…11 (n 个 1)。而 7 的二进制表达是 111 ,要想让它整除 n 个1 ,显然 n 必须是也只能是 3 的倍数。 问题:是否存在 100 个数,使得它们的和等于它们的最小公倍数? 答案:是的。考虑3, 2 × 3, 2 × 32, 2 × 33, …, 2 × 398, 399,它们的和为: 3 + 2 × 3 + 2 × 32+ 2 × 33+ … + 2 × 398 + 399 = 3 × (1 + 2) + 2 × 32+ 2 × 33+ … + 2 × 398 + 399 = 32+ 2 × 32+ 2 × 33+ … + 2 × 398 + 399 = 32× (1 + 2) + 2 × 33+ … + 2 × 398 + 399 = 33+ 2 × 33+ … + 2 × 398 + 399 = ... ... = 399 + 399 = 2 × 399 而这 100 个数的最小公倍数正是 2 × 399。 问题:能否找出 100 个不同的正整数,使得其中任意 2 ≤ k ≤ 100 个数的算术平均数都恰为整数。 答案:能。这个问题非常唬人,它的答案异常简单: 1 · 100!, 2 · 100!, 3 · 100!, …, 100 · 100! 显然满足要求。 问题:求证,存在任意长的连续正整数,使得其中任何一个数都不是质数的幂(当然更不能是质数)。

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

六年级奥数-.数论综合.教师版

数论综合(二) 教学目标: 1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来, 可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三 张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨 记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次, 那么这9个数字最多能组成多少个质数? 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数 67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少? 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都 可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+L L ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、 商与余数之和为2113,则被除数是多少? 【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除 数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968. 【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个? 【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998 的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=??,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个. 【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

A5 整数综合问题 A5-002在n3n(n为奇数)的方格表里的每一个方格中,任意填上一个+1或-1,在每一列的下面写上该列所有数的乘积;在每行的右边写上该行所有数的乘积,证明:这2n个乘积的和不等于0. 【题说】1962年全俄数学奥林匹克八、九年级题5. 【证】设p1,p2,…,p n是各行数字乘积,q1,q2,…,q n是各列数字乘积,它们都是+1或-1,而应有p1p2…p n=q1q2…q n,所以p1、p2、…、p n、q1、q2…、q n中应有偶数个-1.设为2k个,则其中+1的个数为2(n-k).由于n为奇数,k≠n-k,所以 p1+p2+…+p n+q1+q2+…+q n≠0 A5-003已知任意n个整数a1,a2,…,a n,由此得到一列新的数. 由这n个数依同样法则又得到一列新数,并如此做下去.假如所有这些新数都是整数,证明原来所给各数a i(i=1,2,…,n)都相等. 【题说】1964年全俄数学奥林匹克八年级题4.n为偶数时有一种例外情况使结论不成立.【证】对于任给的n个数x i(1?i?n),如果它们不全相等,那么施行如上运算若干次后得的新数中,最大值要变小,最小值要变大,因此,如若不能得出一组n个相同的数的话,其中最大数不能永远是整数. 假设从一组n个数z1,z2,…,z n得到n个相同的数 那么,当n是奇数时,易知z1=z2=…=z n;当n是偶数时,z1,…,z n中奇数项相等,偶数项相等. 若z i(1?i?n)由y i(1?i?n)经运算得出,且设 则有 2(y1+y2+…+y n)=2na 及 2(y2+y3+…+y n+y1)=2nb 从而 2na=2nb,a=b 由此得出z1=z2=…=z n=a 因此,我们的命题成立. 仅当n为偶数时,有一种例外情况:n个整数a,b,a,b,…,a,b,(a与b的奇偶性相同,a ≠b)满足题中条件,但结论不成立. A5-004某整数集合A既含有正整数,也含有负整数,而且如果a和b是它的元素,那么2a 和a+b也是它的元素,证明:集合A包含它的任意两个元素之差. 【题说】1967年匈牙利数学奥林匹克题1. 【证】不难证明:如果整数c是集合A的元素,而n是自然数,那么nc也属于集合A. 因为集合A既含有正整数,也含有负整数,根据最小数原理,集合A存在最小的正整数a和绝对

六年级 数论综合

六年级第8讲数论综合(一) 【兴趣篇】 4.一个各位数字均不为0的三位数能被8整除,将其中百位数字、十位数字和个位数字分别划去后可以得到三个两位数(例如,按此方法由247将得到47、27、24)。已知这些两位数中一个是5的倍数,另一个是6的倍数,还有一个是7的倍数,原来的三位数是多少? 【分析与解】一个是5的倍数, 各4位数字均不为0,所以三位数中一定有一个是5。 能被7整除有14、21、28、35、42、49、56、63。被5整除有15、25、35、45、55、65、75、85、95,能被6整除有12、18、24、36、42、48、54、66。经试得满足条件的三位数是656。 6.一个自然数N共有9个约数,而N—1共有8个约数。满足条件的自然数中,最小的和第二小的分别是多少? 【分析与解】N要约数为9。N分解质因数指数必定是2与2,N—1要约数为8,N—1分解质因数指数必定是1、1与1,N要最小,所以从2的2次乘3的3次,可是,N—1不符合,经试,只有196才符合,用同样的方法,得到第二小的是256。 10.信息在战争中是非常重要的,它常以密文的方式传送。对方能获取密文却很难知道破译密文的密码,这样就达到了保密的作用.有一天我军截获了敌军的一串密文:A37|8B4|21C,字母表示还没有被破译出来的数字.如果知道密码满足如下条件: ①密文由三个三位数连在一起组成,每个三位数的三个数字互不相同; ②三个三位数除以12所得到的余数是三个互不相同的质数; ③三个字母表示的数字互不相同且不全是奇数. 你能破解此密文吗? 【分析与解】由①得,A不能为3、7,B不能为4、8,C不能为2、1,21C÷12,当C为5时,余数是11,当C为8时,余数是2,当C为9时,余数是3,其它的不符合。 8B4÷12,当B为5时,余数是2,其它的不符合,所B只能是5, C只能是9。B、C是奇数,所以A只能是是偶数,A37÷12,有且只当A是4时,余数是5。 密文:A37|8B4|21C为437 854 219。 【拓展篇】 8.一个合数,其最大的两个约数之和为1164.求所有满足要求的合数. 【分析与解】一个合数,其最大的两个约数之和为1164,这两个数之间可以是两倍、三倍、或11倍的关系,这样1164除去3乘2得第一个合数776,1164除去4乘3得第二个合数。1067、

相关主题