搜档网
当前位置:搜档网 › 电液伺服阀的结构组成原理(复习最精)

电液伺服阀的结构组成原理(复习最精)

电液伺服阀的结构组成原理(复习最精)
电液伺服阀的结构组成原理(复习最精)

当A相通电转为A和B同时通电时,转子的磁极将同时受到A相绕组产生的磁场和B相绕组产生的磁场的共同吸引,转子的磁极则停在A和B两相磁极之间,此时步距角为15°,减小一半。

三相反应式步进电机的一个通电循环周期如下:A→AB→B→BC→C→CA,每个循环周期分为六拍。

每拍转子转过15°,一个通电循环周期转子转过90°。

与单三拍相比,六拍驱动方式的步进角更小,更适用于需要精确定位的控制系统中。

2.为什么说液压阻尼比是一个可变量?低阻尼对液压系统的动态

特性有什么影响?如何提高系统的阻尼?这些方法各有什么优缺

点?

因为阀的流量-压力系数是影响液压阻尼比的重要参数,而阀开口是可变的,流量-压力会随之改变,所以液压阻尼比是一个可变量。

低阻尼会使系统的稳定性下降。

提高液压阻尼比的方法:设置液压缸管路泄露通道;采用正开口阀;增设阻尼器;采用压力反馈、动压反馈或加速度反馈等。

采用压力反馈可以提高系统的阻尼比和固有频率,但会降低系统的开环增益,系统刚度降低,

干扰误差增加。

动压反馈校正能提高系统的阻尼比同时不改变系统的刚度。

加速度反馈校正可以提高系统的阻尼比,同时降低谐振的振幅。

低阻尼是影响系统的稳定性和限制系统频宽的主要因素之一。提高系统的阻尼的方法有以下几种:

1)设置旁路泄露通道。在液压缸两个工作腔之间设置旁路通道增加泄露系C。缺点是增大了功率损失,降低了系统的总压力增益和系统的刚度,增加数

tp

外负载力引起的误差。另外,系统性能受温度变化的影响较大。

K值大,可以增加阻尼,但也要使系统刚度2)采用正开口阀,正开口阀的

c0

降低,而且零位泄漏量引起的功率损失比第一种办法还要大。另外正开口阀还要带来非线性流量增益、稳态液动力变化等问题。

3)增加负载的粘性阻尼。需要另外设置阻尼器,增加了结构的复杂性。

4)在液压缸两腔之间连接一个机-液瞬态压力反馈网络,或采用压力反馈或动压反馈伺服阀。

3、影响液压动力执行元件特性的因素有哪些?有什么影响?如

何实现液压动力执行元件与负载的匹配?

答:影响液压动力执行元件特性的因素有液压源压力、负载流量大小、液压缸尺寸。

影响:1)提高液压源压力,特性曲线形状不变,顶点右移。

2)提高流量大小,特性曲线顶点不变,形状变宽。

3)提高液压缸活塞面积,顶点右移,形状变窄,功率不变。

液压动力执行元件特性曲线包含负载特性曲线,且两曲线在最大功率处有公共切点,即为

液压动力执行元件与负载的最佳匹配。

4、液压固有频率有什么意义?提高液压固有频率对系统有什么

好处?如何提高系统固有频率?

答:液压固有频率是负载惯性与液压缸封闭油腔中液体的压缩性相互作用的结果。

它常常是系统的最低频率,它的大小决定着伺服系统的响应速度。

提高液压固有频率可以提高系统的响应速度和动态品质。

提高方法:1)尽可能使阀靠近液压缸,减少管道体积,使系统油液体积减小到最低。2)选择高

品质液压油,弹性模量尽可能高。3)增加液压系统管道和腔室结构的刚度。液压固有频率是负载质量与液压缸工作腔中的油压缩性所形成的液压弹簧相互作用的结果。液压固有频率标示液压动力元件的响应速度。

提高液压固有频率的办法:增大液压缸活塞杆面积,Ap。减小总压缩体积Vt。减小折算到活塞上的总质量Mt。提高油液的有效体积弹性模量βe,液压阻尼比合适。

5.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

6.什么叫动力元件,有哪几种动力元件?

液压动力元件是由液压放大元件(液压控制单元)和液压执行元件组成。液压放大元件可以使液压控制阀,也可以是伺服变量泵。液压执行元件是液压缸或液压马达。由他们组成四种基本型式的液压动力元件:阀控液压缸,阀控液压马达,泵控液压缸,泵控液压马达。前两种动力元件可以构成阀控(节流控制)系统,后两种动力元件可以构成泵控(容积控制)系统。

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞

电液伺服阀基础知识介绍

电液伺服阀基础知识介绍 射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。博格公司的DSHR一级先导就是射流管阀,而派克公司的TDL一级先导就是喷嘴挡板阀,下面对两种阀的结构、工作原理及特点作个比较与介绍。并着重分析了射流管式伺服阀在可靠性及工作性能方面的一些优势。 工作原理: ★喷嘴挡板式伺服阀的原理:TDL 图1 为喷嘴挡板式伺服阀的原理图。它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。挡板的偏移将一侧喷嘴挡板可变节流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。于是,阀芯停留在某一位置。在该位置上,反馈杆的力矩等于输入控制 电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。 图1双喷嘴挡板式力反馈电液流量伺服阀

★射流管式伺服阀的原理: 图2 为射流管式伺服阀的原理图。力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。前置级为射流放大器,它由射流管与接受器组成。当马达线圈输入控制电,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。经过喷嘴的高速射流的偏转,使得接受器一腔压力升高,另一腔压力降低,连接这两腔的阀芯两端形成压差,阀芯运动直到反馈组件产生的力矩与马达力矩相平衡,使喷嘴又回到两接受器的中间位置为止。这样阀芯的位移与控制电流的大小成正比,阀的输出流量就比例于控制电流。 图2 射流管式力反馈电液流量伺服阀 ★两种阀的主要特点: 射流管式与喷嘴挡板式最大差别在于喷嘴挡板式以改变流体回路上所通过的阻抗来进行力的控制。相反,射流管式是靠射流喷嘴喷射工作液,将压力能变成动能,控制两个接受孔获得能量的比例来进行力的控制。这种方式的阀与喷嘴挡板式相比因射流喷嘴大,由污粒等工作液中杂物引起的危害小,抗污染能力强。且射流管式液压放大器的压力效率及容积效率高,一般为70%以上,有时也可达到90%以上的高效率。输出控制力(滑阀驱动力)大,进一步提高了抗污染能力。同样其灵敏度、分辨率及低压工作性能大大优于喷嘴挡板阀。另外,由于射流管式由于在喷嘴的下游进行力控制,当喷嘴被杂物完全堵死时,因两个接受孔均无能量输入,滑阀阀芯的两端面也没有油压的作用,反馈弹簧的弯曲变形力会使阀芯回到零位上,伺服阀可避免过大的流量输出,具有“失效对中”能力,并不会发生所谓的“满舵”现象。但射流管式液压放大器及整个阀的性能不易理论

电磁阀的结构原理

电磁阀的结构原理 简单的讲,电磁阀是用来开关流体通路或对流体进行换向的基础元件;其内部部件经过精密的机加工,并选择不同的阀体阀芯材料满足不同介质的流通。电磁阀的对流体通路的开关功能是通过其内部的电磁动铁芯的提升或落下来实现的,而动铁芯的动作是由电磁线圈的通电或断电来完成; 按内部结构可分为膜片式(图一、图二)和活塞式电磁阀(图三); 按其断电时电磁阀的状态分常开型和常闭型, 常闭型电磁阀:电磁线圈断电时,电磁阀呈关闭状态,当线圈通电时产生电磁力,使动铁芯克服弹簧力后被提起,此时电磁阀打开,介质呈通路状态;当线圈断电时,电磁力消失,动铁芯在弹簧力的作用下复位,直接关闭阀口,电磁阀关闭,介质断流;常开型与此相反; 按动作方式可分为直动式、分步直动式和先导式电磁阀: 直动式电磁阀:常闭型直动式电磁阀通电时,电磁线圈产生电磁力使动铁芯克服弹簧力被提起,电磁阀开启,介质流通;当线圈断电时,电磁力消失,动铁芯在弹簧力的作用下复位,电磁阀关闭,介质断流;常开型与此相反;在真空、负压、零压差时能正常工作,但电磁头体积较大。

分步直动式(反冲式):采用一次开阀和两次开阀连在一体,常闭型电磁阀线圈通电时,电磁力先将导阀打开,导阀设在主阀口上,此时主阀上腔的压力通过导阀口卸荷,主阀下腔压力大于上腔压力,在利用压力差和电磁力的共同作用下使主阀芯向上运动,电磁阀打开,介质流通;线圈断电时,电磁力消失,在动铁芯的自重和弹簧力的作用下关闭导阀孔,此时介质在平衡孔中进入主阀上腔,使上腔压力升高,在弹簧力和压力的作用下关闭主阀,介质断流。常开型与此相反;在零压差或高压时可靠工作,但功率及体积较大; 先导式电磁阀:由导阀和主阀芯连着形成通道,常闭型电磁阀电磁先驱通电时,产生的电磁力使导阀打开,介质流向出口,主阀上腔压力迅速下降,在主阀上下腔内形成压差克服弹簧力而随之向上运动,主阀开启,介质流通,电磁阀开启;线圈断电时,电磁力消失,动铁芯在弹簧力的作用下复位,关闭导阀,介质从平衡孔中流入,主阀芯上腔压力增大,并在弹簧力的作用下向下运动,关闭主阀,介质断流,电磁阀关闭。常开型与此相反;体积小,功率低,但介质压差范围受限,管道中压力必须满足开启的压差条件;

电液伺服阀的结构组成原理(复习最精)

当A相通电转为A和B同时通电时,转子的磁极将同时受到A相绕组产生的磁场和B相绕组产生的磁场的共同吸引,转子的磁极则停在A和B两相磁极之间,此时步距角为15°,减小一半。 三相反应式步进电机的一个通电循环周期如下:A→AB→B→BC→C→CA,每个循环周期分为六拍。 每拍转子转过15°,一个通电循环周期转子转过90°。 与单三拍相比,六拍驱动方式的步进角更小,更适用于需要精确定位的控制系统中。 2.为什么说液压阻尼比是一个可变量?低阻尼对液压系统的动态 特性有什么影响?如何提高系统的阻尼?这些方法各有什么优缺 点? 因为阀的流量-压力系数是影响液压阻尼比的重要参数,而阀开口是可变的,流量-压力会随之改变,所以液压阻尼比是一个可变量。 低阻尼会使系统的稳定性下降。 提高液压阻尼比的方法:设置液压缸管路泄露通道;采用正开口阀;增设阻尼器;采用压力反馈、动压反馈或加速度反馈等。 采用压力反馈可以提高系统的阻尼比和固有频率,但会降低系统的开环增益,系统刚度降低, 干扰误差增加。 动压反馈校正能提高系统的阻尼比同时不改变系统的刚度。 加速度反馈校正可以提高系统的阻尼比,同时降低谐振的振幅。 低阻尼是影响系统的稳定性和限制系统频宽的主要因素之一。提高系统的阻尼的方法有以下几种: 1)设置旁路泄露通道。在液压缸两个工作腔之间设置旁路通道增加泄露系C。缺点是增大了功率损失,降低了系统的总压力增益和系统的刚度,增加数 tp 外负载力引起的误差。另外,系统性能受温度变化的影响较大。 K值大,可以增加阻尼,但也要使系统刚度2)采用正开口阀,正开口阀的 c0

降低,而且零位泄漏量引起的功率损失比第一种办法还要大。另外正开口阀还要带来非线性流量增益、稳态液动力变化等问题。 3)增加负载的粘性阻尼。需要另外设置阻尼器,增加了结构的复杂性。 4)在液压缸两腔之间连接一个机-液瞬态压力反馈网络,或采用压力反馈或动压反馈伺服阀。 3、影响液压动力执行元件特性的因素有哪些?有什么影响?如 何实现液压动力执行元件与负载的匹配? 答:影响液压动力执行元件特性的因素有液压源压力、负载流量大小、液压缸尺寸。 影响:1)提高液压源压力,特性曲线形状不变,顶点右移。 2)提高流量大小,特性曲线顶点不变,形状变宽。 3)提高液压缸活塞面积,顶点右移,形状变窄,功率不变。 液压动力执行元件特性曲线包含负载特性曲线,且两曲线在最大功率处有公共切点,即为 液压动力执行元件与负载的最佳匹配。 4、液压固有频率有什么意义?提高液压固有频率对系统有什么 好处?如何提高系统固有频率? 答:液压固有频率是负载惯性与液压缸封闭油腔中液体的压缩性相互作用的结果。 它常常是系统的最低频率,它的大小决定着伺服系统的响应速度。 提高液压固有频率可以提高系统的响应速度和动态品质。 提高方法:1)尽可能使阀靠近液压缸,减少管道体积,使系统油液体积减小到最低。2)选择高 品质液压油,弹性模量尽可能高。3)增加液压系统管道和腔室结构的刚度。液压固有频率是负载质量与液压缸工作腔中的油压缩性所形成的液压弹簧相互作用的结果。液压固有频率标示液压动力元件的响应速度。 提高液压固有频率的办法:增大液压缸活塞杆面积,Ap。减小总压缩体积Vt。减小折算到活塞上的总质量Mt。提高油液的有效体积弹性模量βe,液压阻尼比合适。 5.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 6.什么叫动力元件,有哪几种动力元件? 液压动力元件是由液压放大元件(液压控制单元)和液压执行元件组成。液压放大元件可以使液压控制阀,也可以是伺服变量泵。液压执行元件是液压缸或液压马达。由他们组成四种基本型式的液压动力元件:阀控液压缸,阀控液压马达,泵控液压缸,泵控液压马达。前两种动力元件可以构成阀控(节流控制)系统,后两种动力元件可以构成泵控(容积控制)系统。

电磁阀原理及选型

电磁阀 一、电磁阀定义 是用来控制流体的自动化基础元件,属于执行器,并不限于液 和其他的参数。电磁阀可以配合不同的电路来实现预期的控制,而控制的精度和灵活性都能够保证。电磁阀有很多种,不同的 电磁阀在控制系统的不同位置发挥作用,最常用的是单向阀、 安全阀、方向控制阀、速度调节阀等。 二、电磁阀工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同 闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的 就控制了机械运动。 三、电磁阀分类 1、电磁阀从原理上分为三大类: 1.1直动式电磁阀 工作原理:

开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。 工作特点: 在真空、负压、零压时能正常工作,但通径一般不超过25mm。 1.2分布直动式电磁阀 工作原理: 它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 工作特点: 在零压差或真空、高压时亦能可*动作,但功率较大,要求必须水平安装。 1.3先导式电磁阀 工作原理: 通电时,电磁力把先导孔打开,上腔室压力迅速下降,在关闭件周围形成上低下高的压差,流体压力推动关闭件向上移动,阀门打开;断电时,弹簧力把先导孔关闭,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动关闭件向下移动,关闭阀门。

工作特点: 流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件。 2、电磁阀从阀结构和材料上的不同与原理上的区别,分为六个分 支小类: 2.1直动膜片结构。 2.2分步直动膜片结构。 2.3先导膜片结构。 2.4直动活塞结构。 2.5分步直动活塞结构。 2.6先导活塞结构。 3、电磁阀按照功能分类: 水用电磁阀、蒸汽电磁阀、制冷电磁阀、低温电磁阀、燃气电磁阀、消防电磁阀、氨用电磁阀、气体电磁阀、液体电磁阀、微型电磁阀、脉冲电磁阀、液压电磁阀常开电磁阀、油用电磁阀、直流电磁阀、高压电磁阀、防爆电磁阀等。 四、电磁阀选型 电磁阀选型时首先依次遵循安全性,适用性,可靠性,经济性四大原则,其次根据六个方面的现场工况(即管道参数、流体参数、压力参数、电气参数、动作方式、特殊要求进行选择)。 4.1四大原则 安全性:

CSDY1射流管电液伺服阀产品说明书

CSDY1射流管电液伺服阀 产品说明书 编制: 校对: 审核: 审定: 九江仪表厂 一九八九年十二月

CSDY1射流管电液伺服阀产品说明书 一、概述: CSDY1系列射流管电液伺服阀是力反馈型两级流量伺服控制阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的控制。 二、结构原理: 图1是CSDY1系列射流管电液伺服阀的原理图,力矩马达采用永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps通过滤油器及固定节流孔,到射流管喷嘴向两个接受孔喷射,接受孔分别与阀芯两端控制腔相通。 当力矩马达线圈组件输入控制电流时,由于控制磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个接受孔腔产生压差引起阀芯位移,且一直持续到由反馈弹簧组件弯曲产生的反馈力矩与控制电流产生的控制力矩相平衡为止。 由于阀芯位移与反馈力矩成比例,控制力矩与控制电流成比例,伺服阀的输出流量与阀芯位移成比例,所以伺服阀的输出流量与输入的指令控制电信号亦成比例,若给伺服阀输入反向电控信号,则伺服阀就有反向流量输出。 三、技术性能指标:

1、供油压力范围(MPa) 2.1~31.5 2、额定供油压力(MPa)20.6 3、额定流量(L/min)2—40(按用户要求) 4、滞环(%)≤3 ≤5(用于低频控制系统) 5、分辨率(%)≤0.25 6、线性度(%)≤7.5 7、对称度(%)≤10 8、压力增益(%Ps/1%In)≥30 9、静耗流量(L/min)≤0.45+3%Qn 10、零偏(%)≤2 11、幅频宽(-3Db)(HZ) ≥70 ≥40(用于低频控制系列) 12、相频宽(-90°)(HZ)≥90 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及控制电流的极性等参照下表和射流管电液伺服阀安装图(图2)

电磁阀工作原理(图文并茂)

电磁阀工作原理 纵观国外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差围受限,必须满足压差条件。 两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装_)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作

液压伺服工作原理

液压伺服工作原理 1.1 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值 x i 。对应给定值x i ,有一定的电压输给放大器7,放大器将电压信号转换为电流 信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v 。阀开口x v 使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸 活塞杆也带动电位器6的触点下移x p 。当x p 所对应的电压与x i 所对应的电压相 等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反

电磁阀工作原理

电磁阀工作原理 纵观国内外电磁阀,到目前为止,从动作方式上可分为三大类即:直动式、反冲式、先导式,而从阀瓣结构和材料上的不同以及原理上的区别反冲式又可分为:膜片式反冲电磁阀、活塞式反冲电磁阀;先导式又可分为:先导式膜片电磁阀、先导式活塞电磁阀;从阀座及密封材料上分又可分为:软密封电磁阀、钢性密封电磁阀、半钢性密封电磁阀。 一、直动式电磁阀 原理:常闭型直动式电磁阀通电时,电磁线圈产生电磁吸力把阀芯提起,使关闭件离远开阀座密封副打开;断电时,电磁力消失,靠弹簧力把关闭元件压在阀座上阀门关闭。(常开型与此相反) 特点:在真空、负压、零压差时能正常工作,DN50以下可任意安装,但电磁头体积较大。如我公司引进HERION公司技术生产的直动电磁阀可用于1.33×10-4 Mpa真空。 二、反冲型电磁阀 原理:它的原理是一种直动和先导相结合,通电时,电磁阀先将辅阀打开,主阀下腔压力大于上腔压力而利用压差及电磁阀的同时作用把阀门开启;断电时,辅阀利用弹簧力或介质压力推动关闭件,向下移

动便阀门关闭。 特点:在零压差或高压时也能可靠工作,但功率及体积较大,要求竖直安装。 三、先导式电磁阀 原理:通电时,电磁力驱动先导阀打开先导阀,主阀上腔压力迅速下降,在主阀上下腔内形成压差,依靠介质压力推动主阀关闭件上移,阀门开启;断电时,弹簧力把先导阀关闭,入口介质压力通过先导孔迅速进入主阀上腔在上腔内形成压差,从而使主阀关闭。 特点:体积小,功率低,但介质压差范围受限,必须满足压差条件。两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理 在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装@_@)。 两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和

电磁阀驱动电路(完整资料).doc

【最新整理,下载后即可编辑】 设计文件 (项目任务书) 一、设计题目 电磁阀驱动电路系统设计全程解决方案 二、关键词和网络热点词 1.关键词 电磁阀驱动光电耦合…… 2.网络热点词 电动开关……….. 三、设计任务 设计一个简单的电池阀驱动电路,通过按钮开关控制市场上的12V常闭电池阀打开和闭合。 基本要求: 1)电路供电为24V; 2)电磁阀工作电压为12V; 3)带有光电耦合控制电路; 4)用发光二极管来区别、显示电磁阀的开关开关状态 四、设计方案 1.电路设计的总体思路 电磁阀驱动电路是各种气阀、油阀、水阀工作的首要条件,其作用是通过适当的电路设计,使电池阀能够按时打开或半打开,有需要控制阀以几分之几的规律打开之类

的要求,应设计较精密的的驱动电路。我做的只是一个简单的驱动常闭电池阀全打开的简单驱动电路。通过光电耦合器控制三极管的导通,进而控制电磁阀的打开与闭合。电磁阀导通的同时,与之并联的LED灯也随之亮。来指示电磁阀正在工作。我们选用大功率管TIP122来控制电路的导通、截止,而且这里必须用大功率管,因为电磁阀导通时电流特别大。考虑到电磁阀断开时会有大股电流回流,这时则需要设置回流回路,防止烧坏元器件,我们这里采用大功率二极管1N4007与电磁阀形成回流回路来消弱逆流电流的冲击。具体的电路图如下图1所示:

图1

2、系统组成: 在设计整个电路前,我们应该先有个整体构思,建立一个整体框架,然后根据设计要求再逐步细化、设计每一个模块的具体电路,及工作原理。最后将各部分有机的连接到一起,形成一个完整的电路系统。完成项目任务。系统框图如下图2所示: 图2 系统框图 电磁阀驱动电路整个系统主要分两个部分: 第一个部分:光电耦合器控制电路。我们都知道光电耦合器随着输入端电流的增加,其内部发光二极管的亮度也会增强,紧随着光电耦合器的输出电流就会跟着增大。光电耦合器一般由三部分组成:光的发射、光的接受、及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接受而产生光电流,再进一步放大后输出。这就完成了电-光-电的转换,从而起到输入、输出、隔离的作用。而我们本电

伺服阀工作原理

(1)电液伺服阀的组成 伺服阀由力矩马达、液压放大器、反馈机构三部分组成 (2)力矩马达的工作原理 力矩马达的作用是把输入的电气控制信号转换为力矩。它由永久磁铁、上导磁体、下导磁体、衔铁、控制线圈、弹簧管等组成。衔铁固定在弹簧管上端,由弹簧管支承在上、下导磁体的中间位置,可绕弹簧管的转动中心作微小的转动。 永久磁铁将上、下导磁体磁化,一个为N级,另一个为S级。无信号电流时,衔铁在上、下导磁体的中间位置,由于力矩马达结构是对称的,使磁铁两端所受的电磁力相同,力矩马达无力矩输出。当有信号电流通过线圈时,控制线圈产生控制磁通,其大小和方向取决于信号电流的大小和方向电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例。

力矩马达磁路原理图 对于上图的磁路分析: 对分支点A 和B 应用磁路基尔霍夫第一定律可得衔铁磁通 12a φφφ=- 整理后得到 g 2g 2()2l 1()l g c a x x φφφ+=- 由于2g (x/l )1 《,上式化简a g 2l c g g x N i R φφ=+?,考虑到x a θ≈,上式写成 a g 2l c g g a N i R φφθ=+? 由控制磁通和极化磁通的相互作用在衔铁上产生电磁力矩d 14=2a(F -F )T ,考

虑到衔铁转角θ很小,故有,,x tg x a a θθθ=≈≈则上式可写成: 2 2222g 22g (1)(1)l (1)l c t m g d x K i K T x φθφ+?++=-, 式中t K 为力矩马达的中位电磁力矩系数,g 2l t c g a K N φ= m K 为力矩马达的中位磁弹簧刚度,22g 4()l m g g a K R φ= 由上式可以看出,力矩马达的输出力矩具有非线性。为了改善线性度和防 止衔铁被永久磁铁吸附,力矩马达一般都设计成g x/l <1/3,即2g (x/l )1 《和2(/) 1c g φφ《。则接着化简成: t d m T K i K θ=?+ 上式中,t i K ?是衔铁在中位时,由控制电流i ?产生的电磁力矩,称为中位电磁力矩。m K θ是由于衔铁偏离中位时,气隙发生变化而产生的附加电磁力矩,它使衔铁进一步偏离中位。这个力矩与转角成比例,相似于弹簧的特性,称为电磁弹簧力矩。 (3) 液压放大器 液压放大器的运动去控制液压能源流向液压执行机构的流量或压力。力矩马达的输出力矩很小,在阀的流量比较大时,无法直接驱动功率级阀运动,此时需要增加液压前置级,将力矩马达的输出加以放大,再去控制功率级阀,功率级阀采用三位四通滑阀,这就构成了电液伺服阀。 三级电液伺服阀实质上是由通用型双喷嘴力反馈两级伺服阀和第三级滑阀组成,第三级滑阀的阀芯位移由电反馈来实现闭环控制。 伺服射流管先导阀主要由力矩马达、喷嘴挡板和接收器组成。当线圈中有电流通过时,产生的电磁力使挡板偏离中位。这个偏离和特殊形状的喷嘴设计使得当挡板偏向一侧时造成先导阀的接收器产生偏差。此压差直接导致阀芯两侧驱动

美国MOOG伺服阀,伺服阀的工作原理及作用

美国MOOG伺服阀,伺服阀的工作原理及作用 1、电液伺服阀主要用于电液伺服自动控制系统,其作用是将小功率的电信号转换为大功率的液压输出,经过液压执行机构来完成机械设备的自动化控制. SupeSite/X-Space官方站y Q d:E p p.P 伺服阀是一种经过改动输入信号。依据输入信号的方式不同,分为电液伺服阀和机液伺服阀。SupeSite/X-Space官方站(R w _ }/i-A 电液伺服阀既是电液转换元件,又是功率放大元件,它的作用是将小功率的电信号输入转换为大功率的液压能(压力和流量)输出,完成执行元件的位移、速度、加速度及力控制。 +C6S c {(p a0液压泵的输出压力是指液压泵在实践工作时输出油液的压力,即泵工作时的出口压力,通常称为工作压力,其大小取决于负载。 SupeSite/X-Space官方站Y \ h+I r2k L 电液伺服阀通常由电气—机械转换安装、液压放大器和反应(均衡)机构三局部组成。反应战争衡机构使电液伺服阀输出的流量或压力取得与输入电信号成比例的特性。压力的稳定通常采用压力控制阀,比方溢流阀等。 2.细致材料: 典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功用可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。美国威格士VICKERS柱塞泵由于气体的可紧缩性,使气缸或气马达等执行元件的运动速度不只取决于气体流量。还取决于执行元件的负载大小。因而准确地控制气体流量常常是不用要的。单纯的压力式或流量式比例/伺服阀应用不多,常常是压力和流量分离在一同应用更为普遍。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来低价的电子集成电路和各种检测器件的大量呈现,在1电---气比例/伺服阀中越

伺服阀与比例阀原理介绍

电液伺服阀的原理和性能介绍 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中,伺服阀价格高且对过滤精度要求也高,比例阀广泛用于要求对液压参数进行连续控制或程序控制但对控制精度和动态特性要求不太高的液压系统中。 另外,1.伺服阀中位没有死区,比例阀有中位死区; 2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz; 3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。 比例伺服阀性能介于伺服阀和比例阀之间。 比例换向阀属于比例阀的一种,用来控制流量和流向。 伺服阀跟比例阀的本质区别就是他有两横 1、伺服阀和比例阀上下都有两横; 2、比例阀两边都有比例电磁铁,而且有比例电磁铁的符号上都箭头。但是伺服阀确是只有一边有力马达,要强调的是只有一边有。 比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出; 伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。 区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安; 比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高

一个粗液压缸一个细液压缸长短样怎么同步升起 最简单的就是在细油缸的进油口加一个节流阀,控制一下进入油缸的流量使细油缸慢下来。但节流阀的节流效果受负载和液压油粘度的影响比较大,如果负载变化大,你得经常调整。 不用节流阀,用调速阀也可以,不受负载影响,但有发热的趋势。 也可以用分流阀,但分流阀的分流比是确定的,通常是1:1或1:2。粗细油缸的面积比不一定合适。 最贵的方案就是带有长度传感器的伺服缸和比例阀或者伺服阀,在计算机控制下,能达到液压系统能达到的最高精度。但价格很难接受。 |评论 同步精度要求不高的话,直接用个同步分流阀就行了。有负载补偿的 建议用分流集流阀,好一些的阀,精度可以达到正负3% 尽可能用机械同步。分流阀不用试,一定失败。原因是流量太小,形成不了压差。马达式同步有机会成功,但要选排量非常小的。算手泵流量时把人算100瓦的功率。 如果能做到机械式同步,那是最好不过的了,如果没条件,在同步精度要求较低的情况下,可以用同步阀(分流-集流阀),精度要求再高点的话,可以用同步马达。再高点,就无法达到了,因为要用伺服阀,但现场无法用电 分流阀在负载相同时效果非常好,但负载偏差严重时同步效果大打折扣,建议用同步马达或 同步缸,同步精高时不妨用传感器 油缸不大的话用同步缸要好点,油缸大的话用同步马达应该可以满足 流马达又叫同步马达,一般为齿轮的,与多联齿轮泵的外形有点象,就是两组或两组以上的齿轮马达串联在一起,转速一致,按一定比例分配液压泵提供来的油液供执行元件使用,不

CSDY射流管电液伺服阀产品说明书

CSDY2 射流管电液伺服阀 产品说明书 编制: 校对: 审核: 审定: 九江仪表厂 一九八九年十二月

CSDY2 射流管电液伺服阀产品说明书 一、概述: CSDY2 系列射流管电液伺服阀是力反馈型两级流量伺服控制阀,具有性能良好,抗污染能力强,安全可靠以及寿命长的突出特点,适用于电液伺服系统的位置、速度、加速度和力的控制。 二、结构原理: 图1是CSDY2 系列射流管电液伺服阀的原理图,力矩马达采用永磁力矩马达,由两个永久磁钢产生极化磁通,衔铁两端伸入磁通回路的空气隙中,弹簧管一端固定在壳体上,另一端固定在衔铁组件的钢套中。反馈弹簧组件的一端固定在射流管喷嘴上,反馈杆被夹牢在阀芯的中心位置。 高压油连续地从供油腔Ps 通过滤油器及固定节流孔,到射流管喷嘴向两个接受孔喷射,接受孔分别与阀芯两端控制腔相通。 当力矩马达线圈组件输入控制电流时,由于控制磁通和极化磁通的相互作用,在衔铁上产生一个力矩,该力矩使衔铁组件绕弹簧管旋转,从而使射流管喷嘴运动导致两个接受孔腔产生压差引起阀芯位移,且一直持续到由反馈弹簧组件弯曲产生的反馈力矩与控制电流产生的控制力矩相平衡为止。 由于阀芯位移与反馈力矩成比例,控制力矩与控制电流成比例,伺服阀的输出流量与阀芯位移成比例,所以伺服阀的输出流量与输入的指令控制电信号亦成比例,若给伺服阀输入反向电控信号,则伺服阀就有反向流量输出。 三、技术性能指标: 士8mA ~± 50mA 20.6MPa 1、额定电流 2、额定压力

3、 额定流量 4、 线圈直流电阻 5、 滞环(%) 6、 分辨率(%) 7、 线性度(%) 8对称度(%) 9、 压力增益(%Ps/1%ln ) 10、 静耗流量(L/min ) 11、 零偏(%) < 2 12、 幅频宽(—3Db ) (HZ) > 35 13、 相频宽(—90°) (HZ ) >50 四、线圈连接方法: 伺服阀线圈的连接方法,插销头标号,外引出线颜色及控制电流 的极性等参照下表和射流管电液伺服阀安装图(图 2) 四、注意事项: 1、伺服阀安装前应先装上随带附件:冲洗板。启泵运行不少于 8h ,工作液清洁度应达到NAS7级 2、 伺服阀进口前应安装精度为10?20卩m 的油滤 3、 每年定期取样检查,更换滤芯及工作液。 63 ?120 L/min 103±100Q, 40±4Q < 5 < 0.25 < 7.5 < 10 > 30 < 0.45+3%Qn

电液伺服阀工作原理

汽轮机调速系统中的电液伺服阀工作原理:电液伺服阀是油动机的核心部件,靠它来接收电信号并控制进入油缸油流的多少。电液伺服阀安装在MSV,GV 和ICV的阀门油动机上,RSV的油动机没有安装电液伺服阀。通过向油动机的油缸供应高压油而将蒸汽阀门打开,而通过其将油缸的高压油泄去并靠弹簧力将蒸汽阀门关闭。电液伺服阀是由电磁部分(永久磁铁、导磁体、衔铁、线圈),两级液压放大器(挡板、软管、喷嘴、油路、四通滑阀、反馈弹簧)和过滤器(可更换过滤器和内置过滤器)等组成, 如图

所示。衔铁与挡板通过软管连接在一起,挡板下部连有一个反馈弹簧,弹簧的另一端为一球头,嵌放在滑阀的凹槽内。永久磁铁和导磁体形成一个固定磁场,当线圈中没有电流通过时,导磁体和衔铁间4个气隙中的磁通都是一样的且方向是相同的,衔铁处于中间位置。当有控制电流通过线圈时,一组对角方向的气隙中的磁通增加,另一组对角方向的气隙中的磁通减小,于是衔铁就在磁力作用下克服弹簧的弹性反作用力而偏转一角度,并偏转到磁力所产生的转矩与弹性反作用力所产生的反转矩平衡时为止。同时挡板因随衔铁偏转而发生挠曲,改变了它与两个喷嘴间的间隙,一个间隙减小,一个间隙加大。高压油从供油口进入伺服阀并且引入到四通滑阀的两端下面,经过过滤器以及孔板后,一路流向喷嘴和挡板,并通向回油;另一路流到四通滑阀的两端端面以形成对四通滑

阀的推力。当挡板挠曲,出现上述喷嘴与挡板的两个间隙不相等的情况时,两喷嘴后侧的压力就不相等,它们作用在滑阀的左右两端端面上,使滑阀向相应方向移动一段距离,压力油就通过四通滑阀的控制油口输向油缸或者使油缸的工作油通过滑阀的一个凸肩流出并通向回油。滑阀移动时,反馈弹簧下端球头跟着移动。在衔铁挡板组件上产生了一个转矩,使衔铁向相应方向偏转,并使挡板在两喷嘴间的偏移量减少,这就是反馈作用。反馈作用的后果就是使滑阀两端的差压减小。在接受一个正向电流指令信号时,这时滑阀的一个凸肩打开了EH油的供油口,油动机进油,蒸汽阀门打开,蒸汽阀门的LVDT输出的反馈信号增大,指令与反馈信号的偏差在不断减少,至伺服阀的开阀驱动指令也在不断减小,当伺服阀的输出指令与弹簧的反作用力平衡时,挡板回到中间位置,滑阀处于平衡状态,油动机此时停止进油,蒸汽阀门位置保持不变。电液伺服阀是有机械零偏的,而机械零偏是借助于滑阀一个端面上装设的一个机械偏置弹簧来实现的。其主要作用是当伺服阀失去控制信号或线圈损坏时,靠它的机械偏置使滑阀移动而打开泄油孔,使油动机油缸和回油相通,蒸汽阀门的弹簧力使油动机全关,确保机组安全。如果机械偏置为零或为正,

比例电磁阀工作原理

比例电磁阀工作原理 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是 滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单 独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一 般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。 压力补偿是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入压力补偿阀,压力补偿阀对阀口前压力进行调整使阀口前后压差为常值,这样节流口流量调节特性流经阀口流量大小就只与该阀口开 度有关,而不受负载压力影响。 4 工程机械电液比例阀先导控制与遥控 电液比例阀和其它专用器件技术进步使工程车辆挡位、转向、制动和工作装置等各种系统电气控制成为现实。一般需要位移输出机构可采用类似于图1 比例伺服控制手动多路阀驱动器完成。电气操作具有响应快、布线灵活、可实现集成控制和与计算机接口容易等优点,现代工程机械液压阀已越来越多采用电控先导控制电液比例阀(或电液开关阀)代替手动直接操作或液压先导控制多路阀。采用电液比例阀(或电

射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较

射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较 1 序言 射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。由于射流管式电液伺服阀在国外属高端产品,主要运用于航空、航天、军事等行业,对国内引进实行限制,目前国内除少数电厂随设备引进较大流量的射流管阀外,一般很少见到该型阀。国内成规模生产该型阀的单位也只有中国船舶重工集团公司第七O四研究所。而喷嘴挡板式电液伺服阀国内外运用得比较普遍,国内生产该型阀的单位也比较多。本文将对两种阀的构造与特点作一简单介绍。 2 工作原理 2.1喷嘴挡板式伺服阀的原理 图1为喷嘴挡板式伺服阀的原理图。它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。 其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。 挡板的偏移将一侧喷嘴挡板可变节流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。于是,阀芯停留在某一位置。在该位置上,反馈杆的力矩等于输入控制电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。 2.2 射流管式伺服阀的原理 图2为射流管式伺服阀的原理图。力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。前置级为射流放大器,它由射流管与接受器组成。当马达线圈输入控制电流,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。经过喷嘴的高速射流的偏转,使得接受器

相关主题