搜档网
当前位置:搜档网 › 鸿一膜科技陶瓷膜技术样本

鸿一膜科技陶瓷膜技术样本

陶瓷膜的开发及应用

收稿日期:2009-07-15 作者简介:严立云(1979)),河北唐山人,吉林师范大学物理学院讲师。工学硕士,研究方向:功能材料。 陶瓷膜的开发及应用 严立云 (吉林师范大学,吉林四平 136000) 摘 要:陶瓷膜是以无机陶瓷材料经特殊工艺制备而形成的非对称膜,呈管状及多通道状。陶瓷膜分离技术是近些年来国际上发展迅速的高科技之一,广泛应用在化工、食品、医药、环保等行业的液体中杂质的分离过程中,并显示出独特的优势和广阔的前景。本文首先介绍了陶瓷膜的发展及几种主要制备技术,接着介绍了其应用情况,最后对其前景进行了展望。 关键词:陶瓷膜;制备;应用 中图分类号:T Q174 文献标识码:A 文章编号:1008-7508(2009)05-0047-03 陶瓷膜也称CT 膜,是固态膜的一种,主要是A12O3、ZrO2、T iO2和SiO2等无机材料经特殊工艺制备而成的非对称多孔膜。陶瓷膜呈管状及多通道状,管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体)被膜截留而达到分离、浓缩、纯化和环保等目的。陶瓷膜具有化学稳定性好,能耐酸、耐碱、耐有机溶剂,机械强度大,可反向冲洗,抗微生物能力强,耐高温,孔径分布窄,分离效率高等优点,在化工、冶金、食品、医药、环保等领域得到广泛的应用。 一、陶瓷膜的开发 陶瓷膜的研究始于20世纪40年代,其发展可分为三个阶段。从用于铀的同位素分离的核工业时期进入到以无机微滤膜和超滤膜为主的液体分离时期和以膜催化反应为核心的全面发展时期。20世纪90年代,溶胶)))凝胶技术的出现标志着无机膜的研究与应用进入第三个阶段,即以气体分离应用为主和陶瓷膜分离器)反应器组合构件的研究阶段。 目前已商品化的多孔陶瓷膜的构形主要有平板、管式和多通道三种。规模应用的陶瓷膜通常采用多通道构形,即在一个圆截面上分布着多个通道,一般通道数为7、19和37,[7]分别用来截 留直径在30~50nm 、100~200nm 、800~1000nm 范围的粒子。 无机陶瓷膜的主要制备技术有:溶胶-凝胶法、固态粒子烧结法、分相法、化学气相沉积法、物理气相沉积法等。目前多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和溶胶-凝胶法为主。前者主要用于制备微孔滤膜,而后者主要用来制备超滤膜。 从发展趋势来看,膜制备技术的发展主要在两个方面:一是在多孔膜研究方面,进一步完善已商 品化的无机超滤和微滤膜,发展具有分子筛分功能的纳米滤膜、气体分离膜和渗透汽化膜;二是在致密膜研究中,超薄金属及其合金膜和具有离子电子混合传导能力的固体电解质膜是研究的热点。 二、陶瓷膜的主要应用 由于陶瓷膜具有很多优异之处,目前已在多个Journal of Jili n Radio and T V University No.5,2009(T otal No.95) 5吉林广播电视大学学报6 2009年第5期(总第95期) 学术论坛

陶瓷膜过滤技术与设备

陶瓷膜过滤技术与设备 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:本文通过归纳简单介绍了以陶瓷纳滤膜为代表的无机膜技术及其成套设备主要构成,仅用于提供给广大膜分离环保工程技术人员交流学习与探讨之用。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。 关键词:陶瓷纳滤技术,陶瓷纳滤膜,陶瓷膜技术,陶瓷膜设备,膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图

膜分离技术

膜分离技术 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半 透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔。 膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。 微滤(MF)通常孔径范围在0.1~1微米,大于1微米不能通过。 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤(UF),膜两侧需压力差,膜孔径在0.05um至1nm之间,通常截留分子量范围在1000~300000。 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm 之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,

超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤(NF),孔径为几纳米,截留分子量在80~1000的范围内。 是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广阔的应用前景。 对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。 反渗透(RO),以膜两侧静压为推动力,反渗透仅让水透过膜,能截留所有的离子。 是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具

陶瓷膜使用手册

天津科建科技发展有限公司 2006年4月

陶瓷膜简介 一、陶瓷膜性能指标 支撑体结构:23通道多孔陶瓷芯 外形尺寸:膜管外径φ25mm,通道内径φ3.5mm,管长1178mm 膜材质:氧化锆、三氧化二铝、二氧化钛 膜孔径:1.4μm 爆破压力:≥9.0MPa 最大工作压力:≤1.0MPa pH适用范围:0~14 工作温度:≤350℃ 灭菌温度:121℃-30分钟 单只膜面积:0.35m2 抗氧化剂性能:优 抗溶剂性能:优 二、23通道陶瓷膜组件参数

三、膜管的检验与安装 注意事项:安装和搬运膜管时,应尽量防止碰撞和震动,搬运膜管包装箱需托住底部。 1、检验: a、打开膜管包装箱,观察箱内泡沫垫有无损坏,膜管有无明显的损坏迹象。 b、若运输过程中包装损坏,则需进一步检查膜管是否损坏。将膜管竖放,下 端堵住,从上端向每个通道内注满水,观察膜管外表面是否有异常渗漏,如出现异常渗漏则说明膜管已破损,不能使用。 2、安装: a、将硅橡胶密封圈装在膜管一端。 b、将膜组件壳体水平放置,膜管由周边至中心逐根插入。 c、将膜管另一侧密封圈套上,使膜管端面与膜壳平齐,且密封圈端面整齐, 在一个水平面上。 d、一人扶稳壳体,另一人将组件压板扣上,拧紧周边八只M10的螺栓,直 至压板与壳体花板密合。注意将密封圈置于压板槽内。 e、将另一压板装上。 f、将组件轻轻平放。 注意:1.4μm的除菌膜有方向,膜管外侧的箭头方向与泵出口流体流动方向要一致。 四、组件密封性能检验 组件使用之前,更换密封圈或膜管之后,应进行如下试验。 1、放空组件壳体中液体,堵住膜管的一个主进料口和一个渗透侧出口,临时堵 住另一个渗透侧出口,垂直放置膜管组件,从上主进料口灌水至大量气泡被排除; 2、从上渗透侧口处注入最大压力不超过0.03MPa的空气,如果密封效果好,则 液面上见不到更多的气泡,若密封效果不好或密封圈位置不正确,气泡将会

陶瓷膜知识

陶瓷膜 超滤膜技术与超滤膜设备 1. 综述 超滤膜是利用筛分原理进行分离,它对有机物截留分子量从10000~100000 Dalton可选,适用于大分子物质与小分子物质的分离、浓缩和纯化过程。 从膜分离装置发展过程来看,超滤装置是伴随着反渗透装置的开发而发展起来的。超滤装置可代替传统的板框式、中空纤维式等超滤形式,从而高效、节能、环保的实现物料的过滤分离、纯化、浓缩。 2.超滤技术的应用 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、乳品工业、饮料工业、医药工业、医疗、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。 3.超滤膜系统的优点 $超滤膜元件用知名公司产品,确保了客户得到目前世界上最优质的有机膜元件,从而确保高截留性能和高膜通量。 $系统回收率高,所得产品品质优良,可实现物料的高效分离、纯化及高倍数浓缩。 $处理过程无相变,对物料中组成成分无任何不良影响,且分离、纯化、浓缩过程中通过冷却系统始终使物料处于常温状态,特别适用于热敏性物质的处理,完全避免了高温对生物活性物质破坏这一弊端,有效保留原物料体系中的生物活性物质及营养成分。 $系统能耗低,生产周期短,与传统工艺设备相比,设备运行费用低,能有效降低生产成本,提高企业经济效益。 $系统工艺设计先进,集成化程度高,结构紧凑,占地面积少,操作与维护简便,工人劳动强度低。$系统制作材质采用卫生级不锈钢,全封闭管道式运行,现场清洁卫生,满足GMP或FDA生产规范要求。$控制系统可根据用户具体使用要求进行个性化设计,结合PLC先进的控制软件,现场在线集中监控重要工艺操作参数,避免人工误操作,多方位确保系统长期稳定运行。 陶瓷膜过滤:超滤膜的孔径范围在:0.01μm—0.05μm;微滤膜的孔径范围在0.05μm——1.4μm 陶瓷膜有点:机械强度大,耐磨性好 孔径分布窄,分离精度高 耐高温,适用于高温过滤过程 使用寿命长,综合成本低,性价比高 浓缩倍数高,降低水使用量,减少浓缩废水排放 PH耐受范围宽,耐酸,耐碱,耐有机溶剂及强氧化剂性能好 易清洗,可高温消毒,反向清洗 GT膜其一是制造过程复杂,成本高,价格昂贵;其二是膜通量问题,只有克服膜污染并提高膜的过滤通量。

无机陶瓷膜分离设备性能描述

无机陶瓷膜分离设备性能描述 2020.04.20

无机陶瓷膜分离设备性能描述 无机陶瓷膜设备包括微滤陶瓷膜设备、超滤陶瓷膜设备、纳滤陶瓷膜设备,该设备工业化应用成熟。无机陶瓷膜设备可取代传统的澄清过滤、除菌过滤和分离及部分浓缩工艺,与小型无机陶瓷膜实验设备的区别是处理量的不同,主要应用于工业化大生产中。 无机陶瓷膜元件及组件是以氧化铝、氧化钛、氧化锆等材料经特殊工艺制备而成的多孔非对称膜。陶瓷膜过滤是一种“错流过滤”形式的流体分离过程:在压力作用的驱动下,原料液在膜管内流动,小分子物质透过膜,含大分子组分的浓缩液被膜截留,从而使流体达到分离、浓缩、纯化的目的。 无机陶瓷膜元件的过滤精度涵盖微滤、超滤、纳滤,陶瓷微滤膜的过滤孔径范围在50 - 800 nm之间,超滤膜的截留分子量在2kDa ~ 100kDa之间,而纳滤膜的截留分子量在 200-750Da,可根据物料的粘度、悬浮物含量选择不同孔径的膜,以达到澄清分离或浓缩的目的。 无机陶瓷膜设备性能描述 1、过滤级别

分离精度高,过滤级别可选,处理效果非常稳定,长期运行截留性能无变化,根据客户不同需求,可分别选用不同过滤级别的陶瓷膜管。 2、通量及品质 可维持高通量下的长期稳定运行,所得产品品质优良。一改传统过滤方式过滤的澄明度低、除菌不彻底、无法连续生产、劳动强度大、产品品质低等缺点。 3、抗污染性及截留性能 抗污染能力强,整体为无机材质耐有机物污染以及微生物的侵蚀。截留效果稳定,高温或酸碱介质对其截留效果没有明显影响。 4、耐高温、PH耐受范围宽、抗氧化性能好 陶瓷膜管耐高温性能好,可处理高温液体,并用蒸汽反冲再生和高温原位消毒灭菌。机械强度大,PH适用范围广,耐酸、耐碱、耐有机溶剂及强氧化剂性能好。 5、错流过滤方式,膜污染程度轻、膜性能稳定

陶瓷膜技术的特点

陶瓷膜技术的特点 1 陶瓷膜 陶瓷膜是以无机陶瓷材料经特殊工艺制备而成的非对称膜,呈管状或多通道状,管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体颗粒、液体液滴)被膜截留从而达到分离、浓缩和纯化之目的。 2 陶瓷膜性能指标 支撑体结构:19通道多孔氧化铝陶瓷芯,氧化铝含量大于95% 外形尺寸:膜管外径φ30mm,通道内径φ4mm,管长1015mm 膜材质:氧化锆、氧化铝、氧化钛 膜孔径:0.8μm、0.5μm 、0.2μm、50nm、10 nm 、1nm 爆破压力:60MPa pH适用范围:0~14 膜管烧结温度:大于800度 抗氧化剂性能:优 抗溶剂性能:优 3 陶瓷膜过滤系统的结构优越性 膜孔为刚性且烧结在一起,高压或压力脉冲不会改变微孔尺寸或损坏膜,对于物料的选择筛选具有稳定单一性 · 易于实现全自动化 · 由于是组件设计,易于工业放大 · 操作简单,易于清洗和消毒 · 无需添加溶剂,不会引入其他化学成分,防止二次污染 · 密封件选用硅橡胶或聚四氟乙烯,耐溶剂性好

· 滤孔呈不对称分布,可实现反向冲洗,恢复性能 · 膜材料及辅助设备材料均为无污染材料,可实现GMP规范要求 4 陶瓷膜过滤系统的工艺优越性 · 产品不含固形物,可最大限度的减少离交和吸附工艺中的污染 · 无需助滤剂(如硅藻土等) · 可在低温下操作,保证产品活性 · 可减少后续工艺中有机溶剂的使用量 · 与传统工艺相比,可提高产品收率 · 无相变,低能耗 · 最少的废物排放 · 耐酸耐碱,易于清洗 · 设备系统占地面积小 · 降低投资,劳动力和维修费用 · 仅需消耗水,空气,电和清洁剂 5 无机陶瓷膜与有机膜相比的优越性 · 无机陶瓷膜耐高温性能优于有机膜,在生产过程中可直接用蒸汽或加热灭菌消毒。 · 无机陶瓷膜耐化学腐蚀性好,可使用各种不同的清洗剂进行彻底清洗,膜通量可完全恢复,使用寿命长,可达8年以上 · 无机膜的膜孔分级精细,因而能准确有效地将原液中的某种成分分离,从而达到去除或提取的目的,这是有机膜所做不到的。 6 膜分离技术与萃取技术、离子交换分离技术的比较 · 膜分离技术在常温下操作,无相变,可避免组分受热,不破坏主要成分。 ·膜分离技术在操作过程中不混入其他杂质,避免了萃取过程中有机溶剂的夹带对组分的影响

陶瓷膜过滤器工作原理

陶瓷膜过滤器工作原理 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。本文简单介绍下以陶瓷膜为代表的无机膜材料及其分离器构成与工作原理。 关键词:膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 什么是膜?膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图 2 什么是陶瓷膜 2.1陶瓷膜是采用高纯度α-Al2O3在高温条件下烧制而成,具有筛分过滤作用的多孔固体连续介质。南京博滤工业无机陶瓷膜呈不对称结构,由三层组成:支撑层、过渡层和分离层。

陶瓷膜及测试标准汇编

管式陶瓷微孔滤膜元件(HY/ T 063-2002) 及其测试方法(HY / T 0 6 4-2002)汇编 3 定义 本标准采用下列定义 3 . 1陶瓷微孔滤膜c e r a mi c mi c r o p o r o u s f i l t r a t i o n m e m b r a n e 陶瓷微孔滤膜是采用多孔陶瓷材料制成的压力推动型膜,包括陶瓷微滤膜、超滤膜 3 . 2 孔隙率p o r o s i t y 孔隙率是膜的微孔总体积( 与微孔大小及数量有关) 与膜的总体积的百分比率,以%表示。 4 分类与型号 4.1 分类 管式陶瓷微孔滤膜按通道数不同可划分为单管和多通道两种形式,按其平均孔径大小可分为陶瓷 微滤膜和陶瓷超滤膜。陶瓷微滤膜的平均孔径在50nm -104nm之间,常用孔径规格主要有5000n m, 1000nm, 800nm, 500nm, 200nm, 100nm等几种; 陶瓷超滤膜的平均孔径在2nm-50nm之间,常用的孔径规格主要有50nm, 20nm, 4nm等几种。 4.2 型号 陶瓷微孔滤膜元件的型号由代号和阿拉伯数字按下列规则组成。 4.2. 1 外型规格以大写的英文字母表示。常见的规格见表1所示。

4.2.2 膜材料代号以金属元素符号表示,几种常用的膜材料见表2. 示例: CM-M-800-C-Al 表示陶瓷微孔滤膜元件为:cm为陶瓷微孔滤膜元件,M为微滤,孔径为800 nm,通道数为19个通道,外径为30 mm,膜材料为氧化铝。 5 要求及测试方法(T) T 3 定义 本标准采用下列定义。 T 3.1 干膜d r y m e mb r a n e 干膜是指孔内无浸润剂,并充满渗透剂的陶瓷微孔滤膜。 T 3.2 湿膜we t me mb r a n e 用浸润剂充分浸润后的陶瓷微孔滤膜称为湿膜。 T 4 主要试剂和材料 本方法中所用下列试剂均为分析纯。 —纯净水: 符合G B 1 7 3 2 3 各项技术指标。 —固体N a O H. —浓度为9 8 %的硫酸。 —异丁醇。 —异丙醇。 —甲基红指示剂: 0 . 1 %的甲基红指示剂。 —酚酞指示剂: 1 %的酚酞指示剂。 T 5 仪器和设备 —分析天平: 感量为0. 001g —工业天平: 最大称量1k g , 感量为0. 01 g , 超声清洗仪。

陶瓷膜分离技术在中药口服液中的应用

陶瓷膜分离技术在中药口服液中的应用 中药现代化的重要内容之一就是生产过程中的提取浓缩、分离纯化等关键单元技术的现代化,以下是为大家搜集的一篇探究陶瓷膜分离技术在中药口服液中应用的,供阅读参考。 清脑复神液收载于卫生部颁布的药品标准中药成方制剂第九册(WS3-B-1838-94),是 由人参、黄芪、鹿茸、菊花、黄柏、山楂等药材组成的纯中药口服液,具有清心安神、化痰醒脑、活血通络的功效,临床用于治疗神经衰弱、失眠、顽固性头痛,脑震荡后遗症所致头痛、眩晕、健忘、失眠等症[1].目前,其精制工艺为静置15d,该工艺存在生产工时长,生产成本高,生产效率低等缺点。 膜分离技术是以选择性透过膜为分离介质,以外界能量或化学位差为推动力,对混合物中特定组分实现分离、提纯和浓缩的分离技术,具有操作过程简单、节能、无相变、无污染等优点,已广泛用于食品、化工、生物、制药等领域[2-4].近年来,膜分离技术也广 泛应用于中药口服液的研究与生产中[5-7].然而在实际操作过程中,由于中药提取液组分 复杂,往往含有较多的杂质成分,直接运用膜分离技术会造成膜污染加剧,从而引起的膜通量显着下降[8-11]. 清脑复神液的溶剂为10%~20%乙醇,对有机膜材质有一定的溶蚀性能,故本实验采用陶瓷膜分离技术,对其精制工艺进行再评价研究。并用活性炭吸附的方法对滤过前药液进行预处理,以减少对陶瓷膜的污染,同时对滤过压力、温度、药液收集量等进行考察,优化滤过工艺参数。以解决清脑复神液目前生产工时长、生产成本高、生产效率低等问题,为陶瓷膜分离技术在中药口服液中的应用提供示范性研究。 1仪器与试药 FA2004分析电子天平,上海良平仪器仪表有限公司;DZF-6050A真空烘干箱,北京 中兴伟业仪器有限公司;HH-S6电热恒温水浴锅,北京科伟永兴仪器有限公司;APLD-90液 体搅拌机90D,广州市安培力机械制造有限公司;UV230II高效液相色谱仪,大连依利特分 析仪器有限公司;YT600-1J蠕动泵,保定兰格恒流泵有限公司;UV2300紫外可见分光光度计,上海美谱达仪器有限公司;陶瓷膜,50、100、200nm,江苏久吾高科技股份有限公司; 耐震压力表,成都天威仪表厂。 活性炭(批号20120927)、十二烷基苯磺酸钠(批号2014093001)、次氯酸钠(批号2014122301)、氢氧化钠(批号2014090201),成都市科龙化工试剂厂;盐酸小檗碱对照品(质量分数>98%,批号110713-201212)、芦丁对照品(批号100080-200707,质量分 数>98%),均购自中国食品药品检定研究院;清脑复神液浸渍提取液,由实验室依据清脑

陶瓷膜反应分离技术在精细化工领域中的应用

陶瓷膜反应分离技术在精细化工领域中的应用 邢卫红陈日志张利雄徐南平 (南京工业大学化工学院、江苏省材料化学工程重点实验室、南京工业大学) 一、膜反应器发展概况 早在上个世纪60 年代末,Michaels 就提出:若将具有分离功能的膜应用于化学工程,即把膜与反应器合于一体,同时兼有反应与分离功能的膜反应技术,可节省投资,降低能耗,提高收率,必将会产生新的化工过程。 膜反应器技术首先在研究开发相对成熟的有机膜领域得到实施,有机膜固有的一些特性决定了这一应用仅局限于条件较为温和的均相催化和生物体系。自上世纪80 年代中期,随 着无机膜特别是具有性质稳定的无机膜的开发,为膜在苛刻条件下的应用开辟了途径。因无机膜具有高温下的长期稳定性、对酸碱的优良化学稳定性、高压下的机械稳定性以及寿命长等一些优点,无机膜反应器的开发引起了众人的关注。 目前,无机膜反应器的大多数研究主要针对气相反应,而针对液相反应过程的研究还比 较少。液相无机膜反应器中,无机膜主要为多孔性膜,如丫-Al 2Q、a -Al 2Q、TQ2、ZrO2等 或以多孔性膜为支撑层的致密金属膜,如Pd/ a -Al 203复合膜。膜在系统中的作用主要可归 纳为:分离产物、催化剂的载体、分离回收催化剂、气液分布器、液体微量分布器等。所使用的催化剂可以悬浮在液相中,也可以通过离子交换、表面浸渍、有机金属化学蒸汽沉积等方法负载在膜的表面上8 催化剂或以颗粒形式均匀分布在膜上或以薄膜的形式附在多孔膜支撑体上9 或浸入膜孔内。催化剂负载在膜上可以避免催化剂分离回收的难题,但这不利于催化剂的高效使用。催化剂处于悬浮态的无机膜反应器中,反应器与膜组件的耦合有两种方式:分置式、一体式,如图1、图 2 所示。

陶瓷膜

陶瓷膜元件 一、陶瓷膜简介 陶瓷膜主要是A12O3,Zr02和Ti02等无机材料制备的多孔滤膜,具有有机膜无法替代的许多优点:化学稳定性好;耐酸、耐碱、耐有机溶剂;刚性和机械强度好;可反向冲洗;抗微生物侵蚀,不与微生物发生作用;抗化学药剂侵蚀;耐高温耐磨损;孔径分布窄,膜孔不变形;过滤精度高;抗污染能力强;附加或预处理工艺少;清洗容易操作简便,膜再生性能好;膜分离效率高等特点。陶瓷膜在食品工业、生物工程、环境工程、化学工业、石油化工、治金工业、机械加工等领域得到愈来愈广泛的应用。

陶瓷膜是以氧化铝、氧化钛、氧化锆等材料经特殊工艺制备而成的多孔非对称膜。陶瓷膜过滤是一种“错流过滤”形式的流体分离过程:在压力作用的驱动下,原料液在膜管内流动,小分子物质透过膜,含大分子组分的浓缩液被膜截留,从而使流体达到分离、浓缩、纯化的目的。 陶瓷膜过滤精度涵盖微滤和超滤,微滤膜的过滤孔径范围在0.05μm至1.4μm之间,超滤膜过滤精度范围可在10KDa-50KDa之间。可根据物料的粘度、悬浮物含量选择不同孔径的膜,以达到澄清分离的目的。 无机陶瓷膜具有耐高温、耐化学腐蚀、机械强度高、抗微生物能力强、渗透量大、可清洗性强、孔径分布窄、分离性能好和使用寿命长等特点,目前已在化工与石油化工、食品、生物和医药等领域分离工艺获得成功应用。 陶瓷膜设备主要特点: 1、机械强度大,耐磨性好; 2、耐高温,适用于高温过滤过程; 3、使用寿命长,设备综合成本低,性价比高; 4、PH耐受范围宽,耐酸、耐碱、耐有机溶剂及强氧化剂性能好; 5、易清洗,可高温消毒、反向冲洗,适于除菌过滤过程;

6、使用寿命长,某些行业使用寿命大于5年,设备综合成本低,性价比高 7、自动化,半自动化,手动设计系统兼备,操作方便 8、可以实现连续进料、连续出滤渣和滤液 9、具有高的切向流速,降低膜表面的浓差极化现象,膜通量稳定 关于发酵液澄清除杂新技术 点击次数:279 发布日期:2009-6-16 来源:本站仅供参考,谢绝转载,否则责任自负 BFM膜分离系统简介 在各种发酵液制药生产中,除杂澄清过滤中使用膜分离技术产生的能耗大、膜易污染、占地大、投资大等问题。在有些中药和原料药等的生产过程中,由于原料粗糙,通常采用平板膜或陶瓷膜过滤的工艺方式,但系统膜面积装填密度小、投资大、占地面积大、膜抗污染程度低、运行成本高等缺陷使应用受到限制。 然而如果采用卷式膜,虽然装填密度大、投资小、占地面积小、运行成本低的特点,但由于对进料要求高(需达到真溶液要求),使整个分离工艺变得复杂,系统可靠性和稳定性变差;目前,在已应用的工业系统中,大部分系统故障都是因进料条件不能满足要求而导致的。 为此,厦门天泉鑫专门针对以上问题,组织相关技术领域专家学者,进行攻关研制。于今年推出的BFM膜分离设备,并已经在乳酪废水蛋白回收、赤霉素发酵液板框滤液现场中试实验验证,得到用户肯定,其技术性能稳定、经济性十分显著,已形成合作意向。

陶瓷膜分离技术在湿法冶金中的应用研究

第31卷第1期膜科学与技术V o l.31N o.1 2011年2月M EM BR AN E SCI EN CE A ND T ECH N OL OG Y F eb.2011 陶瓷膜分离技术在湿法冶金中的应用研究 姚志春1,胡晓东2,段雅峰2 (1.兰州商学院,兰州730020; 2.兰州长城新元膜科技有限公司,兰州730000) 摘要:采用0.2L m的Al2O3膜,精滤工业碳酸钠溶液、含草酸钴水溶液和硫酸镍溶液等,研 究获得这些溶液的技术参数,为陶瓷膜的工业化应用提供基础数据.实验结果表明,经陶瓷膜 精滤后的溶液清晰、透明,有价金属杂质离子含量和含油量降低,精滤后溶液的物理和化学指 标可达到工业生产的标准.采用陶瓷膜精滤工业碳酸钠溶液、含草酸钴水溶液、硫酸镍溶液等 能够保持较高的膜通量,而且受污染的膜经过清洗和再生,通量可以恢复,能满足工业连续生 产的要求. 关键词:陶瓷膜;工业碳酸钠溶液;含草酸钴水溶液;硫酸镍溶液;精滤 中图分类号:T Q028.8文献标识码:A文章编号:1007-8924(2011)01-0097-04 在湿法冶金生产过程中,常会涉及到料液的固液分离、纯化洗涤、除去有机物及有机物的回收等工艺.传统工艺大多采用滤布、陶管、纤维球、活性碳等过滤材料,虽能满足一定的工艺要求,但由于材料特性所限,在生产中常出现跑滤、过滤精度低、分离效果不彻底、产品无法进行更深一层的分级、纯化,直接影响产品的质量等级,加之传统工艺的自动化程度低,劳动强度大,给企业的技改和产品的开发以及产业链的延伸带来了很大困难. 陶瓷膜具有很好的物理化学性能[1-10],很适用于湿法冶金中的各种料液精滤处理.但目前有关在湿法冶金工业生产过程中采用无机陶瓷膜的报道还较少[7].本研究中,考虑到工业碳酸钠溶液、含草酸钴水溶液、硫酸镍溶液等具有碱性大、温度高、浓度高、溶液混浊、不透明,有价金属杂质离子含量较高的特点,选用无机陶瓷膜进行试验研究,以获得这些溶液的技术参数,为大规模的工业化应用提供基础数据和设计依据. 1实验部分 1.1料液情况 (1)N a2CO3溶液:固体N a2CO3由甘肃金昌化工总厂生产.处理料液为混浊的土黄色不透明N a2 CO3溶液,是将固体Na2CO3溶于纯水中所得.其正常浓度10%~14%,比重1.05~ 1.15g/L.料液中含有灰土成份及Fe2+、Cu2+、M g2+、Pb2+等杂质. (2)含草酸钴的水液及浆液. (3)硫酸镍溶液:处理料液为P204萃取后的硫酸镍溶液,料液温度45e,料液pH=5,料液含油量:50~100m g/L. 1.2实验设备 T CM-SY-52A型实验设备,由兰州长城新元膜科技有限公司研制生产.其中,陶瓷膜管是新元膜公司的532mm@250mm19通道的0.2L m Al2O3膜,其膜面积0.052m2;CH L4-40供液及循环泵(丹麦格兰福公司);20L不锈钢原料(循环)罐(加工);在线清洗系统;电器控制系统.实验装置图如图1所示. 2试验方法 2.1系统运行过程 实验料液在循环泵的作用下平行流经膜表面,根据错流过滤原理,膜将原料液分离成两路,一路是通过膜的渗透液,由渗透液出口流出,;另一路料液 收稿日期:2009-12-15;修稿收到日期:2010-04-22 基金项目:兰州商学院重点项目(无编号) 作者简介:姚志春(1964-),男,甘肃人,工学硕士,讲师,主要从事膜技术应用、污水资源化方面的研究工作.

陶瓷膜过滤器技术规格

陶瓷膜过滤器技术规格书 一、产品概述陶瓷膜过滤器是对工业生产使用过程中的废水、使用的原水、废液进行处理的一种设备。使废水通过陶瓷膜过滤器后达到国家规定的排放标准或循环利用。陶瓷膜过滤器的核心部件- 陶瓷膜过滤管,它是以耐酸的陶瓷颗粒或石英、刚玉砂等为主要原料、添加少量无机粘结剂及氧化锆增强剂等多种原料进行科学配方,经素烧、粉碎、分级、成型、制膜等工序加工而成。陶瓷过滤管具有机械强度高、耐酸、耐碱、耐高温,再生能力强等特点。陶瓷膜系列过滤元件是在传统的多孔陶瓷过滤元件基础上,由过滤陶瓷部技术人员近两年来研制开发的一种高性能陶瓷表面过滤元件,其结构特点是孔径规格多,可适应各种水处理要求(最小孔径可达0.1卩m,最大600卩m、机械强度高、过滤阻力小的陶瓷支撑体和孔径较小(0.2 卩m-10^ m)的表面膜过滤层组成,它克服了传统过滤元件过滤精度低、过滤阻力大的缺点,具有传统的过滤元件和陶瓷膜过滤元件的双层优点。 耐酸度:》95 % 耐碱度:》92 % 气孔率:30-45% 抗压强度:11 MPa 抗弯强度:5.7±0.1 MPa 热稳定性:250 C 密度:1.45 ?1.52Kg/m3 处理介质温度:5?800 r 二、应用领域 1 、化工生产 ?氨气、氨水过滤 ?二次盐水过滤 ?碱液脱盐过滤 ?脱炭液过滤 ?双氰胺液体精过滤 ?硝酸、硫酸过滤 ?化肥行业中碳酸丙烯脂、醋酸铜氨液过滤以及碳酸钾的过滤 2、精细化工生产 ?各种液体活性炭过滤 ?终端溶液精滤、提纯 ?原料液精过滤(酸、碱、醇、酮水等) 3、制药生产 ?制药及生物化工液体的过滤与澄清 ?活性炭脱色过滤 ?催化剂(钯炭、镍等)的过滤 ?蒸汽过滤 4、水处理 ?各种生活用水、工艺用水处理,工业废水净化(焦化水、浊环水等)?适用于生产及工业的含油废水处理 ?水处理行业中工业水处理、工业循环冷却水净化、高纯工艺水净化

陶瓷膜过滤器技术规格

陶瓷膜过滤器技术规格书 一、产品概述 陶瓷膜过滤器是对工业生产使用过程中的废水、使用的原水、废液进行处理的一种设备。使废水通过陶瓷膜过滤器后达到国家规定的排放标准或循环利用。陶瓷膜过滤器的核心部件 - 陶瓷膜过滤管,它是以耐酸的陶瓷颗粒或石英、刚玉砂等为主要原料、添加少量无机粘结剂及氧化锆增强剂等多种原料进行科学配方,经素烧、粉碎、分级、成型、制膜等工序加工而成。陶瓷过滤管具有机械强度高、耐酸、耐碱、耐高温,再生能力强等特点。陶瓷膜系列过滤元件是在传统的多孔陶瓷过滤元件基础上,由过滤陶瓷部技术人员近两年来研制开发的一种高性能陶瓷表面过滤元件,其结构特点是孔径规格多,可适应各种水处理要求(最小孔径可达 0.1μm, 最大 600μm)、机械强度高、过滤阻力小的陶瓷支撑体和孔径较小(0.2μm-10μm)的表面膜过滤层组成,它克服了传统过滤元件过滤精度低、过滤阻力大的缺点,具有传统的过滤元件和陶瓷膜过滤元件的双层优点。 耐酸度:≥95 % 耐碱度:≥92 % 气孔率:30-45% 抗压强度:11 MPa 抗弯强度:5.7±0.1 MPa 热稳定性:250℃ 密度:1.45~1.52Kg/m3 处理介质温度:5~800℃ 二、应用领域 1、化工生产 · 氨气、氨水过滤 ·二次盐水过滤 ·碱液脱盐过滤 ·脱炭液过滤 ·双氰胺液体精过滤 ·硝酸、硫酸过滤 ·化肥行业中碳酸丙烯脂、醋酸铜氨液过滤以及碳酸钾的过滤 2、精细化工生产 ·各种液体活性炭过滤 ·终端溶液精滤、提纯 ·原料液精过滤(酸、碱、醇、酮水等) 3、制药生产 ·制药及生物化工液体的过滤与澄清 ·活性炭脱色过滤 ·催化剂(钯炭、镍等)的过滤 ·蒸汽过滤 4、水处理 ·各种生活用水、工艺用水处理,工业废水净化(焦化水、浊环水等) ·适用于生产及工业的含油废水处理 ·水处理行业中工业水处理、工业循环冷却水净化、高纯工艺水净化

陶瓷膜工艺介绍

一、陶瓷膜工艺介绍 陶瓷膜分离技术是基于多孔陶瓷介质的筛分效应而进行物质分离的技术,采用高效的“错流”过滤方式,达到目标成分进行分离、浓缩和纯化。 来自外界的淡盐水、回收盐水、工业水、滤液等进入配水桶进行配水。由化盐给料泵送入化盐池化盐。饱和粗盐水通过折流槽进入反应池,在折流槽中加入精致剂NaOH和NaCO3,NaCO3与粗盐水中的钙离子完全反应生成碳酸钙结晶沉淀,NaOH与粗盐水中的镁离子反应生成氢氧化镁胶体沉淀,反应后的粗盐水自流至中间池,经粗盐水输送泵送至粗盐水缓冲罐,在缓冲罐内加入NaClO,分解粗盐水中的有机物。缓冲罐后盐水经陶瓷膜过滤进料泵送至粗过滤器除去盐水中粒径大于1mm的大颗粒杂物,后送入过滤循环罐,由陶瓷膜过滤循环泵送往陶瓷膜过滤器进行过滤。 陶瓷膜过滤单元采用三级串联“错流”过滤方式,由陶瓷膜过滤循环泵先送入膜过滤器一级过滤组件过滤,一级组件出来的浓缩液进入二级过滤组件过滤;二级过滤组件出来的浓缩液进入三级过滤组件过滤。自陶瓷膜过滤器三级过滤组件浓缩液出口流出的浓缩盐水按比例和浓度排出一小部分进入的泥浆池,其余的回到过滤循环泵进口与供料泵送来的粗盐水混合,用于调整进料液的固液比后,实现控制浓缩液含固量和保证膜面流速的目的,然后经由过滤循环泵回到陶瓷膜过滤器内循环过滤。各级过滤组件过滤出的精制过滤盐水通过陶瓷膜过滤器各级渗透清液出口排出,在中和混合器中加入2~3%的亚硫酸钠消除游离氯后进入精制盐水槽,在精制盐水槽出口再次加入2~3%的亚硫酸钠调节盐水ORP后,经由精制盐水泵送至离子膜二次精制;泥浆池内的盐泥经板框压滤机分离出盐泥运出界区排放,滤液去化盐。 陶瓷膜过滤器在较长时间的运行后,因膜表面的污染可能会导致通量变化、过滤能力下降,需用10~15%盐酸对膜表面进行化学清洗使其再生,使膜通量得到恢复、过滤能力达到起始状态。清洗周期间隔时间为14天。 整个过程采用PLC自动控制,并通信至DCS,由DCS监控运行,大大减少了员工的操作强度。对陶瓷膜出口精致盐水设置在线浊度仪进行检测,并设置连锁,一旦浊度超标,陶瓷膜出口精致盐水阀自动关闭,盐水回到一级过滤进口进行循环。

陶瓷膜实验

实验九无机陶瓷膜分离技术实验 一、实验目的 二、基本原理 三、实验步骤 四、实验报告要求 五、思考题

实验目的 1.了解无机膜分离新技术; 2.了解无机陶瓷膜性能特点; 3.掌握影响无机膜分离过程的主要因素; 4.掌握无机陶瓷膜分离过程的实验操作技能。

基本原理 无机膜分离是一种新型的分离技术,它是借助于膜的选择渗透作用对混合物进行分离、分级、提纯、和富集的方法。无机陶瓷膜是无机膜中最常用的一种。陶瓷膜是以陶瓷材料如氧化铝、氧化锆、氧化钛等制成的不对称分离膜,呈单管状和多通道状,管壁密布微孔。在操作压差的作用下,小于膜孔孔径的粒子及溶剂流可以通过无机陶瓷膜而形成透过液;主流体在管路内循环,浓缩至一定程度后,收集或排放。无机陶瓷膜分离过程可以近似地认为是一个错流过滤的过程。 实验所用无机多孔分离膜主要由三层结构构成:多孔载体,过度层,活性分离层。如图所示。

基本原理 多孔载体的作用是保证膜的机械强度,对其要求是有较大的孔径和孔隙率,以增加渗透性,减少流体输送阻力。多孔载 化锆、碳、金属、陶瓷以及碳化硅材料制成。 渗透液

基本原理V 4 排放口V 2V 12V 3P 3 1 V 5 4排放口 V 7 排放口 V 83 P 2 P 1 T 3a 排放口透过液 出口 V 9V 6c 接空压机b 放空口5P 4无机陶瓷膜分离实验流程图1--原料罐;2--原料泵;3—转子流量计;4--膜组件;5--缓冲罐

1.关闭所有阀门; 2.加料液至原料罐中约10—20L;打开阀门Vl,V3、V6、 V8及电磁阀a(电磁阀的开关在控制面板上); 3.启动原料泵; 4.调节阀门V3、V8至所需流量和操作压差;观察主流体 及透过液的流动情况;用量筒在透过液出口处测量单位时间内透过液的流量(mL/min); 5.采用单因素分析的方法,测定透过液通量随操作压差、 流量的变化规律。固定流量,测定不同操作压差下透过液通量;固定操作压差,测定不同流量下的透过液通量(需要同时调节阀门V3、V8);

碳化硅陶瓷膜分离含油废水的应用

碳化硅陶瓷膜分离含油废水的应用 针对含油废水具有污染物浓度高、可生化性差、成分复杂且其所含有毒有害物质对生态系统、植物、土壤和水体有严重影响等特点,提出运用0.02um的多通道非对称碳化硅陶瓷膜对采油水进行了现场中试,陶瓷膜出水SS<1.0mg/L,油<10mg/L,粒径中值<1.0um。还考察了不同条件下碳化硅陶瓷膜通量和跨膜压差的变化,以及强化混凝过滤对膜通量的影响。最终达到提高炼油废水处理效率和减小环境二次污染风险的目的,使处理出水可成为重要的回用水资源,缓解水资源紧缺状况。 一、前言 随着经济和工业的快速发展,石油化工,金属工业,机械工业,食品加工等行业也在快速发展,进而产生了大量的含油废水。据统计,世界上每年至少有500~1000 万吨油类污染物通过各种途径进入水体,它已严重影响,破坏了环境,并且危害人体健康。含油废水是一种量大面广且危害严重的工业废水,具有COD,BOD 值高,有一定的气味和色度,易燃,易氧化分解,难溶于水的特点。 近年来,膜技术作为一门新型的分离、浓缩、提纯、净化技术在各个行业得到了广泛的应用,前景十分广阔。膜材料的选择也十分重要,常用的疏水膜有聚四氟乙烯、聚偏二氟乙烯和聚乙烯等。亲水膜有纤维素酯、聚砜、聚醚砜、聚砜/?聚醚砜、聚酰亚胺/?聚醚酰亚胺、聚酯肪酰胺、聚炳烯腈等具有亲水基团的高分子聚合物,以及如Al2O3?,TiO2?

和ZrO2等陶瓷膜等。与传统分离技术相比,膜分离具有设备简单、操作方面、分离效率高、节能等优点,是油田含油污水处理技术的重点发展方向之一。 从此可以看出,膜分离技术在含油废水处理中的研究与应用相当广泛,但此方法大多都用于有机膜,虽处理效率高,但极易被腐蚀,且不耐高温、PH值适应范围窄、机械强度低、孔径分布宽、渗透率低、易水解、易污染、较难清洗再生等缺点[2]。以无机粒子,如Al2O3和掺杂稀土元素Ce的纳米SiO2的复合粒子,对高分子材料进行共混改性所成的混合膜,虽极大地提高膜的亲水性。从而也提高膜的抗污染能力;但膜通量比无机膜低,清洗后通量恢复率也只有85%。 二、新型无机陶瓷膜的简介 无机陶瓷膜是固态膜的一种,是以由氧化铝、氧化钛、氧化锆等无机材料经高温烧结而成具有多孔结构的精密陶瓷过滤材料,多孔支撑层、过渡层及微孔膜层呈非对称分布,过滤精度涵盖微滤、超滤甚至纳滤。 无机膜具有耐高温、耐化学腐蚀、机械强度好、抗生性能强、可清洗性强、渗透量大、使用寿命长等特点,分离效果和清洗恢复性较好;但也存在较难清洗,难再生等缺点。张国胜等采用0.2 μm氧化锆膜处理钢铁厂冷轧乳化液废水,通过对膜的选择、操作参数的考察、过程的优化,获得了满意的结果,膜通量100 L/(m2˙h)时,含油质量浓度从5000 mg /L降至1 mg/L以下,截留率大于99 %,透过液中油质量分数小于0.001 %,并且该技术已实现了工业化应用。 陶瓷膜具有优异的热传导性、抗热震性、生物相容性、耐酸碱性、机械性能和化学惰性,以及低的热膨胀性,能够在必须承受高温和机械压力的腐蚀性环境中应用。因此,陶瓷膜除了具有无机膜的一般性能外,还具有许多一般无机膜所不具备的优点,被认为是一种无可取代各种无机膜的新型分离膜。 近年来,国内采用陶瓷膜处理油田采出水的报道也相应增加。张斌等[7]利用膜孔径为1nm的陶瓷膜处理高浓度聚醚废水并回收大分子聚醚多元醇。在跨膜压力为0.2MPa,温度43℃的条件下,渗透液中COD的去除率高达96%以上。 三、无机陶瓷膜的试验情况 本实验采用了XX公司CFU008实验装置。此装置带有机载传感器数据记录功能及用于工业膜过滤试验的PLC控制系统。 含浓油废水先经过预处理,去除其中的可见油、油泥及其他颗粒污染物,使预处理后的废水能够达到碳化硅陶瓷膜进料的要求。

相关主题