搜档网
当前位置:搜档网 › 浅谈抽油机井系统效率

浅谈抽油机井系统效率

浅谈抽油机井系统效率
浅谈抽油机井系统效率

浅谈抽油机井系统效率

有杆抽油设备在机械采油中占有相当大的比重,在我国90000多口机采井中,抽油机井约占90%。因此本文以抽油机井系统效率为研究对象,围绕提高抽油机井系统效率分析问题,提出解决办法,并跟踪调查检查效果。

抽油机井系统效率是指地面电能传递给地下液体,将液体举升到地面的有效做功能量与系统输入能量之比。即:抽油机的有效功率与输入功率之比。

η=×100%

1.抽油机的输入功率

拖动抽油机的电动机的输入功率为抽油机的输入功率N

N=

式中N——抽油机输入功率,KW;

n——有功电能表所转到圈数,r;

K1——电压互感器变化,常熟;

n——有功电能表耗电为1KW*h时所转的圈数,r/(kw*h);

t——有功电能表转圈所以的时间,s。

2.抽油机的有效功率N

在一定扬程下,将一定量的井下液体提升到地面所需要的功率为有效功率,又称水功率。

N=

式中N——抽油机井有效功率(又称水功率),KW;

Q——油井实际产液量,m/d;

H——有效举升高度,m;

ρ——油管内混合液密度,10kg/m;

ρ=0.66(1-0.1402f)

抽油机平衡判断方法与调整方案比较

抽油机平衡判断方法与调整方案比较 发表时间:2015-02-05T15:37:53.943Z 来源:《科学与技术》2014年第12期下供稿作者:宋先龙 [导读] 油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。 中石化胜利油田分公司胜利采油厂宋先龙 摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析了评价抽油机平衡的3个基本准则,指出3个评价标准均可通过提取抽油机单冲程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3个基本准则时,可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法 由于游梁式抽油机复杂的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3个基本准则。若抽油机运行中能同时满足3个平衡准则时,则抽油机工作状态最佳,处于较节能的状态。 1 抽油机平衡判断原则 根据《游梁式抽油机平衡的评价标准》中规定,电流法和平均功率法是抽油机调平衡的方法,但这2种方法都可归于基本准则:1)准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转矩的均方根值最小。(1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准则可计算出平衡装置所储存或释放的能量A0为 A0=(Au+Ad)/2 (1) 式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所做的功。A0可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包围面积和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有 (2) 式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数;t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。(2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近 似成正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。 (3)准则三。调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为 从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动机的电流取决于载荷转矩。因此,要求电动机载荷转矩的均方根值最小。只要保证曲柄轴转矩的均方根值最小,就能保证电动机负载转矩均方根值及电流的均方根值最小,即电动机工作在节能状态。因此,曲柄轴的均方根转矩最小时,抽油机可安全节能地工作。电动机的载荷转矩通常不易测量,但功率容易测量。对于转差不大,转速变化较小的电动机,近似认为电动机转速与曲柄轴角速度是常数,曲柄轴转矩与电动机输入功率大体成正比。 可利用电动机的均方根功率的极小值作为判据对抽油机平衡率进行调节。只有当功率曲线傅里叶级数的正弦分量占主要作用时,这种调节方式才能起到较好的效果。 2 调整判断方法 2.1 电流法 尽管电流法测试抽油机平衡时会出现假平衡状态,但这种方法简单,仍被采油单位所采用。实际应用时对非平衡抽油机进行调整,(3) 式中:ΔR为达到平衡时平衡块的移动量;Mmax为抽油机最大转矩;Wb为平衡块重;Wmax、Wmin为悬点最大和最小载荷;S为冲程;n为冲次。该方法适用于现场抽油机平衡状态较好情况,当抽油机严重不平衡时,此方法无法有效调整平衡。 2.2 功率法 功率法是通过测量电动机的功率变化曲线,分析抽油机的平衡情况,当下冲程和上冲程最大功率的百分比在80%~100%之间时,则认为功率平衡,此值通常不大于100%。这种判断方法与电流法原理相同,但该方法可以克服抽油机的假平衡现象,即当抽油机带动电动机发电时,测量的功率曲线为负值。 3 调整原则比较 由以上分析可知:准则一采用抽油机上、下冲程功率曲线的面积比;准则二采用上、下冲程功率曲线的峰值比;准则三是对功率曲线进行傅里叶级数展开,使抽油机工作时电动机均方根功率取得极小值。任何一种平衡准则都与电动机功率曲线相关,因此,通过对功率曲线进行分析可实现抽油机平衡率调节。当抽油机处于良好平衡状态时,曲柄轴转矩曲线等效于功率曲线。抽油机的上、下冲程是对称的,采用准则一和准则二来判断平衡率将得到相同的结果,而准则三需要滤除曲线的一阶正弦分量,得到不同的功率曲线。若对新功率曲线

应用新技术 提高油井系统效率

应用新技术提高油井系统效率 发表时间:2014-09-03T16:15:26.280Z 来源:《科学与技术》2014年第6期下供稿作者:侯晓民[导读] 新技术的使用2.1 永磁电机永磁电机与普通三相异步电动机相比,不需要无功励磁电流。可以显著提高功率因素。 孤东采油厂采油三矿采油9 队侯晓民 摘要:降低抽油井的能耗,唯一的途径就是提高油井的系统效率。通过改进电机的性能,提高效率;利用变频技术,降低耗电量;使用新型抽油机,提高传动效率等。通过地面技术水平的提高和制定合理工作制度,充分利用现有资源,提高油井的系统效率。 关键词:系统效率;永磁电机;变频技术1 系统效率偏低的原因分析游量式抽油机因其结构简单、制造容易、维修方便等优点,得到普遍使用。但四连杆机构的旋转运动造成电机负荷的不均匀性,从而降低了三相异步电动机的效率。同时因其高启动扭矩,又造成大马拉小车的现象。稠油井多,大量使用电磁调速电机。虽然实现了平稳无级调速,但低速时电机损耗大效率低。 这是系统效率偏低的主要原因。 2 新技术的使用2.1 永磁电机永磁电机与普通三相异步电动机相比,不需要无功励磁电流。可以显著提高功率因素。通过减少定子电流和定子电阻损耗,电机效率提高2-8%。永磁电机在25-120%额定负荷范围内,均可保持较高的效率和功率因素。高效高起动转矩同步电机比普通感应电机的起动扭矩大50-100%。可以代替大一号电机座号,节电率在20%左右。在5 口井上进行试验,功率因素提高0.44,系统效率提高4%。在实际使用中,电机的功率降低一个等级,功率因素普遍较高。 2.2 变频调速技术变频调速技术是通过改变电流的频率,实现电机转速的改变。现在采用的变频装置是由整流器和逆变器组成。整流器先将50 赫兹的交流电变成直流电,再由逆变器变换成频率可调的三相交流电。由于变频器可实现低速、轻载启动,因此降低电机的匹配功率,提高功率因素。变频柜地使用,可由普通电机代替调速电机,较好地解决了电磁调速电机效率低地原因。2008 年3 月份试验20 口井,节电率21%。功率因素提高0.3,系统效率提高9.2%。变频柜代替普通自控箱,如果使用普通电机替代电磁调速电机,冲数低的井效果明显。冲数高于6 次,效果较差。如果用电磁调速电机替代普通电机,则无效果。因此,变频技术主要在低冲数井上使用普通电机替代电磁调速电机效果明显。 2.3 永磁电机和变频技术结合使用稠油热采区块原油粘度高,采用电热杆、空心杆、和双泵等采油工艺,冲数都在4 次以下。在一个蒸汽吞吐周期的生产过程中,抽油机负荷和冲数变化较大。使用37KW 调速电机,虽然实现了无级调速,但由于匹配功率较大,造成系统效率低。 电机的功率因素低、效率低,造成整条线路的电压降大,影响油井正常生产。采用变频柜实现电机无级调速,降低电机的匹配功率;采用永磁电机,提高功率因素和启动扭矩,单井系统效率大幅度提高。目前已使用13 台,平均节电36.5%,功率因素提高0.435,系统效率提高10.2%。其缺点是负荷较大井,30KW 永磁电机无法正常生产,对于抽油机卸载也有一定的困难。 2.4 机械调速通过变速箱降低电机输出转速,电机启动扭矩降低,电机匹配功率减少,提高电机的负载率。由此提高电机的效率。现场使用中,可以用17KW 的电机代替55KW 电机,节电42%,功率因素提高0.4,系统效率提高8.02%。在该技术使用前,对于供液差的砂河街井,由于泵挂深,负荷重,都使用12 型抽油机,匹配55KW 普通三相异步电动机或37KW 电磁调速电机,耗电量大,功率因素低。不仅单井系统效率低,也造成整个电网的线损增加。对于低液量、低粘度的油井,因为使用电磁调速电机的低效率和大功率三相异步电动机,造成电机效率低,整条线路的功率因素低。使用DCJ 系列电机后,节电效果极为明显。但由于无法实现无级调速,在稠油井的使用中受到一定的限制。 2.5 无游量式抽油机的使用游量式抽油机井系统效率低的主要原因,是四连杆旋转运动造成电机负荷的不均匀性。而无游量式抽油机解决了该问题。 无游量式抽油机在上下冲程中,抽油机负荷是光杆负荷和平衡配重的差,基本是稳定。这样电机输出的扭矩是衡定的。因此电机效率较高。目前使用的胜利高原公司生产的皮带抽油机和山东创新技术有限公司生产的智能滚筒式抽油机,节电效果较好,平均单井日节电115度,节电率60%。无游量式抽油机的缺点是冲数低、理论排量低。适合于稠油、低液量井。 3 结论1)永磁电机取代普通电机,可以提高单井的系统效率。同时功率因素的提高,降低电网的线损。油井的冲数超过5 次后,应用永磁电机,投入少,效益高。2)通过变频技术实现冲数的无级调节,配备普通电机,低冲数时效果更好。配备永磁电机,效果好于普通电机。适用于稠油井,特别是低冲数井,大幅度提高油井的系统效率。3)机械变速,适用于低冲数、光杆不缓下的油井。投入较小,节电效果好。4)无游量式抽油机节电效果明显,适用于稠油、低液量井。新投产的稠油井优先选用无游量式抽油机。低液量、泵挂深的油井亦可采用无游量式抽油机。但不适用于供液较好的油井。

如何提高抽油机平衡率

如何提高抽油机平衡率 一、立项的目的、意义、现状 随着油田节能形势的要求,如何使抽油机井达到平衡状态,节能降耗显愈来愈为重要,我队有抽油机井146口,每月开井近134口,但抽油井平衡率只有70%左右,一直以来达不到厂矿要求,为改变这种状况,我们小组选择这一课题进行活动,力争取得较好的效果。 二、主要研究内容及解决的主要问题 1、通过活动分析造成抽油机井平衡率低的各种因素,并针对要因采取对策。 2、通过活动加深了员工对抽油机井管理重要性,加强管理,提高抽油井管理水平。 3、强化管理制度的执行,杜绝违反操作规程和不严格执行质量标准现象。 三、预期目标及成果验收条件 经开展本课题活动使目前抽油机井平衡率有所提高,降低影响抽油机井不平衡因素。 四、抽油机井平衡率简介 抽油机井平衡率作为油井管理中的重要指标,抽油机悬点在工作中承受着脉动负荷,由于其在工作过程中的不对称性,上下冲程相差很多,一般来说,上冲程载荷大,下冲程载荷小,使得上冲程电机所受负荷很大,电机做功大,而下冲程电机做功小,还会呈现出负功状态,造成悬点紧拉着旋转口使得电机受力不均而造成的抽油机失去平衡。因而会对抽油机产生损害。这种损害表现在:第一,浪费电能,降低抽油机的工作效率及使用寿命。这是由于抽油机在工作中担负的负荷过大,下冲程带着电机运转造成的。第二,由于抽油机在工作中,载荷很不均匀,致使抽油机发生震动,进而对其使用寿命产生影响。第三,会使曲柄旋转不平衡,失去均匀的转动速度,进而影响到抽油机以及泵体工作,从而对油井产量产生影响。因此,在抽油机工作过程中,在单井必须要保持其平衡率在85%

以上。 五、抽油机不平衡造成的危害 1、对电机:由于抽油机不平衡引起电机负荷不均匀,上冲程中电动机承受着极大的负荷,下冲程中抽油机带动电机运转,造成功率的浪费,降低了效率缩短了电机寿命。’ 2、对抽油机:由于抽油机曲柄运转不平衡,使抽油机发生振动,导致各连接螺丝松动,易出现故障,影响抽油机装置的使用寿命。 3、对抽油泵及抽油杆:由于运转速率不平衡,影响了抽油杆和泵的正常工作。 六、抽油机平衡方法 按照平衡原理和平衡装置所安装的位置不同,可分为机械平衡和气动平衡两类(一)机械平衡 1、游梁平衡:游梁的尾部装设一定重量的平衡板以达到平衡的目的。这是一种简单的平衡方式。 优点:平衡块重量轻,螺丝固定,谪书考便; 缺点:安装位置高,平衡过重会产生较大的损性力,所以平衡块不宜加得太多。适用;驴头悬重在3吨以下的轻型抽油机。 2、曲柄平衡:将平衡块安装在曲柄上来进行平衡的方式叫曲柄平衡。 优点:调整方便,通过调整其在曲柄上的位置及平衡块重量就可以完成。 缺点:重量大,离心力大,易发生机械事故。 适用:驴头悬重在10吨以上的重型抽油机 3、复合平衡:是在同一台抽油机上,既有游梁平衡,又有曲柄平衡的叫复合平衡。 优点:调节方便,小范围调整时,可调整游梁平衡块,大范围调整时,则调整曲柄平衡块。 缺点:惯性力和离心力依然存在 (二)气动平衡 利用气体的可压缩性储存和释能量,来达到平衡目的的方式叫气平动平衡。优点:减少了抽油机的动负荷及震动,平衡效率高。

机械采油井系统效率计算方法

机械采油井系统效率计算方法 一定义 1 机械采油井的输入功率——拖动机械采油设备的输入功率 2 机械采油井的有效功率——将井内液体输送到地面所需要的功率 3 机械采油井的系统效率——机械采油井的有效功率与输入功率的比值 4 抽油机井的光杆功率——光杆提升液体并克服井下各种阻力所消耗的功率 5 抽油机井的地面效率——光杆功率与电机输入功率的比值(电动机效率·皮带轮效率·抽油机四连机构效率) 6 抽油机井的井下效率——抽油机井的有效功率与光杆功率的比值(盘根盒效率·抽油杆柱效率·抽油泵效率·油管效率) 二测试方法和计算公式 1电气测试参量:输入功率或电流、电压和功率因数。 2井口测试参量:回压、套压、产液量、含水率和原油相对密度。3井下测试参量:油井动液面深度。 4光杆测试参量:光杆载荷和光杆位移。 计算公式 1机械采油井的输入功率P1=3600n p·K·K1/N p·t p 式中:P1——输入功率,KW n p——有功电表所转的圈数,r

K——电流互感器变比,常数 K1——电压互感器变比,常数 N p——有功电能表耗电为1KW·h时所转的圈数,r/(KW·h) t p——有功电能表转N p所用的时间,s (现在输入由仪器直接测出) 2机械采油井的有效功率P2=Q·H·ρ·g/86400 式中:P2——有效功率,KW Q——油井产液量,m3/d H——有效扬程,m ρ——油井液体密度,t/ m3 g——重力加速度,g=9.8m/s2 3有效扬程H=H d+(p o-p t)·1000/p·g 式中:H——有效扬程,m H d——油井动液面深度,m p o——回压,MPa p t——套压,MPa 4油井液体密度ρ=(1-f w)·ρo+f w·ρw 式中:f w——含水率 ρo——油的密度,t/m3 ρw——水的密度,t/m3 5光杆功率(抽油机井)P3=A·S d·n c·n s/60000 式中:P3——抽油机光杆功率,kW

影响抽油机系统效率的因素分析

影响抽油机系统效率的因素分析 首先电动机和抽油机对地面效率影响较大。在抽油机选型时,由于过分考虑设备的“储备”能力,部分油井选择的抽油机型过大(包括装机功率),发生“大马拉小车”的现象,这种“大马拉小车”的结果是抽油机额定载荷与实际载荷相差较大,电机负载率较低,地面效率明显下降,对提高抽油机井系统效率极为不利。这种工况下电动机自身工作效率低,一般运行效率在额定效率50%以下。 行,地面效率较低。调节抽油机平衡,可以降低单井耗电量,降低电机功率,减少空耗损失,提高地面效率。抽油机要达到100%的平衡度是较困难的,但依据机型和井况的不同,应尽力把平衡度控制在80%~120%之间。调平衡是提高系统效率中投资小,见效快的一个办法。 测试表明,岔河集油田抽油机井平衡度小于80%和大于120%共有69口井,约占总井数的16%。 径、冲次等抽汲参数不合理。部分抽油机井的液面在井口,却仍用小泵径、慢冲次的工作制度,导致系统效率过低。此外,抽油机“五率”达标率低,电机皮带过松,盘根过紧等对油井整体效率也有一定影响。 泵况对井下效率的影响主要表现在:一是泵、管漏失严重影响井下效率。实际上,泵的正常漏失量(柱塞与衬套间的设计漏失量)很小,因而它对井下效率影响很小,这里的“漏失”是指除正常漏失外的所有漏失即非正常漏失。通过现场憋压等测试手段分析,岔河集油田30%以上的油井存在不同程度的管漏失及泵筒间隙磨大、游动凡尔、固定凡尔漏失。泵的非正常漏失,不仅会减少有效功率,而

且将增加井下损耗。二是气体影响井下效率。高气油比使得泵充满度降低,甚至气锁,影响了泵的排量系数,对井下效率影响很大。虽然测试井中高气油比井的井数不多,但因为其系统效率很低,平均系统效率仅为12%,远低于整体平均系统效率24.5%。三是供液不足影响井下效率。部分油井供液能力差,沉没度不够,导致泵充满度降低,泵效低下,影响了井下效率。 油井产液量与井下效率的关系 油井结蜡、出砂及抽油杆的磨擦导致杆柱载荷增大,造成杆柱有效功率降低,井下无功损耗增加,影响了井下效率。深泵挂及尼、扶杆的大规模应用也导致杆柱载荷增大。此外,井斜也加剧杆管偏磨,井下阻力损耗增加,导致井下功率损失。偏磨类油井比较多,占全部油井的32%。 抽汲参数(泵径、泵深、冲程、冲数等)的匹配有若干个,总有一个是投资省、系统效率高的最佳方案。因此必须对抽汲参数进行优选。即使同一区块的油井在油藏地质条件、供液能力、气油比等个体特征也往往存在明显的差异,落实到具体的单井上,必须根据每口井的具体条件进行单井优化设计。根据井况选择合理的泵,以适应含气、出砂、结蜡等井况的要求,同时应用配套技术,来解决抽油井受气、砂、蜡等影响泵效的矛盾。

有杆泵抽油井系统效率因素分析与提效降耗对策

有杆泵抽油井系统效率因素分析与提效降耗对策 本文从有杆泵抽油机井的井下工具、地面设备、配套设施等各个环节,对影响有杆泵机采系统效率的因素进行了细致地分析,并针对各影响因素提出了有效的对策,对于提高有杆泵抽油机井的系统效率,降低油井运行成本,实现油井节能降耗,具有一定的指导意义。全面提高抽油机井系统效率是不断降低油井运行费用,改善油井生产工况,提高抽油机井开发效益的有效技术手段,是提高油田工作水平的一个重要方面,也是实现油田可持续发展的重要保证。 1 抽油机井系统效率定义 抽油机井系统效率是指将液体举升至地面的有效做功能量与系统输入的能量之比,即系统的有效功率与输入功率的比值。 其中,输入功率由现场测试取得,有效功率由下式计算: (1) 式中:Pe有效功率,Kw;Q一一油井日产液量,m3/d; 2 抽油机井系统效率影响因素分析 影响有杆泵抽油机井系统效率的因素较多,它不仅受抽油设备和抽油参数的影响,而且还受油井管理水平和井况的影响。由于能量在转换和传递过程中,总会发生能量损失,用Pi表示输入功率,用Pe 表示有效功率,用△P表示损失功率,则有:Pi=Pe+△P 根据抽油机井系统的组成情况,可以把损失功率△P分解为8个部分,即:(1)电动机损失部分功率△P1:当电动机输出功率为额定输出功率的60-100%时,电动机的工作效率与额定效率接近或相等,否则将低于额定效率;而在抽油机工作时,负荷变化极大,所以其电动机的工作效率低于其额定效率。据资料显示,电动机的额定效率约为90%,而应用于抽油机上的工作效率只有70%左右,这部分功率损失对系统效率的影响很大。 (2)带传动部分的损失△P2:油田应用较为普遍的普通V帶、

抽油机井系统效率计算公式

机采系统节能指标 一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P e P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q, H- p - g P e= ----------------------------- 86400 式中:P e——有效功率,KVV Q-一油井日产液量,m3/d ; H—有效扬程,m P——油井液体密度,t/m3; g --- 重力加速度,g=9.8m/s2; 其中有效扬程: (P L Pt)x 1000 H=Hd + - ------------------------ P - g 式中:H ------------ 油井动液面深度,m; P ------------ 井口油压,MPa; Pt ---------- 井口套压,MPa; 二、抽油机井平■衡合格率 1、抽油机井平■衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%? 平衡)

平衡度=(I下行峰值/I上行峰值)X 100% 采液用电单耗:油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,Kw, CH油井日产液量,t3/d 2、抽油机井平■衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S总一抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 = (Q实/Q 理)X 100% T] 式中:门一泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 x 10一3 x Sx NX D 式中:S一冲程(m) N 一冲数(n/m) D —泵径(mm); 四、米液用电单耗 油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,K^『油井日产液量,t3/d

抽油机井系统效率计算公式

一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 i e p p =η 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q·H·ρ·g P e =———————— 86400 式中:Pe ——有效功率,KW ; Q ——油井日产液量,m 3/d ; H ——有效扬程,m ; ρ——油井液体密度,t/m 3; g ——重力加速度,g=9.8m/s 2; 其中有效扬程: (Po —Pt )×1000 H=Hd + --———————— ρ·g 式中:Hd ————油井动液面深度,m; Po ————井口油压,MPa; Pt ————井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)。 平衡度=(I 下行峰值/I 上行峰值) ×100% 采液用电单耗:油井采出每吨液的用电量,单位t

采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d 2、抽油机井平衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)×100% 式中:S合格—抽油机井平衡度达标的井数; S总—抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。η=(Q实/Q理)×100%; 式中:η—泵效(%) Q实—指核实日产液量(m3/d); Q理—泵理论排液量(m3/d); 其中:Q理=×10-3×S×N×D2 式中:S—冲程(m) N—冲数(n/m) D—泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d

抽油机平衡判断标准与调整方法

抽油机平衡判断标准与调整方法 发表时间:2014-09-03T16:11:22.187Z 来源:《科学与技术》2014年第6期下供稿作者:单体琴于春兰 [导读] 为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3 个基本准则。 现河采油厂采油一矿单体琴于春兰 摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析了评价抽油机平衡的3 个基本准则,指出3 个评价标准均可通过提取抽油机单冲程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3 个基本准则时,可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法由于游梁式抽油机复杂的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3 个基本准则。若抽油机运行中能同时满足3 个平衡准则时,则抽油机工作状态最佳,处于较节能的状态。 1 抽油机平衡判断原则根据《游梁式抽油机平衡的评价标准》中规定,电流法和平均功率法是抽油机调平衡的方法,但这 2 种方法都可归于基本准则:1)准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转矩的均方根值最小。 (1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准则可计算出平衡装置所储存或释放的能量A0 为A0=(Au+Ad)/2 (1)式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所做的功。A0 可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包 围面积和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有 式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数;t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。 (2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近似成正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。(3)准则三。 调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动机的电流取决于载荷转矩。因此,要求电动机载荷转矩的均方根值最小。只要保证曲柄轴转矩的均方根值最小,就能保证电动机负载转矩均方根值及电流的均方根值最小,即电动机工作在节能状态。因此,曲柄轴的均方根转矩最小时,抽油机可安全节能地工作。电动机的载荷转矩通常不易测量,但功率容易测量。对于转差不大,转速变化较小的电动机,近似认为电动机转速与曲柄轴角速度是常数,曲柄轴转矩与电动机输入功率大体成正比。 可利用电动机的均方根功率的极小值作为判据对抽油机平衡率进行调节。只有当功率曲线傅里叶级数的正弦分量占主要作用时,这种调节方式才能起到较好的效果。 2 调整判断方法2.1 电流法尽管电流法测试抽油机平衡时会出现假平衡状态,但这种方法简单,仍被采油单位所采用。实际应用时对非平衡抽油机进行调整, 式中:ΔR为达到平衡时平衡块的移动量;Mmax为抽油机最大转矩;Wb为平衡块重;Wmax、Wmin为悬点最大和最小载荷;S为冲程;n为冲次。该方法适用于现场抽油机平衡状态较好情况,当抽油机严重不平衡时,此方法无法有效调整平衡。 2.2 功率法功率法是通过测量电动机的功率变化曲线,分析抽油机的平衡情况,当下冲程和上冲程最大功率的百分比在80%~100%之间时,则认为功率平衡,此值通常不大于100%。这种判断方法与电流法原理相同,但该方法可以克服抽油机的假平衡现象,即当抽油机带动电动机发电时,测量的功率曲线为负值。 3 调整原则比较由以上分析可知:准则一采用抽油机上、下冲程功率曲线的面积比;准则二采用上、下冲程功率曲线的峰值比;准则三是对功率曲线进行傅里叶级数展开,使抽油机工作时电动机均方根功率取得极小值。任何一种平衡准则都与电动机功率曲线相关,因此,通过对功率曲线进行分析可实现抽油机平衡率调节。当抽油机处于良好平衡状态时,曲柄轴转矩曲线等效于功率曲线。抽油机的上、下冲程是对称的,采用准则一和准则二来判断平衡率将得到相同的结果,而准则三需要滤除曲线的一阶正弦分量,得到不同的功率曲线。若对新功率曲线采用准则一和准则二时,将与原功率曲线得到不同的平衡率;而准则二仅考虑上、下冲程的峰值功率,信息量偏少,在实际应用中与准则一得到的平衡结果存在差别。由此可见,采用3 种平衡准则分别调节抽油机时,将得到3 种不同的平衡效果,具体哪种情况

提高抽油井机采系统效率的做法及效果

提高抽油井机采系统效率的做法及效果 X 薛世君 (中石化胜利油田分公司纯梁采油厂,山东博兴 256504) 摘 要:通滨管理区主要管理着纯62、纯107、纯111区块及外围的纯64-3和F158等9口偏远井。目前,管理区油井开井54口,日油能力80t/d,综合含水64%。通过提高机采系统效率方案的实施,系统效率从2008年12月的19.1%,提升到2010年12月的29.8% 关键词:机采系统效率 中图分类号:T E355.5 文献标识码:A 文章编号:1006—7981(2012)04—0151—041 机采井系统效率现状分析 通滨管理区主要管理着纯62、纯107、纯111区块及外围的纯64-3和F158等9口偏远井。全区含油面积12.3km 2,地质储量844万吨。所有区块属于典型的高压低渗透油藏,储层物性差,油井普遍低产低液。目前。管理区油井总数66口,油井开井54口,日油能力80t/d,综合含水64%。对管理区2008年所管辖的抽油井进行了地面、井筒分因素的调查摸底工作,共统计了52口井,平均机采系统效率为19.1%。 2 机采井系统效率影响因素分析 将地面的电能传递给井下液体,从而举升井下液体。整个系统工作时,就是一个能量不断传递和转化的过程。在能量的每一次传递时都将损失一定的能量。从地面供入系统的能量扣除系统的各种损失以后,就是系统所给液体的有效能量。将液体举升至地面的有效做功能量与系统输入能量之比为抽油机系统效率。 显然不论是节约能量还是提高经济效益,都要求有杆抽油系统具有较高的系统效率。 有杆抽油系统的效率与油井本身的条件有密切的关系。在油井条件一定的情况下,则主要有以下三种因素的影响。2.1 技术装备 技术装备对系统效率有一定的影响。要想提高系统效率,就应采用较先进的、节能型的技术装备,如特殊形状的抽油机(前置式抽油机、异型抽油机等)、适应抽油机变工况的拖动装置、降低抽油杆摩 擦的导向器和高效的抽油泵等。2.2 机、泵、杆设计 一般来讲,在保证泵的吸入情况下,应尽量减少 下泵深度,同时,在保证产量的前提下,为了降低能耗,应注意选择较大泵径,增加冲程并降低冲次。抽吸参数(s 、n 、D),特别是冲次(n)对有杆抽油系统效率有明显影响,要想提高其运行效率,必须对抽吸参数进行优选。2.3 管理工作 管理工作水平,例如抽油机的平衡率、驴头与井口的对中情况、井口密封盘根的上紧程度、传动皮带的张紧程度等都会影响有杆抽油系统效率。 从以上可以看出系统效率反映了机采井的节能与经济效益,而且也综合地反映了油田的技术装置、技术管理水平。3 系统效率计算3.1 定义 3.1.1 有杆抽油系统 包括原动机、抽油机、抽油杆、抽油泵、井下管柱和井口装置以及油层供液系统。 3.1.2 抽油机的输入功率(P 入) 拖动抽油机的电动机的输入功率为抽油机的输入功率。 3.1.3 抽油机的光杆功率(P 光) 光杆提升液体和克服井下各种阻力所消耗的功率为抽油机的光杆功率。 3.1.4 抽油机系统的有效功率(P 水) 在一定的扬程下,将一定排量的井下液体提升 151  2012年第4期 内蒙古石油化工 X 收稿日期3 作者简介薛世君(6),男,陕西礼泉人,就职于中石化胜利油田分公司纯梁采油厂,工程师。 :2012-01-1:194-

抽油机国内外研究现状与发展趋势

抽油机国内外研究现状与发展趋势 一.国内抽油机研发现状 油机是有杆抽油系统中最主要举升设备。根据是否有游梁,可分为游梁式抽油机和无游梁式抽油机。经过一百多年的实践和不断的改进创新,抽油机不管是结构形式还是在使用功能上,都产生了很大的变化。特别是近几十年来,世界对原油的需求量不断加大,对油田深度开采的能力有了更进一步的要求,在很大程度上加快了抽油机技术发展的速度,催生出多种类型。目前, 国内抽油机制造厂有数十家, 产品类型已多样化, 但游梁式抽油机仍处于主导地位。根据公开发表的资料统计, 我国现有6 大类共45 种新型抽油机[ 1] , 并且每年约有30 种新型抽油机专利, 十多种新试制抽油机[2] , 已形成了系列, 基本满足了陆地油田开采的需要。各种新型节能游梁式抽油机如双驴头式抽油机、前置式抽油机、异相曲柄平衡抽油机、前置式气平衡抽油机、下偏杠铃系列节能抽油机[ 3]和用窄V 形带传动的常规抽油机等均已在全国各个油田推广应用, 并取得了显著的经济效益。长冲程、低冲次的无游梁式抽油机的研制也取得了一些进展, 如由胜利油田研制的无游梁链条抽油机, 经过国内十几个油田稠油及丛式井的推广使用[4], 在低冲次抽油和抽稠油方面已初见成效。此外, 桁架结构的滑轮组增距式抽油机、滚筒式长冲程抽油机已在某些油田进行了工业试验[5]; 齿轮增距式长冲程抽油机的研制工作也取得了新的进展; 质量轻、成本低、便于调速和调整冲程的液压抽油机经过几年的研制和工业性试采油, 也积累了一定的经验[6]。其他型式新颖的抽油机如数控抽油机、连续抽油杆抽油机、车载抽油机、磨擦式抽油机、六连杆游梁式抽油机和斜直井抽油机等也正处于不断改造和试生产过程中[7]。然而,游梁式抽油机的缺点是不容易实现长冲程低冲次的要求,因而不能满足稠油井、深抽井和吉气井采油作业的需要。同时,长冲程低冲次的无游梁式抽油机的性能尚有待完善 (如油田正在使用的链条式抽油机还存在链条寿命短、换向冲击载荷大和钢丝绳易断、导轨刚.度不足容易变形等问题),而且品种规格还很少,不能适应当前石油工业的发展[8]。液压抽油机至今仍处在研制阶段[9] 二·国外抽油机的研发现状 目前,世界上生产抽油机的国家主要有美国、俄罗斯、法国、加拿大和罗马尼亚等[10]。为了减少能耗, 提高采油经济效益, 近年来国外研制与应用了许多节能型抽油机。例如异相型抽油机节电15%~ 35%; 前置式抽油机节电368% 前置式气平衡抽油机节电35% 轮式抽油机节电50%~ 80% 大圈式抽油机节电30%; 自动平衡抽油机节电30% ~ 50%; 低矮型抽油机节电5% ~20%; ROTAFLEX 抽油机节电25% 智能抽油机节电174%; 螺杆泵采油系统节电40%~ 50% [11]。近年来国外很重视改进和提高抽油机的平衡效果, 使抽油机得到更精确平衡。近年来, 为了节约能耗、提高采油经济效益, 国外研制与应用了许多节能型抽油机, 在采油实践中, 取得较好的使用效果。如变平衡力矩抽油机, 可使上冲程平衡力矩大于下冲程力矩。前置式气平衡抽油机, 由于可在动态下调节气平衡, 平衡效果较好。气囊平衡抽油机有90% 以上载荷得到平衡[12]。双井抽油机可利用两口油井抽油杆柱合理设计得到更精确的平衡。自动平衡抽油机可保证在上下冲程每一瞬间得到较精确的平衡效果[13]。近年来国外研制与应用了多种类型长冲程抽油机, 其中包括增大冲程游梁抽油机、增大冲程无游梁抽油机和长冲程无游梁抽油机[14]。 1 前置式气平衡抽油机美国工J uf kin 公司生产的A 系列前置式气平衡抽油机具有较好的技术经济指标, 抽油机重量减轻40 %, 尺寸缩小3 5 % , 动载荷

抽油机井系统效率计算公式word精品

机采系统节能指标 、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现 场测试取得,抽油井的有效功率可由以下公式计算: Q? H- p ?g P e= ------------------- 86400 式中:P e——有效功率,KW; Q油井日产液量,vn/d ; H—有效扬程,m 3 p ――油井液体密度,t/m ; g --- 重力加速度,g=9.8m/s ; 其中有效扬程: (Po- Pt )x 1000 H=Hd + - ------------------------ p ?g 式中:H ------------ 油井动液面深度,m; Po ---------- 井口油压,MPa; Pt ----------- 井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)

平衡度=(1下行峰值/I上行峰值)x 100% 采液用电单耗:油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d 2、抽油机井平衡度合格率:抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S 总—抽油机开井总数。 三、抽油机井泵效抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 n = (Q实/Q 理)X 100% 式中:n—泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 X 10-3X S X NX D2 式中:S—冲程(m) N —冲数(n/m) D —泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d

抽油机平衡扭矩与功率计算

第三节抽油机平衡、扭矩与功率计算 一、教学目的 掌握抽油机的平衡原理、平衡方式;熟悉机械平衡的计算方法、抽油机平衡的检验方法以及曲柄轴扭矩计算及分析方法;根据电动机的功率计算合理选用电动机。 二、教学重点、难点 教学重点: 1、抽油机平衡的原理及其计算方法; 2、曲柄轴扭矩的计算及分析。 教学难点: 1、扭矩因数的计算; 2、电动机功率的计算及选择。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的图形和曲线。 四、教学内容 本节主要介绍三个方面的问题: 1.抽油机平衡计算. 2.曲柄轴扭矩计算及分析. 3.电动机的选择和功率计算. (一)抽油机平衡计算 不平衡原因: 上下冲程中悬点载荷不同,造成电动机在上、下冲程中所做的功

不相等。 不平衡造成的后果: ①上冲程中电动机承受着极大的负荷,下冲程中抽油机带着电动机运转,造成功率的浪费,降低电动机的效率和寿命; 1

2、平衡方式 3、平衡计算 1)复合平衡 平衡半径公式: ()cb c c cb b ub cb l r W W R W r b c W X W r b a W W R -+-??? ? ?'+'=2 2)曲柄平衡

ub r b X c a W W W -' +'=)2(1 4、抽油机平衡检验方法 1)测量驴头上、下冲程的时间 平衡条件下上、下冲程所用的时间基本相等。

如果上冲程快,下冲程慢,说明平衡过量。 2)测量上、下冲程中的电流 平衡条件下上、下冲程的电流峰值相等。 如果上冲程的电流峰值大于下冲程的电流峰值,说明平衡不够。 1ψ 图3-23 抽油机几何尺寸与曲销受力图 复合平衡抽油机:φβ α θsin sin sin )](cos ['r W r g a a c W b c P b a M c A b com ---= 曲柄平衡抽油机:φβ α sin sin sin r W r P b a M c cr '-= 游梁平衡抽油机:βα θsin sin )](cos [r g a a c W b c P b a M A b wb --=

抽油机平衡判断标准与调整方法

抽油机平衡判断标准与调整方法 摘要:油田生产中抽油机平衡调整方法较多,每种方法的调整效果不同。分析 了评价抽油机平衡的3 个基本准则,指出3 个评价标准均可通过提取抽油机单冲 程功率曲线中的信息获得。对抽油机调平衡后,使其同时满足3 个基本准则时, 可认为抽油机处于理想的平衡状态。现场试验测试和数据分析表明:采用准则二 中的功率法调平衡后,抽油机可同时满足准则一和准则二,并接近准则三的要求,可实现抽油机平衡调节。 关键词:游梁式抽油机;平衡准则;功率法;电流法由于游梁式抽油机复杂 的机械运动,使抽油机的平衡调整存在较大的难度。目前的油田生产中,抽油机 平衡的评价标准通常采用“电流法”,当下冲程最大电流与上冲程最大电流之比在80%~110%时,认为抽油机处于平衡状态。然而,电流法检验抽油机平衡时会 出现假平衡现象,这是由于抽油机下冲程时会产生电机倒发电现象,而钳形电流 表采用的电流互感器无法判断电流的相位导致误判,生产实践已经证明这种方法 无法准确评价抽油机的平衡。因此,电能法、示功图法、平均功率法、曲柄轴转 矩法等相关方法被广泛讨论。为达到节能、延长减速箱寿命、操作简便的综合目标,本文讨论了抽油机平衡评价准则原理,指出抽油机平衡的3 个基本准则。若 抽油机运行中能同时满足3 个平衡准则时,则抽油机工作状态最佳,处于较节能 的状态。 1 抽油机平衡判断原则根据《游梁式抽油机平衡的评价标准》中规定,电流 法和平均功率法是抽油机调平衡的方法,但这2 种方法都可归于基本准则:1) 准则一:抽油机的电动机在上、下冲程中对外做功相等。2)准则二:悬点上、 下冲程中减速箱曲柄轴峰值转矩相等。3)准则三:整个冲程中减速箱曲柄轴转 矩的均方根值最小。 (1)准则一。这一准则通常用于游梁式抽油机平衡装置的设计,根据此准 则可计算出平衡装置所储存或释放的能量A0 为A0=(Au+Ad)/2 (1)式中:Au为上冲程抽油杆柱下落所做的功;Ad为下冲程提拉抽油杆柱和油柱所 做的功。A0 可通过抽油机的实测示功图,或者利用静力示功图求得。电动机在上、下冲程中对外做功可转化为电动机的输出电能,而电动机输出电能与输入电 能成正比。因此,可通过测量电动机上、下冲程的输入电能是否相等来判断抽油 机平衡状态,也称为电能法。式(2)表示电动机功率曲线的上冲程所包围面积 和下冲程所包围的面积相等,即上、下冲程电动机对外做功相等。则有式中:Iu、Id为上下冲程的输入电流;U为输入电压;cosφ 指电动机功率因数; t为抽油机工作时间。当下冲程与上冲程对外做功之比在80%~110%时,则认为抽油机平衡。 (2)准则二。这一准则通常用于游梁抽油机的平衡状态检验与调整,但减速箱曲柄轴 的转矩测量比较繁琐,通常可根据实测的光杆示功图及转矩因数表来绘制转矩曲线。这样的 测量过程不利于现场的实际应用。由于电动机的输入电流和功率与减速箱曲柄轴转矩近似成 正比,因此人们通常比较上冲程和下冲程的电流峰值和功率峰值来取代曲柄轴转矩峰值。(3)准则三。 调整抽油机平衡是为延长抽油机使用寿命,即希望减速箱曲柄轴输出转矩最小。在不平 衡的抽油机上,曲柄轴输出转矩通常有正有负,因此转矩的平均值Ma无法反应实际的载荷,通常采用均方根转矩Mf来反映减速箱曲柄轴的载荷情况。均方根转矩与平均转矩之比为周 期载荷系数,其反映载荷转矩的波动程度。均方根转矩和平均转矩的表达式为从节能角度分析,若使抽油机最节能即使电动机的变动损耗最小,而变动损耗与电流的平方成正比,电动

相关主题