搜档网
当前位置:搜档网 › 巧学高中物理 动力学叠加系统

巧学高中物理 动力学叠加系统

巧学高中物理 动力学叠加系统
巧学高中物理 动力学叠加系统

高中物理巧学妙解王 第二章 高频热点剖析

---84---

一、动力学中的叠加系统

在动力学中常会遇到两个或两个以上物体叠放在一起的问题,这类问题具有知识容量大、研究对象不单一、物理过程比较复杂、几何条件隐蔽等特点,以致许多考生甚至教师对其求解感到困惑.下面就针对这类问题的求解思路作一总结. 一、无相对运动的叠加问题

这类问题因物体之间无相对运动,所以一般用整体法与隔离体求解,若系统内力已知,则用隔离法求加速度,再用整体法求外力;若系统外力为已知,则用整体法求加速度,再用隔离法求内力.

【例1】如图1所示,在光滑水平桌面上放着质量为3kg 的小车A ,小车A 上又放着质量为2kg 的物体B ,现施加一水平推力F 在物体B 上,当F 逐渐增大到4N 时B

恰好在小车A 上相对于小车滑动;如

果将水平推力作用在A 上,且不使B

在A 上有相对滑动,则施加的最大推力max F 是多少?(设最大静摩擦力等于滑动摩擦力).

〖解析〗当推力F 小于4N 时,作用在A 上的静摩擦力使A 和B 一起加速运动;当F 增大到4N 以后,因最大静摩擦力不足以提供A 的加速度,故B 和A 之间将发生相对滑动.设A 、B 间的最大静摩擦力为max f ,当F 作用于B 时可用整体法求加速度,再用隔离法求内力max f .由牛顿第二定律可列出:

1()A B F m m a =+ ① max 1A f m a = ②

当外力F 作用在A 上时,则用隔离法求加速度,再用整体法求最大推力max F ,故由牛顿第二定律可列出:

max 2B f m a = ③ max 2()A B F m m a =+ ④ 联立①②③④得:max 6N F =

【例2】如图2所示,倾角为θ的光滑斜面固定在水平地面上,质量为m 的

物块A 叠放在物体B 上,B 的上表面水平;当A 随B 一起沿斜面下滑时,A 、B 保持相对静止,求B 对A 的支持力和摩擦力.

〖解析〗 当A 随B 一起沿斜面下滑时,A 受竖直向下的重力mg 、B 对A 竖直向上的支持力N 和水平向左的摩擦力f 而加速运动,如图3所示.

设B 的质量为M ,以A 、B 整体为研究对象,根据牛顿第二

定律有:()sin ()M m g M m a θ+=+,解得: sin a g θ=. 再将A 隔离出来作为研究对象,将加速度沿水平方向和竖直方向进行分解如图3所示,则有:

cos sin cos x a a g θθθ==,2sin sin y a a g θθ== 所以有:sin cos x f ma mg θθ== 又2sin y mg N ma mg θ-==

得:2s N mgco θ=.

二、叠加系统所受合外力不为零且有相对运动

这类情况中,叠加系统因受外力作用且加速度不同而存在相对运动,具体求解时一般采用隔离法,即“锣当锣打,鼓作鼓敲”,认真分析系统内每个物体在不同阶段的受力和运动情况,建立清晰的物理图景,然后由牛顿定律与匀变速直线运动公式、动量定理或动能定理列方程,同时抓住叠加体之间的位移关系或几何条件列式,再联立求解.

【例3】如图4所示,一木板静止在光滑且足够长的水平面上,木板质量为

4kg M =,长为 1.4m L =,木板右端放一小滑块,滑块质量为1kg m =,其尺寸远小于L ,滑块与木板之间的动摩擦因数为0.4μ=(210m/s g =). (1)用恒力F 作用在M 上,为使m 能从M 上滑落,F 大小的范围如何? (2)其他条件不变,若恒力22.8N F =始终作用在M 上,且最终使m 从M 上滑落,则m 在M 上面滑动的时间多长?

〖解析〗(1)取滑块m 为研究对象,m 与木板M 间的滑动摩擦力为:f N F F mg μμ==

m 在滑动摩擦力f F 作用下向右运动的加速度为:

214m/s f F a g m

μ=

==

取木板M 为研究对象,M 在拉力F 和滑动摩擦力f F 作用下向右运动的加速度为:2f F F a M

-=

使m 从M 上面滑落的条件是21a a >,即

f

f F F F M m

->.

联立以上四式可解得:()20N F M m g μ>+=

(2)设m 在M 上面滑动的时间为t ,恒力22.8N F =时M 的加速度为:22 4.7m/s f F F a M

-=

=

小滑块在时间t 内运动位移为:2111

2x a t =

木板在时间t 内运动位移为:2221

2

x a t =

则有:21x x L -=,由以上各式可解得:2s t = 【例4】物体A 的质量

1kg m =,

静止在光滑水平面上的平板车B 的质量为0.5kg M =、长1m L =,如图5所示.

某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力。忽略物体A 的大小,已知A 与B 之间的动摩擦因数0.2μ=,重力加速度取210m/s g =.试求:

(1)若5N F =,物体A

在小车上运动时相对小车滑行

图 1

图 2

图 3

图 4

图 5

大学物理_电磁学公式全集

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面均匀带电球体 均匀带电长直圆柱面均匀带电长直圆柱体 无限大均匀带电平面

六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零;导体表面附近场强与表面垂直。 (2) 导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。

十二、电容器的电容 平行板电容器圆柱形电容器 球形电容器孤立导体球 十三、电容器的联接 并联电容器串联电容器 十四、电场的能量 电容器的能量电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场

圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强电源电动 势 一段电路的电动势闭合电路的电动势 当时,电动势沿电路(或回路)l的正方向,时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为 若时,电动势沿回路l的正方向,时,沿反方向。对线图,为全磁通。

2018高中物理学史(归纳整理版)

2018年高考物理学史总结 物理学史这部分内容在高考卷上通常以选择题形式出现(实验题中也会小概率出现),分值在6分以下,一般情况下不会出偏难怪的,毕竟这不是考纲里的重点。复习建议:以现有的生活经验常识为主,稍加了解就可以。现总结如下:1、伽利略 (1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点 (2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点 2、开普勒:提出开普勒行星运动三定律; 3、牛顿 (1)提出了三条运动定律。 (2)发现表万有引力定律; 4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G 5、爱因斯坦 (1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体) (2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖(3)提出质能方程2 E ,为核能利用提出理论基础 MC 6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。 7、焦耳和楞次 先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!) 8、奥斯特 发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。 9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用 10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。 11、法拉第 (1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!) (2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念 12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 13、亨利:发现自感现象(这个也比较冷门)。 14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。 15、赫兹: (1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。 (2)证实了电磁理的存在。 16、普朗克 提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的,即量子理论

高中物理解题技巧及例题

时间+汗水≠效果 苦学、蛮学不如巧学 第一部分高中物理活题巧解方法总论 整体法隔离法力的合成法力的分解法力的正交分解法加速度分解法加速度合成法速度分解法速度合成法图象法补偿法(又称割补法)微元法对称法假设法临界条件法动态分析法利用配方求极值法等效电源法相似三角形法矢量图解法等效摆长法 等效重力加速度法特值法极值法守恒法模型法模式法转化法气体压强的参考液片法气体压强的平衡法气体压强的动力学法平衡法(有收尾速度问题)穷举法通式法 逆向转换法比例法推理法密度比值法程序法等分法动态圆法放缩法电流元分析法估算法节点电流守恒法拉密定理法代数法几何法 第二部分部分难点巧学 一、利用“假设法”判断弹力的有无以及其方向 二、利用动态分析弹簧弹力 三、静摩擦力方向判断 四、力的合成与分解 五、物体的受力分析 六、透彻理解加速度概念 七、区分s-t 图象和v-t图象 八、深刻领会三个基础公式 九、善用匀变速直线运动几个重要推论 十、抓住时空观解决追赶(相遇)问题 十一、有关弹簧问题中应用牛顿定律的解题技巧 十二、连接体问题分析策略——整体法与隔离法 十三、熟记口诀巧解题 十四、巧作力的矢量图,解决力的平衡问题 十五、巧用图解分析求解动态平衡问题 十六、巧替换、化生僻为熟悉,化繁难就简易

十七、巧选研究对象是解决物理问题的关键环节 十八、巧用“两边夹”确定物体的曲线运动情况 十九、效果法——运动的合成与分解的法宝 二十、平抛运动中的“二级结论”有妙用 二十一、建立“F供=F需”关系,巧解圆周运动问题 二十二、把握两个特征,巧学圆周运动 二十三、现代科技和社会热点问题——STS问题 二十四、巧用黄金代换式“GM=R2g” 二十五、巧用“比例法”——解天体运动问题的金钥匙 二十六、巧解天体质量和密度的三种方法 二十七、巧记同步卫星的特点——“五定” 二十八、“六法”——求力的功 二十九、“五大对应”——功与能关系 三十、“四法”——判断机械能守恒 三十一、“三法”——巧解链条问题 三十二、两种含义——正确理解功的公式,功率的公式 三十三、解题的重要法宝之一——功能定理 三十四、作用力与反作用力的总功为零吗——摩擦力的功归类 三十五、“寻”规、“导”矩学动量 三十六、巧用动量定理解释常用的两类物理现象 三十七、巧用动量定理解三类含“变”的问题 三十八、动量守恒定律的“三适用”“三表达”——动量守恒的判断 三十九、构建基本物理模型——学好动量守恒法宝 四十、巧用动量守恒定律求解多体问题 四十一、巧用动量守恒定律求解多过程问题 四十二、从能量角度看动量守恒问题中的基本物理模型——动量学习的提高篇四十三、一条连等巧串三把“金钥匙”

高中物理 力学专题 试题及其答案

(2)按下列要求画出弹力的方向: ①搁在光滑竖直墙与水平地面间的棒在A,B两处受到的弹力(图1); ②搁在光滑半球形槽内的棒在C,D两处受到的弹力(图2); ③用细绳悬挂、靠在光滑竖直墙上的小球受到的弹力(图3) 3)如图所示,质量为m的物体被水平推力F压在竖直的墙上,静止不动.当水平力F逐渐增大时,物体m所受的静摩擦力将怎样变化? (1)一条盘在地上的长为l的铁链向上刚好拉直时,它的重心位置升高了多少? (2)运动员用双手握住竖直的竹杆匀速攀上和匀速下滑,他所受的摩擦力分别是f1和f2,那么: A.f1向下,f2向上,f1=f2 B. f1向下,f2向上,f1>f2 C. f1向上,f2向上,f1=f2 D. f1向上,f2向下,f1=f2 (3)当人骑自行车在平直路面上前进时,前轮和后轮所受摩擦力的方向 A.前后轮受到的摩擦力方向都向后; B.前后轮受到的摩擦力方向都向前; C.前轮受到的摩擦力向前、后轮受到的摩擦力向后 D.前轮受到的摩擦力向后、后轮受到的摩擦力向前 (1)如图所示,在水平桌面上放一个重为G A=20N的木块,木块与桌面间的动摩擦因数μA=0.4,使这个木块沿桌面作匀速运 动时的水平拉力F为多少?如果再在木块A上加一块重为G B=10N的木块B,B与A之间的动摩擦因数μB=0.2,那么当A、B 两木块一起沿桌面匀速滑动时,对木块A的水平拉力应为多少?此时木块B受到木块A的摩擦力多大?

(2)水平的皮带传输装置如图所示,皮带的速度保持不变,物体被轻轻地放在A端皮带上,开始时物体在皮带上滑动,当它到达位置C后滑动停止,随后就随皮带一起匀速运动,直至传送到目的地B端,在传输过程中,该物体受摩擦力情况是 [ ] A.在AC段受水平向左的滑动摩擦力 B.在AC段受水平向右的滑动摩擦力 C.在CB段不受静摩擦力 D.在CB段受水平向右的静摩擦力 (3)如图1,在水平桌面上放一木块,用从零开始逐渐均匀增大的水平拉力F拉着木块沿桌面运动,则木块所受到的摩擦力f随拉力F变化的图像(图)正确的是[ ] (1)某物体在四个共点力F1、F2、F3、F4作用下处于平衡状态,若F4的方向沿逆时针方向转过90°角,但其大小保持不变,其余三个力的大小和方向均保持不变,此时物体受到的合力的大小为 [ ] A. 0 B. F4 C. 2F4 D. F4 (2).有三个力,F1=2N,F2=5N,F3=6N,则 [ ] A.F1可能是F2和F3的合力 B.F2可能是F1和F3的合力 C.F3可能是F1和F2的合力 D.上述说法都不对(3)由图6所示,下列有关静止在斜面上的物体受到的重力的两个分力的说法正确的是: A.F1是物体所受重力的下滑分力,大小为Gsinθ; B.F2是物体斜面的正压力,大小为Gcosθ;

高中物理动力学精心整理题目

动力学专题训练 20XX 年4月30日 【第1题】一个质量为2kg 的物体,在六个恒定的共点力作用下处于平衡状态.现同时撤去大小分别为15N 和20N 的两个力而其余力保持不变,则此后该物体运动的说法中正确的是( ) A .一定做匀变速直线运动,加速度大小可能是5m/s 2 B .可能做匀减速直线运动,加速度大小是2m/s 2 C .一定做匀变速运动,加速度大小可能是15m/s 2 D .可能做匀速圆周运动,向心加速度大小可能是5m/s 2 【第2题】如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg 的物体A 处于静止状态。若将一个质量为3kg 的物体B 竖直向下轻放在A 上的 一瞬间,则B 对A 的压力大小为(g=10m/s 2)( ) A.30N B. 0 C. 15N D. 12N 【第3题】在真空中上、下两个区域均为竖直向下的匀强电场,其电场线分布如图所示,有一带负电的微粒,从上边区域沿平行电场线方向以速度v0匀速下落,并进入下边区域(该区域的电场足够广),在下图所示的速度一时间图象中,符合粒子在电场内运动情况的是(以v0 方向为正方向)( ) v

【第4题】如图所示,足够长的水平传送带以速度v 沿顺时针方向运动,传送带的右端与光滑曲面的底部平滑连接,曲面上的A 点距离底部的高度h =0.45 m .一小物块从A 点静止滑下,再滑上传送带,经过一段时间又返回曲面.g 取10 m/s2,则下列说法正确的是( ) A .若v =1 m/s ,则小物块能回到A 点 B .若v =2 m/s ,则小物块能回到A 点 C .若v =5 m/s ,则小物块能回到A 点 D .无论v 等于多少,小物块均能回到A 点 【第5题】一质点在xoy 平面内从o 点开始运动的轨迹如图所示则质点的速度( ) A .若x 方向始终匀速,则y 方向先加速后减速 B .若x 方向始终匀速,则y 方向先减速后加速 C .若y 方向始终匀速,则x 方向先减速后加速 D .若y 方向始终匀速,则x 方向先加速后减速 【第6题】在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向 里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,则( ) A .如果油滴带正电,则油滴从M 点运动到N 点 B .如果油滴带正电,则油滴从N 点运动到M 点 C .如果电场方向水平向右,则油滴从N 点运动到M 点 D .如果电场方向水平向左,则油滴从N 点运动到M 点 【第7题】当t=0时,甲乙两车从相距70Km 的两地开始相向行驶,它们的v-t 图像如图所示,忽略汽车

高中物理电磁学公式总整理

高中物理電磁學公式總整理 電子電量為19106.1-?庫侖(Coul),1Coul=181025.6?電子電量。 一、靜電學 1.庫侖定律,描述空間中兩點電荷之間的電力 r r q kq r r q q F ??41221221012==πε ,2 2 1221041r q kq r q q F ==πε,229/109Coul m Nt k ??≈ 由庫侖定律經過演算可推出電場的高斯定律kq q A d E E πε40==?=Φ?? 。 2.點電荷或均勻帶電球體在空間中形成之電場 r r kq q F E ?211== ,21r kq q F E == 導體表面電場方向與表面垂直。電力線的切線方向為電場方向,電力線越密集電場強度越大。 平行板間的電場A kq A kq E ππ224= = 3.點電荷或均勻帶電球體間之電位能r q kq U e 2 1= 。本式以以無限遠為零位面。 4.點電荷或均勻帶電球體在空間中形成之電位r kq q U V e 1==。 導體內部為等電位。接地之導體電位恆為零。 電位為零之處,電場未必等於零。電場為零之處,電位未必等於零。 均勻電場內,相距d 之兩點電位差θcos Ed d E V =?=? 。故平行板間的電位差 d A kq Ed V π2==?。 5.電容V C q V q C ?=?= ,,為儲存電荷的元件,C 越大,則固定電位差下可儲存的電荷量就越大。電容本身為電中性,兩極上各儲存了+q 與-q 的電荷。電容同時 儲存電能,C q CV U E 222 2==。

a.球狀導體的電容k r r kq q V q C === ,本電容之另一極在無限遠,帶有電荷-q 。 b.平行板電容kd A A kqd q V q C ππ22== = 。故欲加大電容之值,必須增大極板面積A ,減少板間距離d ,或改變板間的介電質使k 變小。 二、電路學 1.理想電池兩端電位差固定為ε。實際電池可以簡化為一理想電池串連內電阻r 。實際電池在放電時,電池的輸出電壓Ir V -=?ε,故輸出之最大電流有限制,且輸出電壓之最大值等於電動勢,發生在輸出電流=0時。 實際電池在充電時,電池的輸入電壓Ir V +=?ε,故輸入電壓必須大於電動勢。 2.若一長度d 的均勻導體兩端電位差為V ?,則其內部電場d V E ?=。導線上沒有 電荷堆積,總帶電量為零,故導線外部無電場。理想導線上無電位降,故內部電場等於0。 3.克希荷夫定律 a.節點定理:電路上任一點流入電流等於流出電流。 b.環路定理:電路上任意環路上總電位升等於總電位降。 三、靜磁學 1.必歐-沙伐定律,描述長 d 的電線在r 處所建立的磁場 2 0sin 4r Id dB θπμ =,20?4r r Id B d ?= πμ ,A m T /10470??=-πμ 磁場單位,MKS 制為Tesla ,CGS 制為Gauss ,1Tesla=10000Gauss ,地表磁場約為0.5Gauss ,從南極指向北極。 由必歐-沙伐定律經過演算可推出安培定律?=?NI d B 0μ 2.重要磁場公式 無限長直導線磁場 長 之螺線管內之磁場 r NI B πμ20= NI B 0μ=

巧学高中物理 动力学叠加系统

高中物理巧学妙解王 第二章 高频热点剖析 ---84--- 一、动力学中的叠加系统 在动力学中常会遇到两个或两个以上物体叠放在一起的问题,这类问题具有知识容量大、研究对象不单一、物理过程比较复杂、几何条件隐蔽等特点,以致许多考生甚至教师对其求解感到困惑.下面就针对这类问题的求解思路作一总结. 一、无相对运动的叠加问题 这类问题因物体之间无相对运动,所以一般用整体法与隔离体求解,若系统内力已知,则用隔离法求加速度,再用整体法求外力;若系统外力为已知,则用整体法求加速度,再用隔离法求内力. 【例1】如图1所示,在光滑水平桌面上放着质量为3kg 的小车A ,小车A 上又放着质量为2kg 的物体B ,现施加一水平推力F 在物体B 上,当F 逐渐增大到4N 时B 恰好在小车A 上相对于小车滑动;如 果将水平推力作用在A 上,且不使B 在A 上有相对滑动,则施加的最大推力max F 是多少?(设最大静摩擦力等于滑动摩擦力). 〖解析〗当推力F 小于4N 时,作用在A 上的静摩擦力使A 和B 一起加速运动;当F 增大到4N 以后,因最大静摩擦力不足以提供A 的加速度,故B 和A 之间将发生相对滑动.设A 、B 间的最大静摩擦力为max f ,当F 作用于B 时可用整体法求加速度,再用隔离法求内力max f .由牛顿第二定律可列出: 1()A B F m m a =+ ① max 1A f m a = ② 当外力F 作用在A 上时,则用隔离法求加速度,再用整体法求最大推力max F ,故由牛顿第二定律可列出: max 2B f m a = ③ max 2()A B F m m a =+ ④ 联立①②③④得:max 6N F = 【例2】如图2所示,倾角为θ的光滑斜面固定在水平地面上,质量为m 的 物块A 叠放在物体B 上,B 的上表面水平;当A 随B 一起沿斜面下滑时,A 、B 保持相对静止,求B 对A 的支持力和摩擦力. 〖解析〗 当A 随B 一起沿斜面下滑时,A 受竖直向下的重力mg 、B 对A 竖直向上的支持力N 和水平向左的摩擦力f 而加速运动,如图3所示. 设B 的质量为M ,以A 、B 整体为研究对象,根据牛顿第二 定律有:()sin ()M m g M m a θ+=+,解得: sin a g θ=. 再将A 隔离出来作为研究对象,将加速度沿水平方向和竖直方向进行分解如图3所示,则有: cos sin cos x a a g θθθ==,2sin sin y a a g θθ== 所以有:sin cos x f ma mg θθ== 又2sin y mg N ma mg θ-== 得:2s N mgco θ=. 二、叠加系统所受合外力不为零且有相对运动 这类情况中,叠加系统因受外力作用且加速度不同而存在相对运动,具体求解时一般采用隔离法,即“锣当锣打,鼓作鼓敲”,认真分析系统内每个物体在不同阶段的受力和运动情况,建立清晰的物理图景,然后由牛顿定律与匀变速直线运动公式、动量定理或动能定理列方程,同时抓住叠加体之间的位移关系或几何条件列式,再联立求解. 【例3】如图4所示,一木板静止在光滑且足够长的水平面上,木板质量为 4kg M =,长为 1.4m L =,木板右端放一小滑块,滑块质量为1kg m =,其尺寸远小于L ,滑块与木板之间的动摩擦因数为0.4μ=(210m/s g =). (1)用恒力F 作用在M 上,为使m 能从M 上滑落,F 大小的范围如何? (2)其他条件不变,若恒力22.8N F =始终作用在M 上,且最终使m 从M 上滑落,则m 在M 上面滑动的时间多长? 〖解析〗(1)取滑块m 为研究对象,m 与木板M 间的滑动摩擦力为:f N F F mg μμ== m 在滑动摩擦力f F 作用下向右运动的加速度为: 214m/s f F a g m μ= == 取木板M 为研究对象,M 在拉力F 和滑动摩擦力f F 作用下向右运动的加速度为:2f F F a M -= 使m 从M 上面滑落的条件是21a a >,即 f f F F F M m ->. 联立以上四式可解得:()20N F M m g μ>+= (2)设m 在M 上面滑动的时间为t ,恒力22.8N F =时M 的加速度为:22 4.7m/s f F F a M -= = 小滑块在时间t 内运动位移为:2111 2x a t = 木板在时间t 内运动位移为:2221 2 x a t = 则有:21x x L -=,由以上各式可解得:2s t = 【例4】物体A 的质量 1kg m =, 静止在光滑水平面上的平板车B 的质量为0.5kg M =、长1m L =,如图5所示. 某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力。忽略物体A 的大小,已知A 与B 之间的动摩擦因数0.2μ=,重力加速度取210m/s g =.试求: (1)若5N F =,物体A 在小车上运动时相对小车滑行 图 1 图 2 图 3 图 4 图 5

高中物理动力学-轻绳轻杆模型

轻绳轻杆模型 一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。 1.“死结”问题的解决方法:(动态平衡问题) (1)正交分解法:建立直角坐标系,把力分解到X轴和Y轴上,然后水平方向合力为零,竖直方向合力为零列方程组。 (2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。 (3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角),那么会有:定力与θ角的变化情况相同 当θ角为钝角时,变力与θ角的变化情况相同 当θ角为直角时,变力有最小值。 当θ角为锐角时,变力与θ角的变化情况相反。 无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。

2.“活结”问题的解决方法: (1) 无论OB与水平方向的角度如何,OA、OC的拉力都不会变,都等于C的重力。 (2) 轻绳的拉力与MN之间的距离有关,距离越大拉力 大,距离约小拉力越小。如果距离不变(即a点或b 点只是竖直方向移动),那么拉力不变,轻绳与水平 方向的夹角也不会变化。 二、轻杆模型:“活杆”与“死杆”死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。 1. “死杆”问题的解决方法: 由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

提高物理成绩的利器——巧学妙解王

第一章、方法与技巧讲解 1、整体法 整体法是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用 整体思维可以产生不同凡响的效果,显现“变”的魅力,整体法的思维特点就是本着整体观念,对系统进行整体分析,是系统论中的整体原理在物理中的具体应用,它把一切系统均当作一个整体来研究,从而揭示事物 的本质和变化规律,而不必追究系统内各物体的相互作用和每个运动阶段的细节,因而避免了中间量的繁 琐推算,简捷巧妙地解决问题。整体质量等于它们的总质量;整体电量等于它们电量代数和。 整体法适用于求系统所受的外力,作为整体的几 个对象之间的作用力属于系统内力不需考虑,只需考 虑系统外的物体对该系统的作用力,故可使问题化繁为简。 【例1】在粗糙的水平面上放着一个三角形木块abc , 在它的两个粗糙斜面上分别放有质量为12m m 、的两个 物体,且12m m >,如图1-1所示,若三角形木块和两 个物体都是静止的,则粗糙水平面对三角形木块 ( ) A 、有摩擦力的作用,摩擦力的方向水平向右; B 、有摩擦力的作用,摩擦力的方向水平向左; C 、有摩擦力的作用,但摩擦力的方向不能确定,因 12m m 、、12θθ、的数值均未给出; D 、以上结论都不对; 〖解析〗由于三角形木块和斜面上的两个物体都是静止的,可以把它们看作一个整体,如图1-2所示,竖直方向上受到重力12()m m M g ++和地面的支持力N F 作用处于平衡状态,水平方向无任何滑动趋势,因此 不受地面的摩擦力作用,所以D 正确. 【例2】如图1-3所示,人和车 的质量分别为m 和M ,人用水平力F 拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩擦,如果人和车保持相对静止,且水平地面是光滑的,则车的加速度为 . 〖解析〗要求车的加速度,似乎需将车隔离出来才能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看作一个整体,对整体用牛顿第二定律求解即可. 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力。在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有:2()F M m a =+,解得:2F a M m =+ 【例3】有一个直角架AOB ,OA 水 平放置,表面粗糙,OB 竖直向下,表面光滑,OA 上套有小环P ,OB 上 套有小环Q ,两个环的质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如 图1-4所示。现将P 环向左移动一段距离,两环再次 达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA 杆对P 环的支持力N 和细绳上的拉力T 的 变化情况是( ) A .N 不变,T 变大 B .N 不变,T 变小 C .N 变大,T 变小 D .N 变大,T 变大 〖解析〗先把P Q 、看成一个整体,受力如图1-5所示, 则绳对两环的拉力为内力,不必考 虑,又因OB 杆光滑,则杆在竖直 方向上对Q 无力的作用,所以整体在竖直方向上只受重力和OA 杆对它的支持力,所以N 不变,始终等于P Q 、的重力之和。再以Q 为研究 对象,因OB 杆光滑,所以细绳拉 力的竖直分量等于Q 环的重力,当P 环向左移动一段距离后,发现细绳和竖直方向夹角 α变小,所以在细绳拉力的竖直分量不变的情况下, 拉力T 应变小。由以上分析可知应选B. 【例4】在水平光滑桌面上放置两个物体A B 、如图 1-6所示,1kg A m =,2kg B m =,它们之间用不可伸长 的细线相连,细线质量忽略不计, A B 、分别受到水平向左拉力110N F =和水平向右拉力240N F =的作用,求A B 、间细线 的拉力. 〖解析〗由于细线不可伸长,A B 、有共同的加速度, 则共同加速度为:2214010 10m/s 12 A B F F a m m --===++ 对于A 物体:受到细线向右拉力F 和1F 拉力作用,由 牛顿第二定律得:1 A F F m a -= 即11011020N A F F m a =+=+?= 【例5】 如图1-7 示,质量为M 的 图1-1 图1-2 O P A Q B 图1-4 图1-5 A F 1 B F 2 图1-6

高一物理力学受力分析专题(精选)

受力分析练习: 1.画出静止物体A 受到的弹力:(并指出弹力的施力物) 2.画出物体A 受到的摩擦力,并写出施力物:(表面不光滑) B A A 静止不动 A 向右匀速 A 沿着斜面向上运动 A 相对斜面静止 A 沿着斜面向下运动 A 匀速下滑

3:对下面物体受力分析: 1)重新对1、2两题各物体进行受力分析(在图的右侧画)2)对物体A进行受力分析(并写出各力的施力物) 3)对水平面上物体A和B进行受力分析,并写出施力物(水平面粗糙) 4)分析A和B物体受的力分析A和C受力(并写出施力物) A沿着水平面向左运动A沿着墙向上运动A 沿着水平面向右运动 A、B相对地面静止 A与皮带一起向右匀速运动 A、B一起向右匀速运动 A、B一起向右加速运动 A、B相对地面静止 木块A沿斜面匀速上滑 A、B相对地面静止A、 B、C一起向右加速运动 A、B一起向右加速运动 物体静止不动 A 在水平力F作用下A、B沿桌面匀速运动,

思路点拨 1、如图所示,质量为m=2kg 的物体在水平力F=80N 作用下静止在竖直墙上,物体与墙面之间的动摩擦因数为0.5,用二力平衡知识可知物体受到的摩擦力大小为______N ,弹力大小为________N 。(g=10N/kg ) 2、如图所示,在水平面上向右运动的物体,质量为20kg ,物体与水平面间1.0=μ,在运动过程中,物体还到一个水平向左的大小为F =10N 的拉力的作用,则物体受到的滑动摩擦力大小为______N ,方向_______。(g=10N/kg ) 3、如图,A 和B 在水平力F 作用下,在水平面上向右做匀速直线运动。试分析A 、B 物体 所受的力,并指出B 所受的每一力的反作用力。 基础训练 1、如图所示的物体A ,放在粗糙的斜面上静止不动,试画出A 物体受力的示意图,并标出个力的名称。 2、重G =5N 的木块在水平压力F 作用下,静止在竖直墙面上,则木块所受的静摩擦力f = N ;若木块与墙面间的动摩擦因数为μ=0.4,则当压力F N = N 时木块可沿墙面匀速下滑。 3、如图(1)人和木板的质量分别为m 和M ,不计滑轮质量及滑轮与绳之间的摩擦,保持系统静止 时,求人对绳子的拉力T 2=? 4、如图所示,物体A 沿倾角为θ 的斜面匀速下滑.求摩擦力及动摩擦因数。 5、如图所示,重G 1=600N 的人,站在重G 2=200N 的吊篮中,吊篮用一根不计质量的软绳悬挂,绳绕过不计质量和摩擦的定滑轮,一端拉于人的手中。当人用力拉绳,使吊篮匀速上升时,绳的拉力T 及人对吊篮底部的压力N ’多大? 6、两个大人和一个小孩沿河岸拉一条小船前进,两个大人的拉力分别为F 1=400N 和F 2=320N ,它们的方向如图所示.要使船在河流中间行驶,求小孩对船施加的最小的力。 7、如图所示,质量为m 的物体放在水平面上,在外力F 的作用下物体向右作匀速直线运动,求物体与平面间的摩擦力系数。 F

高中物理力学公式

高中物理力学公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、力学 1、f = k x :胡克定律 (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料 有关) 2、 G = mg :重力 (g 随高度、纬度、地质结构而变化,g 极>g 赤,g 低纬>g 高纬) 3、θcos 2212221F F F F F ++=合 : 求F 1、F 2的合力的公式 2221F F F +=合 : 两个分力垂直时 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反 向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 4、摩擦力的公式: (1 )f = N :滑动摩擦力 (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也 可以小于G 。 ②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关。 (2 ) 0 f 静 f m (f m 为最大静摩擦力) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 说明:①摩擦力可以与运动方向相同,也可以与运动方 向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作 用。 5、F=G 221r m m : 万有引力(适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = ×10-11 N ·m 2 / kg 2 (1)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力 加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高 度)) a 、 F 万=F 向 万有引力=向心力 即 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 ③ 行星或卫星做匀速圆周运动的角速度: ,轨道半径越大,角速度越小。 ④行星或卫星做匀速圆周运动的周期: ,轨道半径越大,周期越大。 ⑤行星或卫星做匀速圆周运动的轨道半径: ,周期越大,轨道半径越大。 ⑥行星或卫星做匀速圆周运动的向心加速度:2 r GM a =,轨道半径越大,向心加速度越小。 ⑦地球或天体重力加速度随高度的变化:22)('h R GM r GM g +== 特别地,在天体或地球表面:20R GM g = 022) ('g h R R g += 23 24GT r M π=

高中物理电学公式大全

高中物理电学公式总结大全 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=U AB/d 6.电场力:F=qE 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd 9.电势能:E A=qφA 10.电势能的变化ΔE AB=E B-E A 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值)0 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速 (V o=0):W=ΔE K或qU=mV t2/2,V t=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V o t(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总

(完整版)高中物理用逆向思维巧解运动学问题

高中物理用逆向思维巧解运动学问题匀减速运动中的某些问题,用常规解法来解,步骤往往比较多,或似乎无法求解;如改用逆向思维来考虑,不仅能顺利求解,而且步骤也比较简便。此处所谓逆向思维是把运动的“末状态”当作“初状态”,而把物体的运动逆时间顺序倒过来考虑。 例1:做匀减速直线运动直到静止的物体,在最后三个连续相等的运动时间内通过的位移比是。 解析:初速度为零的匀加速直线运动开始的三个连续相等的时间内通过的位移比为:1:3:5,如把这题中的运动倒过来逆时间顺序考虑,可用上前面的规律,则可得答案为: 5:3:1。 例2:一物体以4m/s2的加速做匀减速直线运动直到停止,求物体停止前的第2s内通过的路程。 解析:按常方法考虑似乎缺少条件,无法求解。如改用逆思维,将物体看成从静止开始做加速度为4m/s2的匀加速运动,它在第二秒内通过的路程与题目所求的物体在静止前的第二秒内通过的路程相等。则 s=at22/2- at12/2=4×22/2- 4×12/2=6m。 例3:一小物体以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,e为ab的中点,已知物体由a到e的时间为t0,则它从e 经b再返回e所需时间为[ ]

A.t0 B.(2-1)t0 C.2 (2+1)t0 D. (22+1)t0 解析:由逆向思维可知物体从b到e和从e到a的时间比为:1:(2-1);即:t:t0= 1:(2-1),得t= (2+1)t0,由运动的对称性可得从e到b和从b到e的时间相等,所以从e经b再返回e所需时间为2t,即2 (2+1)t0,答案为C。 例4:一物体以某一初速度在粗糙的平面上做匀减速直线运动,最后静止下来。若物体在最初5s内通过的路程与最后5s内通过的路程之比为11:5,求此物体一共运动了多长时间。 解析:由题意可知运动时间大于5s,但比10s大,还是小还是相等,无法确定。下图是按运动时间大于10s画出的示意图。 设总的运动时间为t,用逆向思维考虑,将物体看成 反方向的匀加速直线运动,则有: s2=at22/2=25a/2 (1) s1=at2/2- a(t- t1)2/2 (2) 又:s1:s2=11:5 (3) 联立(1)、(2)、(3)解得:t=8s

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

高中高二物理电学公式大全

高中物理电学公式总结 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=U AB/d 6.电场力:F=qE 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd 9.电势能:E A=qφA 10.电势能的变化ΔE AB=E B-E A 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速(V o=0):W=ΔE K或qU=mV t2/2,V t=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V o t(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P 出/P总 9.电路的串/并联串联电路(P、U与R成正比) 并联电路(P、I与R成 反比) 电阻关系(串同并反) 10.欧姆表测电阻(1)电路组成(2)测量原理(3)使用方法(4)注意事项 11.伏安法测电阻电流表内接法:电流表外接法: 三、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A 2.安培力F=BIL; 3.洛仑兹力f=qVB(注V⊥B);质谱仪 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动, 四、电磁感应 1.感应电动势的大小计算公式: 1)E=nΔΦ/Δt(普适公式){法拉第电 磁感应定律, 2)E=BLV垂(切割磁感线运动) 3)E m=nBSω(交流发电机最大的感应电动势) 4)E=BL2ω/2(导体一端固定以ω旋转切割) 2.磁通量Φ=BS

相关主题