搜档网
当前位置:搜档网 › 9.2 模拟设计页面调度

9.2 模拟设计页面调度

9.2 模拟设计页面调度
9.2 模拟设计页面调度

操作系统实验报告样本

1 操作系统实验报告内容

(1)基本信息:完成人姓名、学号、报告日期

(2)实验内容

(3)实验目的

(4)实验题目

(5)设计思路和流程图

(6)主要数据结构及其说明

(7)源程序并附上注释

(8)程序运行时的初值和运行结果

(9)实验体会:实验中遇到的问题及解决过程、实验中产生的错误及原因分析、实验的体会

及收获、对做好今后实验提出建设性建议等。

实验报告可以书面或电子文档形式提交。

2操作系统实验报告样本

样本1

一、实验内容

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。

二、实验目的

在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。

三、实验题目

本实验有三个题目。

第一题:模拟分页式存储管理中硬件的地址转换和产生缺页中断。

[设计思路、数据结构、流程图]:

(1) 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式为:

其中,标志——用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。

主存块号——用来表示已经装入主存的页所占的块号。

在磁盘上的位置——用来指出作业副本的每一页被存放在磁盘上的位置。

(2) 作业执行时,指令中的逻辑地址指出参加运算的操作数存放的地址,该地址被解释为页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:

绝对地址=块号 块长+单元号

计算出欲访问的主存单元地址。如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。按计算出的绝对地址可以取到操作数,完成一条指令的执行。若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。

(3) 设计一个“地址转换”程序来模拟硬件的地址转换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主存时,则输出“*该页页号”,表示产生了一次缺页中断。该模拟程序的算法如图1。

(4) 假定主存的每块长度为128个字节;现有一个共七页的作业,其中第0页至第3页已经装入主存,其余三页尚未装入主存;该作业的页表为:

图1 地址转换模拟算法

如果作业依次执行的指令序列为:

运行设计的地址转换程序,显示或打印运行结果。因仅模拟地址转换,并不模拟指令的执行,故可不考虑上述指令序列中的操作。

第二题:用先进先出(FIFO)页面调度算法处理缺页中断。

[设计思路、数据结构、流程图]:

(1) 在分页式虚拟存储系统中,当硬件发出“缺页中断”后,引出操作系统来处理这个中断事件。如果主存中已经没有空闲块,则可用FIFO页面调度算法把该作业中最先进入主存的一页调出,存放到磁盘上。然后再把当前要访问的页装入该块。调出和装入后都要修改页表中对应页的标志。

(2) FIFO页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时,把开始的m个页面装入主存,则数组的元素可定为m个。例如:

P[0],P[1]…,P[m-1]

其中每一个P[i] (I=0, 1, …, m-1) 表示一个在主存中的页面号。它们的初值为:P[0]:=0, P[1]:=1, …, P[m-1]:=m-1

用一指针K指示当要装入新页时,应淘汰的页在数组中的位置,K的初值为“0”。

当产生缺页中断后,操作系统选择P[k]所指出的页面调出,然后执行:

P[k]:=要装入页的页号

k:= (k+1) mod m

再由装入程序把要访问的一页信息装入到主存中。重新启动刚才那条指令执行。

(3) 编制一个FIFO页面调度程序,为了提高系统效率,如果应淘汰的页在执行中没有修改过,则可不必把该页调出(因在磁盘上已有副本)而直接装入一个新页将其覆盖。因此在页表中增加是否修改过的标志,为“1”表示修改过,为“0”表示未修改过,格式为:

由于是模拟调度算法,所以,不实际地启动调出一页和装入一页的程序,而用输出调出的页号和装入的页号来代替一次调出和装入的过程。

把第一题中程序稍作改动,与本题结合起来,FIFO页面调度模拟算法如图2。

图2 FIFO页面调度模拟算法

(4) 如果一个作业的副本已在磁盘上,在磁盘上的存放地址以及已装入主存的页和作业依次执行的指令序列都同第一题中(4)所示。于是增加了“修改标志”后的初始页表为:

按依次执行的指令序列,运行你所设计的程序,显示或打印每次调出和装入的页号,以及执行了最后一条指令后的数组P的值。

(5) 为了检查程序的正确性,可再任意确定一组指令序列,运行设计的程序,核对执行的结果。

虚拟存储管理器的页面调度算法实现

三、虚拟存储管理器的页面调度 页面调度算法主要有:FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU),最佳算法(OPT) 1.输入: 页面流文件,其中存储的是一系列页面号(页面号用整数表示,用空格作为分隔符),用来模拟待换入的页面。 下面是一个示意: 1 2 3 4 1 2 5 1 2 3 4 5 2.处理要求: 程序运行时,首先提示“请输入页面流文件的文件名:”,输入一个文件名后,程序将读入该文件中的有关数据。 初始条件:采用三个页框,初始时均为空。 根据第二次机会算法对数据进行处理。 3.输出要求: 每换入一个页面(即:每读入一个页面号),判断是否有页面需要被换出。若有,把被换出的页面号输出到屏幕上; 若没有,则输出一个“*”号。 4.文件名约定 提交的源程序名字:sourceXXX.c或者sourceXXX.cpp(依据所用语言确定) 输入文件名字:可由用户指定 其中:XXX为账号。 5.测试说明:测试教师将事先准备好一组文件(格式为*.txt),从中为每个程序随机指定一至三个作为输入文件 (被测试者需从键盘输入指定文件的文件名),并查看程序输出结果。 6.第二次机会算法:对FIFO算法做如下简单的修改:发生替换时,先检查最老页面的R(访问)位。如果为0, 那么此页面是最早被换入的,而且近期没有被访问,可以立刻被替换掉;如果R位为1,就清除R位,并修改它的装入时间, 使它就像刚被装入的新页面一样,然后继续搜索可替换的最老页面。 我没做出来~~~~ 页面调度算法主要有:FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU),最佳算法(OPT) 这几种算法的调度都有可能在考试中碰到。 关于这一类型,大家还可以参看书本251页的实验指导。 如2001年考题: 要求: 1。实现三种算法: FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU) 2。页面序列从指定的文本文件(TXT文件)中取出

页面置换算法模拟程序-附代码

目录 1.问题的提出 (2) 1.1关于页面置换算法模拟程序问题的产生 (2) 1.2任务分析 (2) 2.需求分析 (2) 3.方案设计 (3) 4.总体设计 (4) 4.1程序N-S图 (4) 4.2主要的函数 (4) 4.3主要流程图及代码 (5) 4.3.1 FIFO(先进先出) (5) 4.3.2 LRU(最近最久未使用) (6) 4.3.3 OPT(最佳置换算法) (8) 4.4实现结果 (11) 5.程序测试 (14) 5.1设计测试数据 (14) 5.2测试结果及分析 (15) 摘要 随着计算机的普及人们的物质生活得到了极大的满足,人们在精神生活方面同样也需要

提高,所以越来越多的人进行着各种各样的学习。操作系统是计算机教学中最重要的环节之一,也是计算机专业学生的一门重要的专业课程。操作系统质量的好坏,直接影响整个计算机系统的性能和用户对计算机的使用。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分发挥系统中各种设备的使用效率,提高系统工作的可靠性。由于操作系统涉及计算机系统中各种软硬件资源的管理,内容比较繁琐,具有很强的实践性。要学好这门课程,必须把理论与实践紧密结合,才能取得较好的学习效果. 本课程设计是学生学习完《操作系统教程》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 熟悉页面置换算法及其实现,引入计算机系统性能评价方法的概念。 关键词:编制页面置换算法模拟程序、打印页面、FIFO页面算法、LRU页面置换算法、OPT页面置换算法。

操作系统课程设计-页面置换算法C语言

操作系统课程设计-页面置换算法C语言

5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。 三、设计要求 1、编写算法,实现页面置换算法FIFO、LRU; 2、针对内存地址引用串,运行页面置换算法进行页面置换; 3、算法所需的各种参数由输入产生(手工输入或者随机数产生); 4、输出内存驻留的页面集合,页错误次数以及页错误率; 四.相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义: 虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。

请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 4.页面分配: 平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。 考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。 5.页面置换算法: 常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。 五、设计说明 1、采用数组页面的页号 2、FIFO算法,选择在内存中驻留时间最久的页 面予以淘汰; 分配n个物理块给进程,运行时先把前n个不同页面一起装入内存,然后再从后面逐一比较,输出页面及页错误数和页错误率。3、LRU算法,根据页面调入内存后的使用情况 进行决策; 同样分配n个物理块给进程,前n个不同页面一起装入内存,后面步骤与前一算法类似。 选择置换算法,先输入所有页面号,为系统分

进程调度算法模拟 (操作系统课程设计报告)

福建农林大学计算机与信息学院 课程设计报告 课程名称:操作系统 实习题目:进程调度算法模拟 姓名: 系:计算机科学与技术系 专业:计算机科学与技术 年级:2012 学号: 指导教师: 职称:副教授 年月日

福建农林大学计算机与信息学院计算机类 课程设计结果评定

目录 1.本选题课程设计的目的 (4) 2.本选题课程设计的要求 (4) 3.本选题课程设计报告内容 (4) 3.1前言 (4) 3.2进程调度算法模拟的环境 (4) 3.3系统技术分析 (4) 3.4系统流程图及各模块 (5) 3.5程序调试情况 (8) 4.总结 (11) 参考文献 (11) 程序代码 (12)

1.设计目的 课程设计将课本上的理论知识和实际有机的结合起来,锻炼学生的分析系统,解决实际问题的能力。提高学生分析系统、实践编程的能力。 2.设计要求 利用学到的操作系统和编程知识,完成具有一定难度的系统分析研究或系统设计题目。其中:专题系统理论研究应包括研究目的、目标,论点和论据以及证明推导等;分析、设计系统应包括编写、调试程序以及最后写出设计报告或系统说明文档文件,系统说明文档包括系统界面、变量说明、系统功能说明、编程算法或思路、流程图和完整程序。具体要求如下: 1、对系统进行功能模块分析、控制模块分析正确; 2、系统设计要实用; 3、编程简练,可用,功能全面; 4、说明书、流程图要清楚。 3.设计方案 3.1前言 本程序包括三种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 3.2本选题设计的环境 WindowsXP下的Microsoft Visual C++ 6.0 3.3系统技术分析 (1)编程实现对N个进程采用某种进程调度算法(如动态优先权调度算法、先来先服务算法、短进程优先算法、时间片轮转调度算法)调度执行的模拟。(2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段:进程标识数ID。 进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。

实验五-页面调度算法模拟实验报告

《计算机操作系统》实验报告 实验五:页面调度算法模拟 学校:╳╳╳ 院系:╳╳╳ 班级:╳╳╳ 姓名:╳╳╳ 学号:╳╳╳

指导教师:╳╳╳ 目录 一、实验题目 (3) 二、实验学时 (4) 三、指导老师 (4) 四、实验日期 (4) 五、实验目的 (4) 六、实验原理 (4) 6.1页面的含义 (4) 6.2 页面置换算法的含义 (4) 6.3 置换算法 (4) 6.3.1最佳置换算法(Optimal) (5) 6.3.2先进先出(FIFO)页面置换算法 (5) 6.3.3 LRU置换算法 (5) 七、实验步骤及结果 (5)

7.1 验证最佳置换算法 (5) 7.1.1 实验截图 (5) 7.1.2 实验分析 (6) 7.2 验证先进先出(FIFO)页面置换算法 (7) 7.2.1 实验截图 (7) 7.2.2 实验分析 (7) 7.3 验证LRU置换算法 (8) 7.3.1 实验截图 (8) 7.3.2 实验分析 (8) 八、报告书写人 (9) 附录一最佳置换算法(Optimal) (9) 附录二先进先出(FIFO)页面置换算法 (15) 附录三LRU置换算法 (20) 实验五:页面调度算法模拟 一、实验题目 页面调度算法模拟

二、实验学时 2学时 三、指导老师 ╳╳╳ 四、实验日期 2018年12月10日星期一 五、实验目的 (1)熟悉操作系统页面调度算法 (2)编写程序模拟先进先出、LRU等页面调度算法,体会页面调度算法原理 六、实验原理 6.1页面的含义 分页存储管理将一个进程的逻辑地址空间分成若干大小相等的片,称为页面或页。 6.2 页面置换算法的含义 在进程运行过程中,若其所要访问的页面不在内存而需把它们调入内存,但内存已无空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据,送磁盘的对换区中。但应将哪个页面调出,须根据一定的算法来确定。通常,把选择换出页面的算法称为页面置换算法(Page_Replacement Algorithms)。 6.3 置换算法 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面换出,或将那些在较长时间内不会再访问的页面调出。

虚拟存储器管理 页面置换算法模拟实验

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级:软件*** 学号:20**1228** 姓名:****

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

2011180021-Linux操作系统-课程设计报告-基于Linux的进程调度模拟程序

河南中医学院 《linux操作系统》课程设计报告 题目:基于Linux的进程调度模拟程序 所在院系:信息技术学院 专业年级:2011级计算机科学与技术完成学生:2011180021 郭姗 指导教师:阮晓龙 完成日期:201X 年06 月22 日 目录 1. 课程设计题目概述3 2. 研究内容与目的4 3. 研究方法5 4. 研究报告6 5. 测试报告/实验报告7 6. 课题研究结论8 7. 总结9

1、课程设计题目概述 随着Linux系统的逐渐推广,它被越来越多的计算机用户所了解和应用. Linux是一个多任务的操作系统,也就是说,在同一个时间内,可以有多个进程同时执行。如果读者对计算机硬件体系有一定了解的话,会知道我们大家常用的单CPU计算机实际上在一个时间片断内只能执行一条指令,那么Linux是如何实现多进程同时执行的呢?原来Linux使用了一种称为"进程调度(process scheduling)"的手段,首先,为每个进程指派一定的运行时间,这个时间通常很短,短到以毫秒为单位,然后依照某种规则,从众多进程中挑选一个投入运行,其他的进程暂时等待,当正在运行的那个进程时间耗尽,或执行完毕退出,或因某种原因暂停,Linux就会重新进行调度,挑选下一个进程投入运行。因为每个进程占用的时间片都很短,在我们使用者的角度来看,就好像多个进程同时运行一样了。本文就是对进程调度进行研究、实验的。 本文首先对Linux系统进行了简要的介绍, 然后介绍了进程管理的相关理论知识。其次,又介绍最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)、先来先服务算法的相关知识,并对进程调度进行最高优先数优先的调度算法和先来先服务算法模拟实验,并对比分析两种算法的优缺点,从而加深对进程概念和进程调度过程/算法的理解 设计目的:在多道程序和多任务系统中,系统内同时处于就绪状态的进程可能有若干个。也就是说能运行的进程数大于处理机个数。为了使系统中的进程能有条不紊地工作,必须选用某种调度策略,选择某一进程占用处理机。使得系统中的进程能够有条不紊的运行,同时提高处理机的利用率以及系统的性能。所以设计模拟进程调度算法(最高优先数优先的调度算法、先来先服务算法),以巩固和加深处理进程的概念,并且分析这两种算法的优缺点。关键词:linux 进程调度调度算法

实验四页面置换算法代码

实验四页面置换算法模拟(2)一.题目要求: 设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算访问命中率: 要求设计主界面以灵活选择某算法,且以下算法都要实现 1) 最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再 被访问的页面换出。 2) 先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留 时间最久的页面予以淘汰。 3) 最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。 4) 最不经常使用算法(LFU) 二.实验目的: 1、用C语言编写OPT、FIFO、LRU,LFU四种置换算法。 2、熟悉内存分页管理策略。 3、了解页面置换的算法。 4、掌握一般常用的调度算法。 5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。

三.相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义: 虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 4.页面分配: 平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。 考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。 5.页面置换算法: 常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。

(流程图)页面置换算法课程设计

操作系统课程设计报告题目:页面置换算法模拟程序 学院名称: 专业班级: 学生姓名: 指导教师: 成绩:

目录 一、设计目的 (3) 二、设计题目 (3) 2.1设计内容 (3) 2.2设计要求 (3) 三、设计过程 (4) 3.1 FIFO(先进先出) (4) 3.2 LRU(最近最久未使用) (5) 3.3 OPT(最佳置换算法) (6) 3.4 随机数发生器 (7) 四、完整代码 (7) 五、运行结果演示 (13) 六、设计心得 (16) 七、参考文献 (16)

操作系统是计算机教学中最重要的环节之一,也是计算机专业学生的一门重要的专业课程。操作系统质量的好坏,直接影响整个计算机系统的性能和用户对计算机的使用。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分发挥系统中各种设备的使用效率,提高系统工作的可靠性。由于操作系统涉及计算机系统中各种软硬件资源的管理,内容比较繁琐,具有很强的实践性。要学好这门课程,必须把理论与实践紧密结合,才能取得较好的学习效果。 本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 熟悉页面置换算法及其实现,引入计算机系统性能评价方法的概念。 二、设计题目:页面置换算法模拟程序 2.1设计内容 编制页面置换算法的模拟程序。 2.2设计要求 1).用随机数方法产生页面走向,页面走向长度为L(15<=L<=20),L由控制台输入。 2).根据页面走向,分别采用Optinal、FIFO、LRU算法进行页面置换,统计缺页率。 3).假定可用内存块为m(3<=m<=5),m由控制台输入,初始时,作业页面都不在内存。 4).要求写出一份详细的设计报告。课程设计报告内容包括:设计目的、设计内容、设计原理、算法实现、流程图、源程序、运行示例及结果分析、心得体会、参考资料等。

操作系统课程设计报告进程调度

前言操作系统(OperatingSystem,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。 操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。操作系统的功能包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限度地发挥作用,提供各种形式的用户界面,使用户有一个好的工作环境,为其它软件的开发提供必要的服务和相应的接口等。实际上,用户是不用接触操作系统的,操作系统管理着计算机硬件资源,同时按照应用程序的资源请求,分配资源,如:划分CPU时间,内存空间的开辟,调用打印机等。 操作系统的主要功能是资源管理,程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如系统软件和应用软件等。 操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。

本次课程设计我们将对上学期所学的知识进行系统的应用,而达到巩固知识的作用

目录 1问题概述.................................................................................................... 2需求分析.................................................................................................... 3概要设计.................................................................................................... 3.1主要功能................................................................................................. 3.2模块功能结构 ........................................................................................ 3.3软硬件环境............................................................................................. 3.4数据结构设计 ........................................................................................ 4详细设计.................................................................................................... 4.1“先来先服务(FCFS)调度算法” ....................................................... 4.2“短进程调度算法(SPF)”.................................................................. 4.3“高响应比优先调度算法”................................................................. 4.4“优先级调度(非抢占式)算法”.......................................................... 5系统测试及调试 ....................................................................................... 5.1测试......................................................................................................... 5.2调试过程中遇到的问题 ........................................................................ 6心得体会.................................................................................................... 7参考文献.................................................................................................... 8附录............................................................................................................

实验3-页面调度算法

实验报告 院(系): 专业班级: 学号: 姓名: 实验地点: 实验日期:

课程名称实验项目名称实验学时实验类型计算机操作系统页面调度算法 2 验证型 一、实验目的及要求 通过本实验可以加深理解有关虚拟存储器的工作原理,进一步体会和了解页面替换算法的具体实现方法。 二、实验环境 PC /Windows系统/Visual C++6.0 三、实验内容 ①实现三种算法:先进先出;OPT;LRU ②页面序列从指定的文本文件(TXT文件)中取出 ③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数 四、实验步骤 1.先进先出(FIFO)置换算法的思路 该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按照先后次序连接成一个队列,并设置一个替换指针,使它总指向最老的页面。 2.最近久未使用(LRU)置换算法的思路 最近久未使用置换算法的替换规则,是根据页面调入内存后的使用情况来进行决策的。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。 3.最佳(OPT)置换算法的思路 其所选择的被淘汰的页面,将是以后不使用的,或者是在未来时间内不再被访问的页面,采用最佳算法,通常可保证获得最低的缺页率。

4、流程图如下图所示: 五、调试过程 程序结构分析: 程序共有以下九个部分: int findSpace(void);//查找是否有空闲内存 int findExist(int curpage);//查找内存中是否有该页面 开始 取一条指令 取指令中访问的页号=>L 查 页 表 页标记=1? 形成绝对地址 是“存”指令? 置L 页修改标记“1” 输出绝对地址 输出“*页号” 有后继指令? 取一条指令 结 束 J:=P[k] J 页的修改标记 输出“OUTj ” 输出“INL ” P[k]:=L k:=(k+1) mod m 修改页面 是 否 是 否 否(产生缺页中断) 是 否

页面置换算法实验报告

一、实验目的 通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。 二、实验内容 基于一个虚拟存储区和内存工作区,设计下述算法并计算访问命中率。 1、最佳淘汰算法(OPT) 2、先进先出的算法(FIFO) 3、最近最久未使用算法(LRU) 4、简单时钟(钟表)算法(CLOCK) 命中率=1-页面失效次数/页地址流(序列)长度 三、实验原理 UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。 当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。这种页面调入方式叫请求调页。为实现请求调页,核心配置了四种数据结构:页表、页帧(框)号、访问位、修改位、有效位、保护位等。 当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。该程序通过查找页表,得到该页所在外存的物理块号。如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。利用修改后的页表,去形成所要访问数据的物理地址,再去访问内存数据。整个页面的调入过程对用户是透明的。 四、算法描述 本实验的程序设计基本上按照实验内容进行。即使用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。 (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成:A:50%的指令是顺序执行的 B:25%的指令是均匀分布在前地址部分 C:25%的指令是均匀分布在后地址部分 具体的实施方法是: A:在[0,319]的指令地址之间随机选取一起点m B:顺序执行一条指令,即执行地址为m+1的指令 C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’ D:顺序执行一条指令,其地址为m’+1

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

LRU页面调度算法实现

LRU页面调度算法实现 学院计算机科学与技术专业计算机科学与技术学号 学生姓名 指导教师姓名 2014年3月16 日

目录 1.实验要求 (2) 2.实验目的 (2) 3.实验内容 (2) 4.相关知识 (2) 5.实验原理 (3) 6.流程图 (4) 7.源代码 (5) 8.运行结果 (9) 9.实验心得 (10) 10.参考文献 (11)

LRU页调度算法实现 一实验要求: 1.不同的功能使用不同的函数实现(模块化),对每个函数的功能和调用接口要注释清 楚。对程序其它部分也进行必要的注释。 2.对系统进行功能模块分析、画出总流程图和各模块流程图。 3.用户界面要求使用方便、简洁明了、美观大方、格式统一。所有功能可以反复使用,最好使用菜单。 4.通过命令行相应选项能直接进入某个相应菜单选项的功能模块。 5.所有程序需调试通过。 二实验目的: 将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。进一步巩固和复习操作系统的基础知识。培养学生结构化程序、模块化程序设计的方法和能力。提高学生调试程序的技巧和软件设计的能力。提高学生分析问题、解决问题以及综合利用C 语言进行程序设计的能力。 三实验内容: 程序应模拟实现LRU 算法思想,对n个页面实现模拟调度。 四相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义:

虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 五.实验原理: 目前有许多页面调度算法,本实验主要涉及最近最久未使用调度算法。本实验使用页面调度算法时作如下假设,进程在创建时由操作系统为之分配一个固定数目物理页,执行过程中物理页的数目和位置不会改变。也即进程进行页面调度时只能在分到的几个物理页中进行。 LRU基本思想: LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的。 关于操作系统的内存管理,如何节省利用容量不大的内存为最多的进程提供资源,一直是研究的重要方向。而内存的虚拟存储管理,是现在最通用,最成功的方式——在内存有限的情况下,扩展一部分外存作为虚拟内存,真正的内存只存储当前运行时所用得到信息。这无疑极大地扩充了内存的功能,极大地提高了计算机的并发度。虚拟页式存储管理,则是将进程所需空间划分为多个页面,内存中只存放当前所需页面,其余页面放入外存的管理方式。 LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条指令中频繁使用。反过来说,已经很久没有使用的页面很可能在未来较长的一段时间内不会被用到。这个,就是著名的局部性原理——比内存速度还要快的cache,也是基于同样的原理运行的。因此,我们只需要在每次调换时,找到最近最少使用的那个页面调出内存。这就是LRU算法的全部内容。 实验中是用一维数组page[pSIZE]存储页面号序列,memery[mSIZE]是存储装入物理块中的页面。数组flag[10]标记页面的访问时间。每当使用页面时,刷新访问时间。发生缺页时,就从物理块中页面标记最小的一页,调出该页,换入所缺的页面。

第7次 常用页面置换算法模拟实验

操作系统课程实验报告

断。当发生缺页中断时操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法。最简单的页面置换算法是先入先出(FIFO)法。 2、算法流程图 3、步骤说明 (1)初始化 void init(){//初始化 int i; for (i = 0; i < page_frame_number; i++){ page_table[i].page_id = -1; page_table[i].load_time = -1; page_table[i].last_visit_time = -1; } } (2)选择算法,输入插入页面号。进入判断函数 int judge(){//判断页框是否满,或者页框里面是否已存在页面 int i;

for (i = 0; i < page_frame_number; i++){ if (page_table[i].page_id == -1 || page_table[i].page_id == page_id) return i; } return -2; } 之后根据返回数的不同决定了不同类型 返回-2则说明页框满且页框里面没有存在要插入的页面。 返回-1则说明页框未满 返回其它数则说明页框里存在相同的页面 (3)//当没有空页框,并且页面本身也没有存在,则执行一下代码 qsort(page_table, page_frame_number, sizeof(struct Page_table), cmp);//按照装入时间从小到大排序 page_table[0].page_id = page_id; page_table[0].load_time = counter; page_table[0].last_visit_time = counter; page_interrupt_number++; 将页框号为0的页面置换成最新插入的页面。 int cmp(const void *p, const void *q){//按照装入时间从小到大排序 int c = (*(struct Page_table*)p).load_time - (*(struct Page_table*)q).load_time; if (c > 0) return 1; else return -1; } 排序函数,将页面按装入时间从小到大排序 (4)//如果页面未满,则将页面替换在空页框里 if (page_table[j].page_id == -1){ page_table[j].page_id = page_id; page_table[j].load_time = counter; page_table[j].last_visit_time = counter; page_interrupt_number++; 则将页面替换在页框号最小的空页框里 (5)//如果页面本身存在页框中,则执行一下代码 page_table[j].last_visit_time = counter; 则更新页面的最近访问时间 (6)qsort(page_table, page_frame_number, sizeof(struct Page_table), cmp3);//按照装入时间从小到大排序 print(2); 打印出页表详细信息 printf("页表信息:\n页号页框号装入时间最近访问时间\n"); for (j = 0; j < page_frame_number; j++){ printf("%4d%8d%7d%7d\n", page_table[j].page_id, j, page_table[j].load_time,

页面置换算法作业

页面置换算法的演示 一.实验要求: 设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算访问命中率: 要求设计主界面以灵活选择某算法,且以下算法都要实现 1) 最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再 被访问的页面换出。 2) 先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留 时间最久的页面予以淘汰。 3) 最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。 4) 最不经常使用算法(LFU) 二.实验目的: 1、用C语言编写OPT、FIFO、LRU,LFU四种置换算法。 2、熟悉内存分页管理策略。 3、了解页面置换的算法。 4、掌握一般常用的调度算法。 5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。 三.相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义: 虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 4.页面分配: 平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。 考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。 5.页面置换算法: 常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。

操作系统-课程设计

课程设计说明书(操作系统) 题目:进程调度 院系:计算机科学与工程学院 专业班级:信息安全13-2 学号:20133029xx 学生姓名:xx 指导教师:xx 2015年12月15日

安徽理工大学课程设计(论文)任务书计算机科学与工程学院

安徽理工大学课程设计(论文)成绩评定表

摘要 现代计算机系统中,进程是资源分配和独立运行的基本单位,是操作系统的核心概念。因而,进程就成为理解操作系统如何实现系统管理的最基本,也是最重要的概念。进程调度是进程管理过程的主要组成部分,是必然要发生的事件。 在现代操作系统中,进程的并发机制在绝大多数时候,会产生不断变化的进程就绪队列和阻塞队列。处于执行态的进程无论是正常或非正常终止、或转换为阻塞状态,都会引发从就绪队列中,由进程调度选择一个进程进占CPU。 进程调度的核心是进程调度的算法.在本课程设计中,用良好清晰的界面向用户展示了进程调度中的时间片轮转调度算法。在最终实现的成果中,用户可指定需要模拟的进程数,CPU时间片和进程的最大执行时间,并且选择需要演示的算法,界面将会动态的显示进程调度过程及各个队列的变化。通过此进程调度模拟系统,用户可以对时间片轮转调度算法有进一步以及直观的了解。 关键词:进程,调度,PCB,时间片轮转

目录 1.设计目的 (6) 2.设计思路 (6) 3.设计过程 (8) 3.1流程图 (8) 3.2算法 (8) 3.3数据结构 (10) 3.4源代码 (10) 4.实验结果及分析 (20) 4.1 使用说明 (20) 4.2程序演示 (20) 5.实验总结 (24) 6.参考文献 (24)

页面调度算法

#include #include #include #define null 0 #define len sizeof(struct page) struct page { int num; int tag; struct page *next; }; struct page *creat(int n) { int count=1; struct page *p1,*p2,*head; head=p2=p1=(struct page *)malloc(len); p1->tag=-1; p1->num=-1; while(counttag=-1; p1->num=-1; p2->next=p1; p2=p1; } p2->next=null; return(head); } void FIFO(int array[],int n) { int *p; int count=0; struct page *cp,*dp,*head,*newp; head=creat(n); p=array; while(*p!=-1) { cp=dp=head;

for(;cp->num!=*p&&cp->next!=NULL;) cp=cp->next; if(cp->num==*p) printf(" ! "); else { count++; cp=head; for(;cp->tag!=-1&&cp->next!=NULL;) cp=cp->next; if(cp->tag==-1) { cp->num=*p; cp->tag=0; printf(" * "); } else { newp=(struct page*)malloc(len); newp->num=*p; newp->tag=0; newp->next=null; cp->next=newp; head=head->next; printf(" %d ",dp->num); free(dp); } } p++; } printf("\nQueye Zongshu:%d\n",count); } void LRU(int array[],int n) { int count=0,*p=array; struct page *head,*cp,*dp,*rp,*newp,*endp; head=creat(n); while(*p!=-1) { cp=dp=rp=endp=head; //for(;endp->next!=NULL;) endp=endp->next; //for(;cp->num!=*p&&cp->next!=NULL;) {

相关主题