搜档网
当前位置:搜档网 › 毕业设计英文翻译

毕业设计英文翻译

毕业设计英文翻译
毕业设计英文翻译

使用高级分析法的钢框架创新设计

1.导言

在美国,钢结构设计方法包括允许应力设计法(ASD),塑性设计法(PD)和荷载阻力系数设计法(LRFD)。在允许应力设计中,应力计算基于一阶弹性分析,而几何非线性影响则隐含在细部设计方程中。在塑性设计中,结构分析中使用的是一阶塑性铰分析。塑性设计使整个结构体系的弹性力重新分配。尽管几何非线性和逐步高产效应并不在塑性设计之中,但它们近似细部设计方程。在荷载和阻力系数设计中,含放大系数的一阶弹性分析或单纯的二阶弹性分析被用于几何非线性分析,而梁柱的极限强度隐藏在互动设计方程。所有三个设计方法需要独立进行检查,包括系数K计算。在下面,对荷载抗力系数设计法的特点进行了简要介绍。

结构系统内的内力及稳定性和它的构件是相关的,但目前美国钢结构协会(AISC)的荷载抗力系数规范把这种分开来处理的。在目前的实际应用中,结构体系和它构件的相互影响反映在有效长度这一因素上。这一点在社会科学研究技术备忘录第五录摘录中有描述。

尽管结构最大内力和构件最大内力是相互依存的(但不一定共存),应当承认,严格考虑这种相互依存关系,很多结构是不实际的。与此同时,众所周知当遇到复杂框架设计中试图在柱设计时自动弥补整个结构的不稳定(例如通过调整柱的有效长度)是很困难的。因此,社会科学研究委员会建议在实际设计中,这两方面应单独考虑单独构件的稳定性和结构的基础及结构整体稳定性。图28.1就是这种方法的间接分析和设计方法。

在目前的美国钢结构协会荷载抗力系数规范中,分析结构体系的方法是一阶弹性分析或二阶弹性分析。在使用一阶弹性分析时,考虑到二阶效果,一阶力矩都是由B1,B2系数放大。在规范中,所有细部都是从结构体系中独立出来,他们通过细部内力曲线和规范给出的那些隐含二阶效应,非弹性,残余应力和挠度的相互作用设计的。理论解答和实验性数据的拟合曲线得到了柱曲线和梁曲线,同时Kanchanalai发现的所谓“精确”塑性区解决方案的拟合曲线确定了梁柱相互作用方程。

为了证明单个细部内力对整个结构体系的影响,使用了有效长度系数,如图28.2所示。有效长度方法为框架结构提供了一个良好的设计。然而,有效长度方法的

使用存在着一些困难,如下所述:

1、有效长度的方法不能准确核算的结构系统及其细部之间的互相影响。这是因为在一个大的结构体系中的相互作用太复杂不能简单地用有效长度系数K代表。因此,这种方法不能准确地测算框架单元实际需要的强度。

2、有效长度的方法无法获取结构体系中内力非弹性再分配,因为带有B1、B2系数的一阶弹性分析只证明二阶影响,但不是非弹性内力再分配。有效长度的方法只是保守的估计了最终承载大型结构体系的能力。

3、有效长度方法无法测算的结构体系受负荷载下的失效模式。这是因为荷载抗力系数相互作用方程不提供在任何负载下结构体系的失效模式的信息。

4、有效长度的方法与计算机程序不兼容。

5、有效长度的方法在涉及系数K的单独构件能力检测时需要耗费比较长的时间。随着电脑技术的发展,细部结构的稳定性和整体结构的稳定性这两个方面,可以通过结构的最大强度测定来被严格对待。图28.1就是这种方法的间接分析和设计方法。直接设计方法的发展被称为高级分析,或者更具体地说,二阶弹性分析框架设计。用这种直接的方式,无须计算有效长度系数,因为不需要规范方程包含的单独构件能力检测。凭借目前现有的计算技术,直接使用高级分析法技术框架设计是可行的。这种方法过去在办公室设计使用时一直被认为是不切实际的。本章的目的是提出一个切实可行的,直接的钢框架设计方法,使用高级分析法产生跟荷载抗力系数法的相同的结果。

利用高级设计分析的优点概述如下:

1、高级分析法是结构工程师进行钢结构设计的另一个工具,它的通过不是强制性的,而是为设计人员提供灵活的选择。

2、高级分析法直接获取了整个结构体系和细部结构极限状态的强度和稳定性,这样就不需要规范方程包含的单独构件能力检测。

3、相比荷载阻力系数设计法和允许应力设计法,高级分析法通过直接弹性二阶分析提供了更多结构性能的信息。

4、高级分析法解决了常规荷载阻力系数设计法中由于不兼容弹性全球分析和单元极限状态设计的困难。

5、高级分析法与计算机程序兼容性良好,但荷载阻力系数设计法和允许应力设计

法则无法与计算机程序兼容,因为它们在过程中都需要有对系数K的单独构件能力检测的计算。

6、高级分析法可以得到整个结构体系弹性内力再分配的结果,并且节约高度不确定的钢框架的材料。

7、过去在设计室使用高级分析法被认为不切实际,而现在则是可行的,因为个人电脑和工程工作站的能力正在迅速提高。

8、通过高级分析法测定的各项数据都接近了荷载抗力系数法测定的那些数据,因为高级分析法对荷载抗力系数法的柱曲线和梁柱的相互作用方程进行了校准。因此,高级分析法替代了荷载抗力系数法。

9、高级分析法比较高效,因为它完全消除了经常引起混淆的冗长的单独构件能力检测,包括荷载阻力系数设计法和允许应力设计法中的系数K的计算。

在各种高级分析法中,包括塑性区准塑性铰法,弹性区塑性铰法,名义负荷塑性铰法和改进塑性铰法,推荐使用改进塑性铰法,因为它保留了计算的效率和简便性及实际应用的准确度。这个方法是对简单的传统的弹塑性铰法的改进。其中包括一个简单的修改,证明在塑性铰位置截面刚度的逐步退化和包括细部两个塑性铰之间的逐步刚度退化。

表28.1中对常规荷载抗力系数法和高级实用性分析方法的关键因素做了比较。荷载抗力系数方法用来证明主要影响隐含在其柱强度和梁柱相互作用方程之中,而高级分析法通过稳定性的功能,刚度退化的功能和几何缺陷方面来证明那些影响,在28.2中有详细讨论。

高级分析法持有许多钢结构实际问题的答案,同样地,我们推荐寻找有效地合理

地完成框架设计方法提供给工程师,但这要符合荷载抗力系数规范。在下面的章节里,我们将提出符合荷载抗力系数钢框架结构设计的高级先进实用分析方法。该方法的有效性将通过比较基于精确塑性区解决方案和荷载抗力系数设计分析及设计结果的细部和框架的实际案例研究。大范围的案例研究和比较可以这种高级方法的有效性。

2.高级实用性分析

本节介绍了一种消除规范单独构件能力检测的直接设计钢框架的高级实用性分析方法。改进后的塑性铰法是由简单的传统的弹塑性铰法发展调整而来,实现了简单和真实的反映了实际情况。下一节将提供了最终确认该方法的有效性的核查方法。

高级分析能够验证连接的灵活性。常规分析和钢结构的设计通常在假设梁柱连接不是完全刚性或理想的固定下进行。然而,在大部分实际的连接是半刚性的并且它们的状态介于这两个极端的例子之间。在允许应力设计-荷载抗力系数规范,有两类特定的建筑:FR(完全受限)结构和PR(部分受限)结构。荷载抗力系数规范允许通过“合理途径”连接灵活性评估。

瞬间旋转的关系代表了连接的状态,已经完成多方面的试点连接工作和收集大批的瞬时旋转数据。有了这个数据库,研究人员已经开发了数个连接模型,包括线性,多项式,B曲线,动力和指数。鉴于此,Kishi和Chen提出的三参数幂函数模型被采用了。

在使用高级分析时,几何缺陷必须由框架单元加以塑造。几何缺陷在构造或架设过程中导致不可避免的错误。对于建筑结构的结构构件,几何缺陷的种类属于非线性和非垂直的。明确建模和等效名义载荷被研究人员用来证明几何缺陷。在这一章节中,发展了基于进一步减小构件切线刚度的新方法。这种方法提供了一种简易的途径用来证明没有输入名义载荷或明确几何缺陷的不完善的影响。

本节中描述的高级实用性分析方法仅限于受静载的两维支撑,无支撑,和半刚架。不考虑结构的空间状态,并且假定有足够的侧向支撑防止侧扭屈曲。假设W节就是这样的节可以在无局部屈曲情况下发挥全塑性时刻能力。强轴和弱轴弯曲宽凸缘部分的研究都采用高级实用性分析方法。该方法可被视为介于现在广泛使用的

常规荷载抗力系数方法和像在未来实际应用中塑性区的制定方法等的更严谨的高级分析/设计方法之间的一个临时的分析设计方法。

An Innovative Design for Steel Frame

Using Advanced Analysis

Introduction

The steel design methods used in the U.S. are allowable stress design (ASD), plastic design (PD), and load and resistance factor design (LRFD). In ASD, the stress computation is based on a first-order elastic analysis, and the geometric nonlinear effects are implicitly accounted for in the member design equations. In PD, a first-order plastic-hinge analysis is used in the structural analysis. PD allows inelastic force redistribution throughout the structural system. Since geometric nonlinearity and gradual yielding effects are not accounted for in the analysis of plastic design, they are approximated in member design equations. In LRFD, a first-order elastic analysis with amplification factors or a direct second-order elastic analysis is used to account for geometric nonlinearity, and the ultimate strength of beam-column members is implicitly reflected in the design interaction equations. All three design methods require separate member capacity checks including the calculation of the K factor. In the following, the characteristics of the LRFD method are briefly described. The strength and stability of a structural system and its members are related, but the interaction is treated separately in the current American Institute of Steel Construction (AISC)-LRFD specification [2]. In current practice, the interaction between the structural system and its members is represented by the effective length factor. This aspect is described in the following excerpt from SSRC Technical Memorandum No. 5 [28]: Although the maximum strength of frames and the maximum strength of component members are interdependent (but not necessarily coexistent), it

is recognized that in many structures it is not practical to take this interdependence into account rigorously. At the same time, it is known that difficulties are encountered in complex frameworks when attempting to compensate automatically in column design for the instability of the entire frame (for example, by adjustment of column effective length). Therefore, SSRC recommends that, in design practice, the two aspects, stability of separate members and elements of the structure and stability of the structure as a whole, be considered separately.

This design approach is marked in Figure 28.1 as the indirect analysis and design method.

In the current AISC-LRFD specification [2], first-order elastic analysis or second-order elastic analysis is used to analyze a structural system. In using first-order elastic analysis, the first-order moment is amplified by B1 and B2 factors to account for second-order effects. In the specification, the members are isolated from a structural system, and they are then designed by the member strength curves and interaction equations as given by the specifications, which implicitly account for second-order effects, inelasticity, residual stresses, and geometric imperfections [8]. The column curve and beam curve were developed by a curve-fit to both

theoretical solutions and experimental data, while the beam-column interaction equations were determined by a curve-fit to the so-called “exact” plastic-zone solutions generated by Kanchanalai [14].

In order to account for the influence of a structural system on the strength of individual members, the effective length factor is used, as illustrated in Figure 28.2. The effective length method generally provides a good design of framed structures. However, several difficulties are associated with the use of the effective length method, as follows:

1. The effective length approach cannot accurately account for the interaction between the structural system and its members. This is because the interaction in a large structural system is too complex to be represented by the simple effective length factor K. As a result, this method cannot accurately predict the actual required strengths of its framed members.

2. The effective length method cannot capture the inelastic redistributions of internal forces in a structural system, since the first-order elastic analysis with B1 and B2 factors accounts only for second-order effects but not the inelastic redistribution of internal forces. The effective length method provides a conservative estimation of the ultimate load-carrying

capacity of a large structural system.

3. The effective length method cannot predict the failure modes of a structural system subject to a given load. This is because the LRFD interaction equation does not provide any information about failure modes of a structural system at the factored loads.

4. The effective length method is not user friendly for a computer-based design.

5. The effective length method requires a time-consuming process of separate member capacity checks involving the calculation of K factors. With the development of computer technology, two aspects, the stability of separate members and the stability of the structure as a whole, can be treated rigorously for the determination of the maximum strength of the structures. This design approach is marked in Figure 28.1 as the direct analysis and design method. The development of the direct approach to design is called advanced analysis, or more specifically, second-order inelastic analysis for frame design. In this direct approach, there is no need to compute the effective length factor, since separate member capacity checks encompassed by the specification equations are not required. With the current available computing technology, it is feasible to employ advanced analysis techniques for direct frame design. This method has been considered impractical for design office use in the past. The purpose of this chapter is to present a practical, direct method of steel frame design, using advanced analysis that will produce almost identical member sizes as those of the LRFD method.

The advantages of advanced analysis in design use are outlined as follows: 1. Advanced analysis is another tool for structural engineers to use in steel design, and its adoption is not mandatory but will provide a flexibility of options to the designer.

2. Advanced analysis captures the limit state strength and stability of

a structural system and its individual members directly, so separate member capacity checks encompassed by the specification equations are not required.

3. Compared to the LRFD and ASD, advanced analysis provides more information of structural behavior by direct inelastic second-order analysis.

4. Advanced analysis overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method.

5. Advanced analysis is user friendly for a computer-based design, but the LRFD and ASD are not, since they require the calculation of K factor on the way from their analysis to separate member capacity checks.

6. Advanced analysis captures the inelastic redistribution of internal forces throughout a structural system, and allows an economic use of material for highly indeterminate steel frames.

7. It is now feasible to employ advanced analysis techniques that have been considered impractical for design office use in the past, since the power of personal computers and engineering workstations is rapidly increasing.

8. Member sizes determined by advanced analysis are close to those determined by the LRFD method, since the advanced analysis method is calibrated against the LRFD column curve and beam-column interaction equations. As a result, advanced analysis provides an alternative to the LRFD.

9. Advanced analysis is time effective since it completely eliminates tedious and often confused member capacity checks, including the calculation of K factors in the LRFD and ASD.

Among various advanced analyses, including plastic-zone, quasi-plastic hinge, elastic-plastic hinge, notional-load plastic-hinge, and refined plastic hinge methods, the refined plastic hinge method is recommended, since it retains the efficiency and simplicity of computation and accuracy

for practical use. The method is developed by imposing simple modifications on the conventional elastic-plastic hinge method. These include a simple modification to account for the gradual sectional stiffness degradation at the plastic hinge locations and to include the gradual member stiffness degradation between two plastic hinges.

The key considerations of the conventional LRFD method and the practical advanced analysis method are compared in Table 28.1. While the LRFD method does account for key behavioral effects implicitly in its column strength and beam-column interaction equations, the advanced analysis method accounts for these effects explicitly through stability functions, stiffness degradation functions, and geometric imperfections, to be discussed in detail in Section 28.2.

Advanced analysis holds many answers to real behavior of steel structures and, as such, we recommend the proposed design method to engineers seeking to perform frame design in efficiency and rationality, yet consistent with the present LRFD specification. In the following sections, we will present a practical advanced analysis method for the design of steel frame structures with LRFD. The validity of the approach will be demonstrated by comparing case studies of actual members and frames with the results of analysis/design based on exact plastic-zone solutions and LRFD designs. The wide range of case studies and comparisons should confirm the validity

of this advanced method.

2.Practical Advanced Analysis

This section presents a practical advanced analysis method for the direct design of steel frames by eliminating separate member capacity checks by the specification. The refined plastic hinge method was developed and refined by simply modifying the conventional elastic-plastic hinge method to achieve both simplicity and a realistic representation of actual behavior [15, 25]. Verification of the method will be given in the next section to provide final confirmation of the validity of the method. Connection flexibility can be accounted for in advanced analysis. Conventional analysis and design of steel structures are usually carried out under the assumption that beam-to-column connections are either fully rigid or ideally pinned. However, most connections in practice are semi-rigid and their behavior lies between these two extreme cases. In the AISC-LRFD specification [2], two types of construction are designated: Type FR (fully restrained) construction and Type PR (partially restrained) construction. The LRFD specification permits the evaluation of the flexibility of connections by “rational means”.

Connection behavior is represented by its moment-rotation relationship. Extensive experimental work on connections has been performed, and a large body of moment-rotation data collected. With this data base, researchers have developed several connection models, including linear, polynomial, B-spline, power, and exponential. Herein, the three-parameter power model proposed by Kishi and Chen [21] is adopted.

Geometric imperfections should be modeled in frame members when using advanced analysis. Geometric imperfections result from unavoidable error during fabrication or erection. For structural members in building frames, the types of geometric imperfections are out-of-straightness and

out-of-plumbness. Explicit modeling and equivalent notional loads have been used to account for geometric imperfections by previous researchers. In this section, a new method based on further reduction of the tangent stiffness of members is developed [15, 16]. This method provides a simple means to account for the effect of imperfection without inputting notional loads or explicit geometric imperfections.

The practical advanced analysis method described in this section is limited to two-dimensional braced, unbraced, and semi-rigid frames subject to static loads. The spatial behavior of frames is not considered, and lateral torsional buckling is assumed to be prevented by adequate lateral bracing.

A compact W section is assumed so sections can develop full plastic moment capacity without local buckling. Both strong- and weak-axis bending of wide flange sections have been studied using the practical advanced analysis method [15]. The method may be considered an interim analysis/design procedure between the conventional LRFD method widely used now and a more rigorous advanced analysis/design method such as the plastic-zone method to be developed in the future for practical use.

(完整版)_毕业设计英文文献51单片机中英文文献翻译_

AT89C51的概况 The General Situation of AT89C51 Chapter 1 The application of AT89C51 Microcontrollers are used in a multitude of commercial applications such as modems, motor-control systems, air conditioner control systems, automotive engine and among others. The domains also require that these microcontrollers are be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the component and at the system level. Intel Plaform Engineering department developed an object-oriented multi-threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of thisenvironment was not only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes (AT89C51). The paper describes the design and mechanism of this test environment, its interactions with various The 8-bit AT89C51 CHMOS microcontrollers are designed to engine-control systems, airbags, suspension systems, and antilock braking systems (ABS). The AT89C51 is especially well suited to applications that benefit from its processing speed and enhanced

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

毕业设计方案英文翻译资料中文

故障概率模型的数控车床 摘要:领域的失效分析被计算机数字化控制

软件开发概念和设计方法大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:软件开发概念和设计方法文献、资料英文题目: 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

外文资料原文 Software Development Concepts and Design Methodologies During the 1960s, ma inframes and higher level programming languages were applied to man y problems including human resource s yste ms,reservation s yste ms, and manufacturing s yste ms. Computers and software were seen as the cure all for man y bu siness issues were some times applied blindly. S yste ms sometimes failed to solve the problem for which the y were designed for man y reasons including: ?Inability to sufficiently understand complex problems ?Not sufficiently taking into account end-u ser needs, the organizational environ ment, and performance tradeoffs ?Inability to accurately estimate development time and operational costs ?Lack of framework for consistent and regular customer communications At this time, the concept of structured programming, top-down design, stepwise refinement,and modularity e merged. Structured programming is still the most dominant approach to software engineering and is still evo lving. These failures led to the concept of "software engineering" based upon the idea that an engineering-like discipl ine could be applied to software design and develop ment. Software design is a process where the software designer applies techniques and principles to produce a conceptual model that de scribes and defines a solution to a problem. In the beginning, this des ign process has not been well structured and the model does not alwa ys accurately represent the problem of software development. However,design methodologies have been evolving to accommo date changes in technolog y coupled with our increased understanding of development processes. Whereas early desig n methods addressed specific aspects of the

毕业设计英文翻译

使用高级分析法的钢框架创新设计 1.导言 在美国,钢结构设计方法包括允许应力设计法(ASD),塑性设计法(PD)和荷载阻力系数设计法(LRFD)。在允许应力设计中,应力计算基于一阶弹性分析,而几何非线性影响则隐含在细部设计方程中。在塑性设计中,结构分析中使用的是一阶塑性铰分析。塑性设计使整个结构体系的弹性力重新分配。尽管几何非线性和逐步高产效应并不在塑性设计之中,但它们近似细部设计方程。在荷载和阻力系数设计中,含放大系数的一阶弹性分析或单纯的二阶弹性分析被用于几何非线性分析,而梁柱的极限强度隐藏在互动设计方程。所有三个设计方法需要独立进行检查,包括系数K计算。在下面,对荷载抗力系数设计法的特点进行了简要介绍。 结构系统内的内力及稳定性和它的构件是相关的,但目前美国钢结构协会(AISC)的荷载抗力系数规范把这种分开来处理的。在目前的实际应用中,结构体系和它构件的相互影响反映在有效长度这一因素上。这一点在社会科学研究技术备忘录第五录摘录中有描述。 尽管结构最大内力和构件最大内力是相互依存的(但不一定共存),应当承认,严格考虑这种相互依存关系,很多结构是不实际的。与此同时,众所周知当遇到复杂框架设计中试图在柱设计时自动弥补整个结构的不稳定(例如通过调整柱的有效长度)是很困难的。因此,社会科学研究委员会建议在实际设计中,这两方面应单独考虑单独构件的稳定性和结构的基础及结构整体稳定性。图28.1就是这种方法的间接分析和设计方法。

在目前的美国钢结构协会荷载抗力系数规范中,分析结构体系的方法是一阶弹性分析或二阶弹性分析。在使用一阶弹性分析时,考虑到二阶效果,一阶力矩都是由B1,B2系数放大。在规范中,所有细部都是从结构体系中独立出来,他们通过细部内力曲线和规范给出的那些隐含二阶效应,非弹性,残余应力和挠度的相互作用设计的。理论解答和实验性数据的拟合曲线得到了柱曲线和梁曲线,同时Kanchanalai发现的所谓“精确”塑性区解决方案的拟合曲线确定了梁柱相互作用方程。 为了证明单个细部内力对整个结构体系的影响,使用了有效长度系数,如图28.2所示。有效长度方法为框架结构提供了一个良好的设计。然而,有效长度方法的

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

毕业设计英文资料翻译

毕业设计英文资料翻译 篇一:毕业设计(论文)外文资料与译文 大连东软信息学院高等教育自学考试毕业设计(论文)外文资料及译文 姓名: 准考证号: 专业: 助学单位: 大连东软信息学院 Dalian Neusoft University of Information张校辉020*********项目管理大连东软信息学院继续教育学院外文资料和译文格式要求 一、装订要求 1、外文资料原文(复印或打印)在前、译文在后、最后为指导教师评定成绩。 2、译文必须采用计算机输入、打印。 3、A4幅面打印,于左侧装订。 二、撰写要求 1、外文文献内容与所选课题相关。 2、译文汉字字数不少于3000字。 三、格式要求 1、译文字号:中文小四号宋体,英文小四号“Times New

Roman”字型,全文统一,首行缩进2个中文字符,1.5倍行距。 2、译文页码:页码用阿拉伯数字连续编页,字体采用“Times New Roman”字体,字号小五,页底居中。 3、译文页眉:眉体使用单线,页眉说明五号宋体,居中“大连东软信息学院高等教育自学考试毕业设计(论文)译文”。 -1- -2- -3- 篇二:毕业设计外文资料翻译 毕业设计外文资料翻译 题目静压轴承密封件的水压特性水泵和电机学院专业机械工程及自动化 班级 学生王道国 学号指导教师王栋梁 二〇一三年六月五日 济南大学毕业设计外文资料翻译 静压轴承/密封件的水压特性水泵和电机。第1部分:理 论和实验

X 王 A山口 横滨国立大学工学部,日本横滨240-8501 XX年11月26日,在修订后的XX年2月25日收到XX 年3月7日接受 摘要 在这项研究中,磁盘型静压推力轴承的特性支承同心的负载,模拟的主要水液压泵和马达, 轴承/密封件。该轴承是由不锈钢,钢/不锈钢和不锈钢/塑料组成。通过研究作为载荷之间的关 系的特性进行评估容量,口袋压力,膜厚,泄漏流率。对于弹性材料的杨氏模量是一个非线性应 力作用在密封件上表面和压缩应变之间的关系。的承载能力所表示的比例流体静力平衡不是只依 XX Elsevier科学有限公司版权所有 关键词:静压推力轴承,喷嘴,不锈钢,热塑性弹性变形,承载能力,水液压泵和马达 1介绍 近年来,已经引起了水的液压系统主要的兴趣,因为他们的特点是用户友好和环 境安全。他们有很多优势,因为它们是无公害,无火灾造成风险,成本低,并提供高

毕业设计(论文)外文资料翻译〔含原文〕

南京理工大学 毕业设计(论文)外文资料翻译 教学点:南京信息职业技术学院 专业:电子信息工程 姓名:陈洁 学号: 014910253034 外文出处:《 Pci System Architecture 》 (用外文写) 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 该生外文翻译没有基本的语法错误,用词准确,没 有重要误译,忠实原文;译文通顺,条理清楚,数量与 质量上达到了本科水平。 签名: 年月日 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 64位PCI扩展 1.64位数据传送和64位寻址:独立的能力 PCI规范给出了允许64位总线主设备与64位目标实现64位数据传送的机理。在传送的开始,如果回应目标是一个64位或32位设备,64位总线设备会自动识别。如果它是64位设备,达到8个字节(一个4字)可以在每个数据段中传送。假定是一串0等待状态数据段。在33MHz总线速率上可以每秒264兆字节获取(8字节/传送*33百万传送字/秒),在66MHz总线上可以528M字节/秒获取。如果回应目标是32位设备,总线主设备会自动识别并且在下部4位数据通道上(AD[31::00])引导,所以数据指向或来自目标。 规范也定义了64位存储器寻址功能。此功能只用于寻址驻留在4GB地址边界以上的存储器目标。32位和64位总线主设备都可以实现64位寻址。此外,对64位寻址反映的存储器目标(驻留在4GB地址边界上)可以看作32位或64位目标来实现。 注意64位寻址和64位数据传送功能是两种特性,各自独立并且严格区分开来是非常重要的。一个设备可以支持一种、另一种、都支持或都不支持。 2.64位扩展信号 为了支持64位数据传送功能,PCI总线另有39个引脚。 ●REQ64#被64位总线主设备有效表明它想执行64位数据传送操作。REQ64#与FRAME#信号具有相同的时序和间隔。REQ64#信号必须由系统主板上的上拉电阻来支持。当32位总线主设备进行传送时,REQ64#不能又漂移。 ●ACK64#被目标有效以回应被主设备有效的REQ64#(如果目标支持64位数据传送),ACK64#与DEVSEL#具有相同的时序和间隔(但是直到REQ64#被主设备有效,ACK64#才可被有效)。像REQ64#一样,ACK64#信号线也必须由系统主板上的上拉电阻来支持。当32位设备是传送目标时,ACK64#不能漂移。 ●AD[64::32]包含上部4位地址/数据通道。 ●C/BE#[7::4]包含高4位命令/字节使能信号。 ●PAR64是为上部4个AD通道和上部4位C/BE信号线提供偶校验的奇偶校验位。 以下是几小结详细讨论64位数据传送和寻址功能。 3.在32位插入式连接器上的64位卡

毕业设计外文翻译格式实例.

理工学院毕业设计(论文)外文资料翻译 专业:热能与动力工程 姓名:赵海潮 学号:09L0504133 外文出处:Applied Acoustics, 2010(71):701~707 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 基于一维CFD模型下汽车排气消声器的实验研究与预测Takeshi Yasuda, Chaoqun Wua, Noritoshi Nakagawa, Kazuteru Nagamura 摘要目前,利用实验和数值分析法对商用汽车消声器在宽开口喉部加速状态下的排气噪声进行了研究。在加热工况下发动机转速从1000转/分钟加速到6000转/分钟需要30秒。假定其排气消声器的瞬时声学特性符合一维计算流体力学模型。为了验证模拟仿真的结果,我们在符合日本工业标准(JIS D 1616)的消声室内测量了排气消声器的瞬态声学特性,结果发现在二阶发动机转速频率下仿真结果和实验结果非常吻合。但在发动机高阶转速下(从5000到6000转每分钟的四阶转速,从4200到6000转每分钟的六阶转速这样的高转速范围内),计算结果和实验结果出现了较大差异。根据结果分析,差异的产生是由于在模拟仿真中忽略了流动噪声的影响。为了满足市场需求,研究者在一维计算流体力学模型的基础上提出了一个具有可靠准确度的简化模型,相对标准化模型而言该模型能节省超过90%的执行时间。 关键字消声器排气噪声优化设计瞬态声学性能 1 引言 汽车排气消声器广泛用于减小汽车发动机及汽车其他主要部位产生的噪声。一般而言,消声器的设计应该满足以下两个条件:(1)能够衰减高频噪声,这是消声器的最基本要求。排气消声器应该有特定的消声频率范围,尤其是低频率范围,因为我们都知道大部分的噪声被限制在发动机的转动频率和它的前几阶范围内。(2)最小背压,背压代表施加在发动机排气消声器上额外的静压力。最小背压应该保持在最低限度内,因为大的背压会降低容积效率和提高耗油量。对消声器而言,这两个重要的设计要求往往是互相冲突的。对于给定的消声器,利用实验的方法,根据距离尾管500毫米且与尾管轴向成45°处声压等级相近的排气噪声来评估其噪声衰减性能,利用压力传感器可以很容易地检测背压。 近几十年来,在预测排气噪声方面广泛应用的方法有:传递矩阵法、有限元法、边界元法和计算流体力学法。其中最常用的方法是传递矩阵法(也叫四端网络法)。该方

毕业设计外文资料翻译译文

附件1:外文资料翻译译文 包装对食品发展的影响 一个消费者对某个产品的第一印象来说包装是至关重要的,包括沟通的可取性,可接受性,健康饮食形象等。食品能够提供广泛的产品和包装组合,传达自己加工的形象感知给消费者,例如新鲜包装/准备,冷藏,冷冻,超高温无菌,消毒(灭菌),烘干产品。 食物的最重要的质量属性之一,是它的味道,其影响人类的感官知觉,即味觉和嗅觉。味道可以很大程度作退化的处理和/或扩展存储。其他质量属性,也可能受到影响,包括颜色,质地和营养成分。食品质量不仅取决于原材料,添加剂,加工和包装的方法,而且其预期的货架寿命(保质期)过程中遇到的分布和储存条件的质量。越来越多的竞争当中,食品生产商,零售商和供应商;和质量审核供应商有显着提高食品质量以及急剧增加包装食品的选择。这些改进也得益于严格的冷藏链中的温度控制和越来越挑剔的消费者。 保质期的一个定义是:在食品加工和包装组合下,在食品的容器和条件,在销售点分布在特定系统的时间能保持令人满意的食味品质。保质期,可以用来作为一个新鲜的概念,促进营销的工具。延期或保质期长的产品,还提供产品的使用时间,方便以及减少浪费食物的风险,消费者和/或零售商。包装产品的质量和保质期的主题是在第3章中详细讨论。 包装为消费者提供有关产品的重要信息,在许多情况下,使用的包装和/或产品,包括事实信息如重量,体积,配料,制造商的细节,营养价值,烹饪和开放的指示,除了法律准则的最小尺寸的文字和数字,有定义的各类产品。消费者寻求更详细的产品信息,同时,许多标签已经成为多语种。标签的可读性是为视障人士的问题,这很可能成为一个对越来越多的老年人口越来越重要的问题。 食物的选择和包装创新的一个主要驱动力是为了方便消费者的需求。这里有许多方便的现代包装所提供的属性,这些措施包括易于接入和开放,处置和处理,产品的知名度,再密封性能,微波加热性,延长保质期等。在英国和其他发达经济体显示出生率下降和快速增长的一个相对富裕的老人人口趋势,伴随着更加苛

毕业设计英文翻译原文

Highway Subgrade Construction in Expansive Soil Areas Jian-Long Zheng1 Rui Zhang2 and He-Ping Yang3 1 Professor and President, ChangSha Univ. of Science and Technology, Chiling Road 45, Changsha, Hunan 410076, China. E-mail: zjl_csust@https://www.sodocs.net/doc/162343522.html, 2 Ph.D. Candidate and Lecturer, School of Highway Engineering, ChangSha Univ. of Science and Technology, Chiling Road 45, Changsha, Hunan 410076, China. E-mail: zr_csust@https://www.sodocs.net/doc/162343522.html, 3Professor, School of Highway Engineering, ChangSha Univ. of Science and Technology, Chiling Road 45, Changsha, Hunan 410076, China. E-mail: cscuyang@https://www.sodocs.net/doc/162343522.html, (Accepted 22 May 2007) Introduction Expansive soil is predominantly clay soil that undergoes appreciable volume and strength changes following a change in moisture content. These volume changes can cause extensive damage to the geotechnical infrastructure, and the damage is often repeatable and latent in the long term (Liao 19848). China is one of the countries with a wide distribution of expansive soils. They are found in more than 20 provinces and regions, nearly 600,000?km2in extent. It has been estimated that the planned highways totaling 3,300?km in length pass through expansive soils areas (Zheng and Yang 200422). Improper highway construction in such areas could well lead to great losses and damage to the environment. In 2002, the Chinese Ministry of Communications (CMOC) sponsored a research project, “A Complete Package for Highway Construction in Expansive Soil Areas,” whose primary objective was to solve expansive soil problems in highway engineering. A research group with personnel from Changsha University of Science and Technology (CUST) was set up. Comprehensive laboratory tests, field investigations, and analyses were carried out, aimed at solving highway engineering problems in several different expansive soil areas. A complete presentation of the results of this research is beyond the scope of this paper, but the research on subgrade

建筑土木毕业设计中英文翻译4

英文原文 Components of A Building and Tall Buildings Andre 1. Abstract Materials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground. The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest structure built by man and was not surpassed until 40 years later by a series of American skyscrapers. Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour. 2. Load-Carrying Frame Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction, consisting of steel beams and columns, was first used in 1889. As a consequence of skeleton construction, the enclosing walls become a “curtain wall” rather than serving a supporting function. Masonry was the curtain wall material until the 1930’s, when light metal and glass curtain walls were used. After the introduction of

毕业设计英文翻译1

Center Lathe 4.1 INTRODUCTION Lathe is the oldest machine tool invented, starting with the Egyptian tree lathes. In the Egyptian tree lathe, one end of the rope wound round the workpiece is attached to a flexible branch of a tree while the other end is pulled by the operator, thus giving the rotary motion to the workpiece. This primitive device has evolved over the last two centuries to be one of the most fundamental and versatile machine tools with a large number of uses in all manufacturing shops. The principal form of surface produced in a lathe is the cylindrical surface. This is achieved by rotating the workpiece while the single point cutting tool removes the material by traversing in a direction parallel to the axis of rotation and termed as turning as shown in Fig.4.1.The popularity of the lathe due to the fact that a large variety of surfaces can be produced. Different types of lathes are used in manufacturing shops. Some of them are: (a)Centre lathe (b)Tool room lathes (c)Special purpose lathes (d)Copying lathe (e)Gap bed lathe (f)Capstan and turret lathes (g)Automatic lathes The centre lathe is the most common lathe which derives its name from the way a workpiece is clamped by centres in a lathe, though this is not the only way in which the job is mounted. This is sometimes also called as engine lathe in view of the fact that early lathes were driven by steam engines. This is generally used for more general applications and thus the construction of the machine tool is more rigid. The tool room lathe is generally meant for applications of tool making, where the accuracy desired is much higher than that is normally required for general production

毕业设计外文翻译原文

编号: 毕业设计(论文)外文翻译 (原文) 院(系):应用科技学院 专业:机械设计制造及其自动化 学生姓名:邓瑜 学号:0501120501 指导教师单位:应用科技学院 姓名:黄小能 职称: 2009年 5 月20 日

The Injection Molding The Introduction of Molds The mold is at the core of a plastic manufacturing process because its cavity gives a part its shape. This makes the mold at least as critical-and many cases more so-for the quality of the end product as, for example, the plasticiting unit or other components of the processing equipment. Mold Material Depending on the processing parameters for the various processing methods as well as the length of the production run, the number of finished products to be produced, molds for plastics processing must satisfy a great variety of requirements. It is therefore not surprising that molds can be made from a very broad spectrum of materials, including-from a technical standpoint-such exotic materials as paper matched and plaster. However, because most processes require high pressures, often combined with high temperatures, metals still represent by far the most important material group, with steel being the predominant metal. It is interesting in this regard that, in many cases, the selection of the mold material is not only a question of material properties and an optimum price-to-performance ratio but also that the methods used to produce the mold, and thus the entire design, can be influenced. A typical example can be seen in the choice between cast metal molds, with their very different cooling systems, compared to machined molds. In addition, the production technique can also have an effect; for instance, it is often reported that, for the sake of simplicity, a prototype mold is frequently machined from solid stock with the aid of the latest technology such as computer-aided (CAD) and computer-integrated manufacturing (CIM). In contrast to the previously used methods based on the use of patterns, the use of CAD and CAM often represents the more economical solution today, not only because this production capability is available pin-house but also because with any other technique an order would have to be placed with an outside supplier. Overall, although high-grade materials are often used, as a rule standard materials are used in mold making. New, state-of-the art (high-performance) materials, such as ceramics, for instance, are almost completely absent. This may be related to the fact that their desirable characteristics, such as constant properties up to very high temperatures, are not required on molds, whereas their negative characteristics, e. g. low tensile strength and poor thermal conductivity, have a clearly related to ceramics, such as sintered material, is found in mild making only to a limited degree. This refers less to the modern materials and components

相关主题