搜档网
当前位置:搜档网 › 平面向量及其应用单元测试题含答案doc

平面向量及其应用单元测试题含答案doc

平面向量及其应用单元测试题含答案doc
平面向量及其应用单元测试题含答案doc

一、多选题

1.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且

02

C <<

π

,4b =,则以下说法正确的是( )

A .3

C π

=

B .若72

c =

,则1cos 7B =

C .若sin 2cos sin A B C =,则ABC 是等边三角形

D .若ABC 的面积是4 2.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知

cos cos 2B b

C a c

=-,

ABC S =

△b = )

A .1cos 2

B =

B .cos 2

B =

C .a c +=

D .a c +=3.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,

2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )

A .//P

B CQ B .2133

BP BA BC =

+ C .0PA PC ?<

D .2S =

4.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且

AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )

A .1A

B CE ?=- B .0OE O

C +=

C .3

2

OA OB OC ++=

D .ED 在BC 方向上的投影为

76

5.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB +=

D .0PA PB PC ++=

6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.

B .若4A

C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =

D .若满足条件的ABC 有两个,则24AC <<

7.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,b =

30A =?,则B =( )

A .30

B .45?

C .135?

D .150?

8.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( ) A .a b ⊥

B .2a b +=

C .2a b -=

D .,60a b =?

9.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1

()2

AD AB AC =

+ C .8BA BC ?=

D .AB AC AB AC +=-

10.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-

C .()13,4e =-,234,55??=-

???

e D .()12,6=e ,()21,3=--e

11.下列命题中,正确的是( ) A .在ABC ?中,A B >,sin sin A B ∴> B .在锐角ABC ?中,不等式sin cos A B >恒成立

C .在ABC ?中,若cos cos a A b B =,则ABC ?必是等腰直角三角形

D .在ABC ?中,若060B =,2b ac =,则ABC ?必是等边三角形

12.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)- B .(6,15)

C .(2,3)-

D .(2,3)

13.给出下面四个命题,其中是真命题的是( )

A .0AB

BA B .AB BC AC C .AB AC BC += D .00AB +=

14.已知ABC ?中,角A,B,C 的对边分别为a ,b ,c ,且满足,3

B a c π

=+=,则

a

c

=( ) A .2

B .3

C .

12 D .

13

15.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C

处,,那么x 的值为( )

A B .C .D .3

二、平面向量及其应用选择题

16.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若

AB AF 3→→=,则AE BF

→→的值为( )

A .0

B .

3

C .-4

D .4

17.若向量123,,OP OP OP ,满足条件1230

OP OP OP ++=,1231OP OP OP ===,则123PP P ?的形状是( )

A .等腰三角形

B .直角三角形

C .等边三角形

D .不能确定

18.若O 为ABC 所在平面内任意一点,且满足()

20BC OB OC OA ?+-=,则

ABC 一定为( )

A .锐角三角形

B .直角三角形

C .等腰三角形

D .钝角三角形

19.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,

()1OQ t OB =-,PQ 在t t =0时取得最小值,则当01

05

t <<

时,夹角θ的取值范围为( ) A .0,3π?? ???

B .,32ππ?? ???

C .2,23ππ??

??

?

D .20,

3π?? ???

20.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=

B .1a b ?=

C .a b =

D .0a b ?=

21.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )

A .30

B .45?

C .60?

D .90?

22.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .

1

()2

a b + B .

1

()2

a b - C .

1

2

a b + D .12

a b +

23.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =?,

3

cos 5

A =

,则b 等于( )

A .

35 B .

107

C .

57

D .

14

24.在ABC ?中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ?、PBC ?、PCA ?、PAB ?的面积分别为S 、1S 、2S 、3S ,记

i

i S S

λ=(1,2,3i =),则23λλ?取到最大值时,2x y +的值为( ) A .-1

B .1

C .32

-

D .

32

25.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且

2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )

A.3 4

B.

5

8

C.

3

8

D.

2

3

26.题目文件丢失!

27.如图所示,在正方形ABCD中,E为BC的中点,F为AE的中点,则DF=

()

A.

13

24

AB AD

-+B.

12

23

AB AD

+

C.

11

32

AB AD

-D.

13

24

AB AD

-

28.三角形ABC的三边分别是,,

a b c,若4

c=,

3

C

π

∠=,且

sin sin()2sin2

C B A A

+-=,则有如下四个结论:

①2

a b

=

②ABC

?83

③ABC

?的周长为43

+

④ABC

?外接圆半径

43

3

R=

这四个结论中一定成立的个数是()

A.1个B.2个C.3个D.4个

29.已知点O是ABC

?内一点,满足2

OA OB mOC

+=,

4

7

AOB

ABC

S

S

?

?

=,则实数m为()

A.2 B.-2 C.4 D.-4

30.在ABC

?中,2,2,120,,

AC AB BAC AE AB AF AC

λμ

==∠===,M为线段EF的中点,若1

AM=,则λμ

+的最大值为()

A .

73

B .

27

3

C .2

D .

21 31.已知ABC ?的内角A 、B 、C 满足()()1sin 2sin sin 2

A A

B

C C A B +-+=--+

,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤

D .1224abc ≤≤

32.奔驰定理:已知O 是ABC ?内的一点,BOC ?,AOC ?,AOB ?的面积分别为A S ,

B S ,

C S ,则0A B C S OA S OB S OC ?+?+?=.“奔驰定理”是平面向量中一个非常优美的

结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ?内的一点,A ,B ,C 是ABC ?的三个内角,且点

O 满足OA OB OB OC OC OA ?=?=?,则必有( )

A .sin sin sin 0A OA

B OB

C OC ?+?+?= B .cos cos cos 0A OA B OB C OC ?+?+?= C .tan tan tan 0A OA B OB C OC ?+?+?=

D .sin 2sin 2sin 20A OA B OB C OC ?+?+?=

33.在ABC 中,AB AC BA BC CA CB →→→→→→

?=?=?,则ABC 的形状为( ).

A .钝角三角形

B .等边三角形

C .直角三角形

D .不确定 34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( )

A .等腰直角三角形

B .等腰三角形

C .直角三角形

D .等边三角形

35.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若

()2

2S a b c +=+,则cos A 等于( )

A .

45

B .45

-

C .

1517

D .1517

-

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.AC 【分析】

对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;

对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利 解析:AC 【分析】

对于A

2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;

对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得

A B C ==;

对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】

2sin c A =

2sin sin A C A =, 因为sin 0A ≠

,故sin C =, 因为(0,

)2

C π

∈,则3

C π

=

,故A 正确;

若72

c =,则由正弦定理可知sin sin c b C B =

,则4sin sin 72

b B C

c == 因为(0,)B π∈

,则1

cos 7

B =±,故B 错误; 若sin 2cos sin A B

C =,根据正弦定理可得2cos a c B =,

2sin c A =

,即sin a A =

sin 2cos A c B =

,所以sin A B =,

因为23A B C ππ+=-=,则23

A B π=

-

,故2sin()3B B π

-=,

1

sin 2B B B +=

,即1sin cos 22

B B =,

解得tan B =3

B π

=

,则3

A π

=

即3

A B C π

===

,所以ABC 是等边三角形,故C 正确; 若ABC

的面积是

1

sin 2

ab C =2a =, 由余弦定理可得2

2

2

1

2cos 416224122

c a b ab C =+-=+-???=

,即c = 设三角形的外接圆半径是R ,

由正弦定理可得24

sin c R C =

==,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】

本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.

2.AD 【分析】

利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵,

整理可得:, 可得,

∵A 为三角形内角,, ∴,故A 正确

解析:AD 【分析】

利用正弦定理,两角和的正弦函数公式化简

cos cos 2B b

C a c

=-,结合sin 0A ≠,可求1cos 2

B =

,结合范围()0,B π∈,可求3B π

=,进而根据三角形的面积公式和余弦定理

可得a c += 【详解】 ∵

cos sin cos 22sin sin B b B

C a c A C

==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,

可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠,

∴1

cos 2

B =

,故A 正确,B 错误, ∵()0,B π∈, ∴3

B π

=

∵4

ABC S =△,且3b =,

11sin 22ac B a c ==??=, 解得3ac =,

由余弦定理得()()2

2

22939a c ac a c ac a c =+-=+-=+-,

解得a c +=C 错误,D 正确. 故选:AD. 【点睛】

本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.

3.BCD 【分析】

本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,

所以B 是的中点,P 是的

解析:BCD 【分析】

本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】

解:因为20PA PC +=,2QA QB =,

所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;

因为()

121

333

BP BA AP BA BC BA BA BC =+=+

-=+,故选项B 正确; 因为

11

2223132

APQ ABC

AB h

S S AB h ??==?△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】

本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.

4.BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,

解析:BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则CE AB ⊥,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:

所以,123

(0,0),(1,0),(1,0),3),()3E A B C D -, 设123

(0,),3),(1,),(,3

3

O y y BO y DO y ∈==--,BO ∥DO , 所以2313y y =-,解得:3

y =

, 即O 是CE 中点,0OE OC +=,所以选项B 正确;

3

22

OA OB OC OE OC OE ++=+==

,所以选项C 正确; 因为CE AB ⊥,0AB CE ?=,所以选项A 错误;

123(3ED =,(1,3)BC =,

ED 在BC 方向上的投影为12

7326BC BC

ED +?==,所以选项D 正确.

故选:BCD 【点睛】

此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.

5.CD 【分析】

转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】

本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.

解析:CD 【分析】

转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】

由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=

0C PA PB P ++=∴,PA AB PB +=

故选:CD 【点睛】

本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.

6.ABD 【分析】

根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】

解:由正弦定理得,故正确; 对于,,选项:如图

解析:ABD 【分析】

根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】

解:由正弦定理得2

24sin sin30AB R ACB =

==∠?

,故A 正确;

对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当

1

22

x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;

当AD AB AC <<,即1

22

x x <<,24x ∴<<时,满足条件的三角形有两个.

故B ,D 正确,C 错误. 故选:ABD .

【点睛】

本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.

7.BC 【分析】

用正弦定理求得的值,由此得出正确选项. 【详解】

解:根据正弦定理得: , 由于,所以或. 故选:BC. 【点睛】

本题考查利用正弦定理解三角形,是基础题.

解析:BC 【分析】

用正弦定理求得sin B 的值,由此得出正确选项. 【详解】

解:根据正弦定理sin sin a b A B

=得: 1

2sin 22sin 12

b A B a ===, 由于21b a =>=,所以45B =或135B =.

故选:BC. 【点睛】

本题考查利用正弦定理解三角形,是基础题.

8.AC 【分析】

由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】

,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC

【点睛】

解析:AC 【分析】

由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】

1a b ==,且25b a -=,平方得22445b a a b +-?=,即0a b ?=,可得a b ⊥,故A

正确;

()2

22

22a b a b a b +=++?=,可得2a b +=,故B 错误; ()

2

2

2

22a b a b a b -=+-?=,可得2a b -=,故C 正确;

由0a b ?=可得,90a b =?,故D 错误; 故选:AC 【点睛】

本题考查向量数量积的性质以及向量的模的求法,属于基础题.

9.BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:,故A 错;

对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故

解析:BC 【分析】

根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】

对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,

()

111

++++()222

AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;

对于C 选项:cos 248BD BA BC BA BC B BA BC BA

?=??∠=??

=?=,故正确;

对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】

本题考查向量的线性运算和向量的数量积运算,属于基础题.

10.ACD 【分析】

依次判断各选项中的两向量是否共线即可. 【详解】

A ,C ,D 中向量与共线,不能作为基底;

B 中,不共线,所以可作为一组基底. 【点睛】

本题主要考查平面向量的基本定理及基底的定义,属

解析:ACD 【分析】

依次判断各选项中的两向量是否共线即可. 【详解】

A ,C ,D 中向量1e 与2e 共线,不能作为基底;

B 中1e ,2e 不共线,所以可作为一组基底. 【点睛】

本题主要考查平面向量的基本定理及基底的定义,属于基础题.

11.ABD 【分析】

对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得

解析:ABD 【分析】

对于选项A 在ABC ?中,由正弦定理可得sin sin A B a b A B >?>?>,即可判断出正误;对于选项B 在锐角ABC ?中,由

02

2

A B π

π

>>

->,可得

sin sin()cos 2

A B B π

>-=,即可判断出正误;对于选项C 在ABC ?中,由

cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ?中,利用余弦定理可得:

2222cos b a c ac B =+-,代入已知可得a c =,又60B =?,即可得到ABC ?的形状,即

可判断出正误. 【详解】

对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ?中,A ,(0,

)2

B π

∈,

2

A B π

+>

,∴

02

2

A B π

π

>>

->,

sin sin()cos 2

A B B π

∴>-=,因此不等式sin cos A B >恒成立,正确;

对于C ,在ABC ?中,由cos cos a A b B =,利用正弦定理可得:

sin cos sin cos A A B B =, sin 2sin 2A B ∴=, A ,(0,)B π∈, 22A B ∴=或222A B π=-,

A B ∴=或2

A B π

+=,

ABC ?∴是等腰三角形或直角三角形,因此是假命题,C 错误.

对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,

可得2

()0a c -=,解得a c =,可得60A C B ===?,故正确.

故选:ABD . 【点睛】

本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.

12.ABC 【分析】

设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】 第四个顶点为, 当时,,

解得,此时第四个顶点的坐标为; 当时,, 解得

解析:ABC 【分析】

设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】

第四个顶点为(,)D x y ,

当AD BC =时,(3,7)(3,8)x y --=--,

解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,

解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,

解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】

本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.

13.AB 【解析】 【分析】

根据向量加法化简即可判断真假. 【详解】 因为,正确;

,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】

本题主要考查了向量加法的

解析:AB 【解析】 【分析】

根据向量加法化简即可判断真假. 【详解】 因为0AB

BA AB AB

,正确;

AB BC

AC ,由向量加法知正确;

AB AC BC +=,不满足加法运算法则,错误;

0,AB AB +=,所以00AB +=错误.

故选:A B . 【点睛】

本题主要考查了向量加法的运算,属于容易题.

14.AC 【分析】

将两边同时平方,可得一个关系式,再结合余弦定理可得结果. 【详解】 ∵, ∴①,

由余弦定理可得,②,

联立①②,可得, 即, 解得或. 故选:AC. 【点睛】

本题考查余弦定理的应

解析:AC 【分析】

将a c +=两边同时平方,可得一个关系式,再结合余弦定理可得结果. 【详解】

∵,3

B a c π

=

+=,

∴2

2

2

2

()23a c a c ac b +=++=①, 由余弦定理可得,2

2

22cos

3

a c ac

b π

+-=②,

联立①②,可得222520a ac c -+=,

即2

2520a a c c ????-+= ? ?????

, 解得

2a

c =或12a c =. 故选:AC. 【点睛】

本题考查余弦定理的应用,考查计算能力,是基础题.

15.AB 【分析】

由余弦定理得,化简即得解. 【详解】

由题意得,由余弦定理得, 解得或. 故选:AB. 【点睛】

本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.

解析:AB 【分析】

由余弦定理得293

cos306x x

?

+-=,化简即得解.

【详解】

由题意得30ABC ?

∠=,由余弦定理得293

cos306x x

?

+-=

, 解得23x =或3x =. 故选:AB. 【点睛】

本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.

二、平面向量及其应用选择题

16.C 【分析】

先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果. 【详解】 如图所示,

AB AF

2232,3cos 1133BE EC BE BC AF DF α=?=

=→→=?=?=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则()(

)

230,3,3,1,,33B F

E ??

? ???

因此(

)

BF

AE

BF

23

3,2,3232643

→=

-→→=

?-?=-=-,故选C.

【点睛】

平面向量数量积的类型及求法

(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ?=?;二是坐标公式

1212a b x x y y ?=+;三是利用数量积的几何意义.

(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 17.C

【分析】

根据三角形外心、重心的概念,以及外心、重心的向量表示,可得结果. 【详解】

由123||||||1OP OP OP ===,可知点O 是123PP P ?的外心, 又1230OP OP OP ++=,可知点O 是123PP P ?的重心, 所以点O 既是123PP P ?的外心,又是123PP P ?的重心, 故可判断该三角形为等边三角形, 故选:C 【点睛】

本题考查的是三角形外心、重心的向量表示,掌握三角形的四心:重心,外心,内心,垂心,以及熟悉它们的向量表示,对解题有事半功倍的作用,属基础题. 18.C 【分析】

由向量的线性运算可知2OB OC OA AB AC +-=+,所以()

0BC AB AC ?+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】

由题意,()()

2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()

0BC AB AC ?+=,

取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ?=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.

【点睛】

本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 19.C 【解析】 【分析】

根据向量的数量积运算和向量的线性表示可得,

()()2

2

254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出

012cos 54cos t θθ

+=

+,再由01

05t <<,可求得夹角θ的取值范围.

【详解】 因为2cos OA OB θ?=,()1PQ OQ OP t OB tOA =-=--,

()()22

254cos 24cos 1PQ PQ t t θθ==+-++,

∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ

+=

+,又01

05t <<,则

12cos 1054cos 5

θθ+<

<+,得1

cos 02θ-<<,∵0θπ≤≤,

所以223ππθ<<,

故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 20.C

相关主题