搜档网
当前位置:搜档网 › 课时跟踪检测 (三十三) 三角函数的概念

课时跟踪检测 (三十三) 三角函数的概念

课时跟踪检测 (三十三)  三角函数的概念
课时跟踪检测 (三十三)  三角函数的概念

课时跟踪检测 (三十三) 三角函数的概念

层级(一) “四基”落实练 1.sin 780°的值为( ) A .-

3

2

B .

32

C .-12

D .12

解析:选B sin 780°=sin(2×360°+60°)=sin 60°=

32

. 2.若45°角的终边上有一点(4-a ,a +1),则a =( ) A .3 B .-32

C .1

D .32

解析:选D ∵tan 45°=a +14-a

=1,∴a =32.

3.已知角α的终边经过点(-5,m )(m ≠0),且sin α=2

5m ,则cos α的值为( )

A .-55

B .-

510 C .-25

5

D .±255

解析:选C 已知角α终边上一点P (-5,m )(m ≠0),且sin α=2

5m =

m 5+m 2

,∴m 2

=54

, ∴cos α=

-5

5+5

4

=-255.

4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )

A .(-2,3]

B .(-2,3)

C .[-2,3)

D .[-2,3]

解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴

上,所以有?

????

3a -9≤0,

a +2>0,

即-2

5.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |

tan x

的值域是( ) A .{-3,-1,1,3} B .{-3,-1} C .{1,3}

D .{-1,3}

解析:选D 若x 为第一象限角,则f (x )=3;若x 为第二、三、四象限角,则f (x )=-1.所以函数f (x )的值域为{-1,3}.

6.已知角α的终边过点P (5,a ),且tan α=-12

5

,则sin α+cos α=________. 解析:∵tan α=a 5=-12

5,∴a =-12.

∴r =

25+a 2=13.

∴sin α=-1213,cos α=5

13.

∴sin α+cos α=-7

13.

答案:-7

13

7.若点(sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限的角.

解析:依题意得????? sin θcos θ<0,2cos θ<0,即?????

sin θ>0,

cos θ<0.

因此θ是第二象限角.

答案:二

8.如果角α的终边经过点P (sin 780°,cos(-330°)),则sin α=________. 解析:因为sin 780°=sin(2×360°+60°)=sin 60°=32

, cos(-330°)=cos(-360°+30°)=cos 30°=3

2

, 所以P

????32

,32,sin α=22.

答案:

2

2

9.判断下列各式的符号.

(1)sin α·cos α(其中α是第四象限角);

(2)sin 285°·cos(-105°); (3)sin 3·cos 4·tan ????

-23π4. 解:(1)因为α是第四象限角,

所以sin α<0,cos α>0,所以sin α·cos α<0. (2)因为285°是第四象限角,所以sin 285°<0, 因为-105°是第三象限角,所以cos(-105°)<0, 所以sin 285°·cos(-105°)>0. (3)因为π2<3<π,π<4<3π

2,

所以sin 3>0,cos 4<0.

因为-23π4=-6π+π

4,所以tan ????-23π4>0, 所以sin 3·cos 4·tan ????

-23π4<0.

10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-2

2

,求cos α和tan α的值.

解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-

22,即y 1=-2

2

. ∵点M 在圆x 2+y 2=1上,

∴x 21+y 2

1=1,

即x 21+??

?

?-222

=1,解得x 1=±22.

当x 1=

22时,cos α=2

2,tan α=-1; 当x 1=-22时,cos α=-2

2

,tan α=1.

层级(二) 素养提升练

1.已知角α的终边过点P (-4,3),则2sin α+tan(2π+α)的值是( )

A .-

920

B .

920

C .-25

D .25

解析:选B ∵角α的终边经过点P (-4,3),∴r =|OP |=5.∴sin α=35,cos α=-4

5,tan α

=-34.∴2sin α+tan(2π+α)=2sin α+tan α=2×35+????-34=9

20

.故选B. 2.已知点P ????-3,a a +1为角β的终边上的一点,且sin β=13

13,则a 的值为( )

A .1

B .3 C.1

3 D .12

解析:选A 由三角函数的定义得

sin β=

a a +1(-

3)2+

? ??

??a a +12=

13

13

, 整理得? ????a a +12=14

.

∵sin β>0,∴P ? ??

??-3,a a +1在第二象限, ∴a a +1>0,∴a a +1=12

,解得a =1. 3.如图所示,在平面直角坐标系xOy 中,动点P ,Q 从点A (1,0)出发在单位圆上运动,点P 按逆时针方向每秒钟转π

6弧度,点Q 按顺时针方向

每秒钟转11π

6

弧度,则P ,Q 两点在第2 019次相遇时,点P 的坐标是( )

A .(0,0)

B .(0,1)

C .(-1,0)

D .(0,-1)

解析:选B 因为点P 按逆时针方向每秒钟转π6弧度,点Q 按顺时针方向每秒钟转11π

6弧

度,两点相遇1次的路程是单位圆的周长即2π,所以两点相遇一次用了1秒,

因此当两点相遇2 019次时,共用了2 019秒, 所以点P 转过的弧度为2 019π6=673π2=π

2

+336π.

由终边相同的角的概念可知,2 019π6与π

2的终边相同,

所以此时点P 位于 y 轴正半轴上, 故点P 的坐标为(0,1).

4.已知1|sin α|=-1

sin α,且lg(cos α)有意义.

(1)试判断角α所在的象限;

(2)若角α的终边上一点是M ????3

5,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.

解:(1)由1|sin α|=-1

sin α,可知sin α<0,

由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.

(2)因为|OM |=1,所以????352

+m 2

=1, 得m =±45

.

又α为第四象限角,故m <0, 从而m =-4

5

sin α=y r =m |OM |=-

451=-4

5

.

5.已知sin θ<0,tan θ>0. (1)求角θ的集合; (2)求θ

2的终边所在的象限;

(3)试判断sin θ2cos θ2tan θ

2

的符号.

解:(1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角, 所以θ为第三象限角,

故角θ的集合为?

???

??θ?

?

2k π+π<θ<2k π+3π

2,k ∈Z .

(2)由(1)可得,k π+π2<θ2<k π+3π

4,k ∈Z .

当k 是偶数时,θ

2终边在第二象限;

当k 是奇数时,θ

2终边在第四象限.

(3)由(2)可得,

当k 是偶数时,sin θ2>0,cos θ2<0,tan θ

2<0,

所以sin θ2cos θ2tan θ

2

>0;

当k 是奇数时,sin θ2<0,cos θ2>0,tan θ

2<0,

所以sin θ2cos θ2tan θ

2>0.

综上知,sin θ2cos θ2tan θ

2

>0.

三角函数基本概念

三角函数基本概念 1.角的有关概念 (1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,可分为象限角和轴线角. (3)若α与β是终边相同的角,则β可用α表示为S ={β|β=α+k ·360°,k ∈Z }(或{β|β=α+2k π,k ∈Z }). 2.象限角 3.弧度与角度的互化 (1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. (2)角α的弧度数:如果半径为r 的圆的圆心角α所对弧的长为l ,那么l =rα,角α的弧度数的绝对值是|α| = l r . (3)角度与弧度的换算①1°=π 180rad ;②1 rad =?π 180 (4)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,又l =rα,则扇形的面积为 S =12lr =12 |α|·r 2 . 4.任意角的三角函数 三角函数 正弦 余弦 正切 定义 设是一个任意角,它的终边与单位圆交于点P (x ,y ),那么 y 叫做的正弦,记作sin x 叫做的余弦,记作cos x y 叫做的正切,记作tan α 三角函数 正弦 余弦 正切 各象限符号 Ⅰ 正 正 正 Ⅱ 正 负 负 Ⅲ 负 负 正 Ⅳ 负 正 负 各象限符号 口诀 一全正,二正弦,三正切,四余弦 5.三角函数线 设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM ,sinα=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tanα=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.

锐角三角函数的定义

锐角三角函数的定义 锐角的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。下面是小编为大家整理的关于锐角三角函数的定义,希望对您有所帮助。欢迎大家阅读参考学习! 锐角三角函数的定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦等于对边比斜边 余弦等于邻边比斜边 正切等于对边比邻边 余切等于邻边比对边 正割等于斜边比邻边 余割等于斜边比对边 正切与余切互为倒数 它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。

它有六种基本函数(初等基本表示): 函数名正弦余弦正切余切正割余割 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有 正弦函数sin=y/r 余弦函数cos=x/r 正切函数tan=y/x 余切函数cot=x/y 正割函数sec=r/x 余割函数csc=r/y (斜边为r,对边为y,邻边为x。) 以及两个不常用,已趋于被淘汰的函数: 正矢函数versin=1-cos 余矢函数covers=1-sin 同角三角函数间的关系: 平方关系: sin^2()+cos^2()=1 tan^2()+1=sec^2() cot^2()+1=csc^2() 积的关系: sin=tancos cos=cotsin

三角函数的基本概念与诱导公式

三角函数的概念、基本关系式及诱导公式 一、角的相关概念 1、按旋转方向的不同形成_________,___________,___________ 2、终边位置的不同形成__________,__________,____________ 例如:第一象限角的集合________________ 终边在y 轴上角的集合_________________ 终边在x 轴上角的集合_________________ 3、终边相同的角的集合________________ 4、注意第一象限角、锐角的不同,钝角与第二象限角的不同 5、已知α是第二象限的角,则 2 α是第几象限的角? 二、弧度制与角度制: 1、弧度制的定义:圆周上弧长等于_______的弧所对的圆心角的大小为1弧度(1rad ) 2、 3602=π 180=π _______1=rad rad _______1= 弧度制与角度制的换算_________________________________ 3、扇形的弧长、面积公式 ____________________________________________ 例1、已知一扇形周长为)0(>C C ,当扇形中心角为多少弧度时,它的面积最大? 例2、扇形中心角为 120,则扇形面积与其内切圆的面积之比为_____________ 三、任意角的三角函数: 1、定义:设α是一个任意角,α的终边上任一点),(y x P O 为坐标原点,则 )(022y x r r OP +=>=则 r y = αsin r x =αcos x y =αtan y r =αcsc _____sec =α _____cot =α 实质是____________________ 2、三角函数的符号___________________________ 3、特殊角的三角函数值: ___________________________________________________________ 四、单位圆与三角函数线: 1、第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的角的三角函数线 2、三角函数线的应用——用来解决三角不等式

【全】初中数学 三角函数知识点总结

锐角三角函数 锐角三角函数 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边, 余弦(cos)等于邻边比斜边 正切(tan)等于对边比邻边; 余切(cot)等于邻边比对边 正割(sec)等于斜边比邻边 余割(csc)等于斜边比对边 正切与余切互为倒数 互余角的三角函数间的关系。 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 同角三角函数间的关系 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ?积的关系: sinα=tanα?cosα cosα=cotα?sinα tanα=sinα?secα cotα=cosα?cscα secα=tanα?cscα cscα=secα?cotα ?倒数关系: tanα?cotα=1 sinα?cscα=1 cosα?secα=1

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. 特殊的三角函数值 0° 30° 45° 60° 90° 0 1/2 √2/2 √3/2 1 ←sinα 1 √3/ 2 √2/2 1/2 0 ←cosα 0 √3/3 1 √3 None ←tanα None √3 1 √3/3 0 ←cotα 解直角三角形 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

三角角的概念及任意角的三角函数

三角角的概念及任意角 的三角函数 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

课题 § 角的概念及任意角的三角函数 内容归纳 一.知识精讲 ㈠角的概念和弧度制 1.角:一条射线绕着端点从一个位置旋转到另一个位置所成的 图形。其中顶点,始边,终边称为角的三要素。角可以是任 意大小的。 2.角按其旋转方向可分为:正角,零角,负角。 3.在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的 非负半轴上,角的终边在第几象限,就说这个角是第几象限 的角。(注意前提条件,否则不能从终边的位置来判断某角 属于第几象限)。⑵若角的终边在坐标轴上,就说这个角不 属于任何象限,它叫象限界角。 4.与α角终边相同的角的集合:{}Z k k ∈+?=,360αββ 注:①终边相同的角不一定相等,但相等的角的终边一定相 同; ②终边相同的角有无数多个,它们相差 360的整数倍。 5.正确理解角:“ 90~0间的角”指的是: 900<≤θ;“第 一象限的角”,“锐角”,“小于 90的角”,这三种角的 集合分别表示为: {} Z k k k ∈+?<

上海教材三角函数的概念、性质和图象

三角函数的概念、性质和图象 复习要求(以下内容摘自《考纲》) 1. 理解弧度的意义,并能正确进行弧度和角度的换算. 2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?)的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式. 3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?)的简图,并能解决与正弦曲线有关的实际问题. 4.正弦函数、余弦函数的对称轴,对称点的求法。 5.形如y x y y x y cos sin cos sin -=+=或 的辅助角的形式,求最大、最小值的总题。 6.同一问题中出现y x y x x x cos sin ,cos sin ,cos sin ?-+,求它们的范围。如求y x y x y cos sin cos sin ?++=的值域。 7.已知正切值,求正弦、余弦的齐次式的值。 如已知求,2tan =x 4cos cos sin 2sin 22++?+y y x x 的 8 正弦定理:)R R C c swinB b A a 为三角形外接圆的半径(2sin sin === C B A c b a s i n :s i n :s i n ::= 余弦定理:A ab c b a cos 2222-+=,…ab a c b A 2cos 2 22-+= 可归纳为表9-1. 表9-1 三角函数的图象三、主要内容及典型题例 三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、

初中数学锐角三角函数定义大全

初中数学:锐角三角函数定义大全 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系:

sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1

sinα·cscα=1 cosα·secα=1 特殊的三角函数值 0°30°45°60°90° 01/2√2/2√3/21←sinA 1√3/2√2/21/20←cosA 0√3/31√3None←tanA None√31√3/30←cotA 诱导公式 sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα

sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

三角函数知识点汇总

三角函数知识点 考点1、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 考点2、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记22r OP x y ==+ 则sin y r α= , cos x r α=, tan y x α= 2. 三角函数值在各个象限内的符号:(一全二正弦,三切四余弦) 考点3、同角三角函数间的基本关系式 1. 平方关系: 1cos sin 2 2 =+αα 2. 商数关系: α α αcos sin tan =

考点4、诱导公式“奇变偶不变,符号看象限” sin()sin ,cos()cos ,tan()tan .πααπααπαα+=-+=-+= sin()sin ,cos()cos ,tan()tan .αααααα-=--=-=- sin()sin ,cos()cos ,tan()tan . πααπααπαα-=-=--=- sin()cos , 2 cos()sin .2π ααπαα-=-= sin()cos ,2cos()sin .2πααπαα+=+=-3sin()cos ,23cos()sin .2πααπαα-=--=- 3sin()cos , 2 3cos()sin . 2 πααπαα+=-+= 考点5、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,}2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单 调 性 单调增区间: [2,2]22 k k π π ππ- +(k Z ∈) 单调减区间: 3[2,2]2 2 k k π π ππ+ + k Z ∈) 单调增区间: [2,2]k k πππ-(k Z ∈) 单调减区间: [2,2]k k πππ+(k Z ∈) 单调增区间: (,)22 k k π π ππ- +(k Z ∈) 周期性 2T π= 2T π= T π= 对 称 性 对称中心: (,0)k π,k Z ∈ 对称轴: 2 x k π π=+ ,k Z ∈ 对称中心:(,0)2 k π π+ ,k Z ∈ 对称轴: x k π=, k Z ∈ 对称中心:( ,0)2 k π ,k Z ∈ 对称轴:无 最 值 2,2x k k z π π=+ ∈时,max 1y =; 32,2 x k k z π π=+∈时,min 1y =- 2,x k k z π=∈时,max 1y =; 2,x k k z ππ=+∈,min 1y =- 无 考点6、“五点法”作图

任意角三角函数的概念教学设计

“任意角三角函数的概念”教学设计 陶维林 (江苏南京师范大学附属中学,210003) 一.内容和内容解析 三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型.它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来.它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础. 角的概念已经由锐角扩展到0°~360°内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充.任意角三角函数概念的出现是角的概念扩充的必然结果.比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”.正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标(或坐标的比值)来表示任意角的三角函数,这是概念的核心.这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便. 从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”.因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念. 任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义.它们是本节,乃至本章的基本概念,是学习其他与三角函数有关内容的基础,具有根本的重要的作用.解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数.因为正切函数并不独立,最主要的是正弦函数与余弦函数. 任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域.任意角三角函数的定义域是实数集(或它的子集),这是因为,在建立弧度制以后,角的集合与 实数集合间建立了一一对应关系,从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数.各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域.任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点.无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的关系,以及三角函数的性质,等等,都具有基本的重要的意义. 在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法.

三角函数的概念

三角函数的概念、同角三角函数的关系和诱导公式 题组一 一、 选择题 1.(安徽省百校论坛2011届高三第三次联合考试理) 已知3cos( )||,tan 222ππ ???-=<且则等于 ( ) A . B C D 答案 D. 2.(浙江省金丽衢十二校2011届高三第一次联考文)函数()sin sin(60)f x x x =++ 的最大 值是 ( ) A B C .2 D .1 答案 A. 3.(山东省莱阳市2011届高三上学期期末数学模拟6理)已知)2 ,2(,3 1sin π πθθ-∈-=,则)2 3sin()sin(θππθ--的值是( ) A 、 9 2 2 B 、922- C 、91- D 、91 答案 B. 4.(湖南省嘉禾一中2011届高三上学期1月高考押题卷)在区间[1,1]-上随机取一个数 ,cos 2 x x π的值介于0到 1 2 之间的概率为 ( ) A .1 3 B . 2 π C . 1 2 D . 23 答案 D. 5. (湖北省补习学校2011届高三联合体大联考试题理) 已知cos()0,cos()0,2 π θθπ+<->下列不等式中必成立的是( ) A.tan cot 2 2 θ θ > B.sin cos 2 2 θ θ > C.tan cot 2 2 θ θ < D.sin cos 2 2 θ θ < 答案 A.

6.(河南省鹿邑县五校2011届高三12月联考理)函数()3sin 23f x x π? ? =- ?? ? 的图像为C,如下结论中正确的是 ( ) A .图像C 关于直线6 x π = 对称 B .图像 C 关于点,06π?? ??? 对称 C .函数()f x 在区间5,1212ππ?? - ??? 内是增函数 D .由3sin 2y x =的图像向右平移 3 π 个单位长度可以得到图像C 。 答案 C. 7. (河南省辉县市第一高级中学2011届高三12月月考理)若cos 2sin αα+=则 tan α= A.12- B.2 C.1 2 D.-2 答案 B. 8. (北京四中2011届高三上学期开学测试理科试题) 已知,则 等于( ) A .7 B . C . D . 答案 C. 9.(福建省三明一中2011届高三上学期第三次月考理) 已知函数)(sin cos )(R x x x x f ∈=,给出下列四个命题: ①若;),()(2121x x x f x f -=-=则 ②)(x f 的最小正周期是π2; ③)(x f 在区间]4,4[π π-上是增函数; ④)(x f 的图象关于直线4 3π =x 对称; ⑤当??????-∈3,6ππx 时,)(x f 的值域为.43,43??????- 其中正确的命题为 ( ) A .①②④ B .③④⑤ C .②③ D .③④

高中部分三角函数知识点总结

★高中三角函数部分总结 1.任意角的三角函数定义: 设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r += ,则: )(tan ),(cos ),(sin y x x y x r x y r y ?=== 正负看正负看正负看ααα 2.特殊角三角函数值: sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值 3.同角三角函数公式: αααααααααα αtan 1 cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22= ===+= 4.三角函数诱导公式: (1))(;tan )2tan(,cos )2cos( ,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos( ,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=- (函数名称不变,符号看象限)

第七章 三角函数及其有关概念

第七章 函数及其有关概念 一、角的概念: 1、正角、负角、零角:逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。 2、象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角。 3、轴线角:角的终边落在坐标轴上的角。终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ;终边在y 轴上的角的集合: {} Z k k ∈+?=,90180| ββ;终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ。 4、终边相同的角:与α终边相同的角2x k απ=+。 5、与α终边反向的角: (21)x k απ=++;终边在y=x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ;终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ 6、若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 7、成特殊关系的两角:(1)若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360;(2)若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ;(3)若角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 二、弧度制:l R α= 角度与弧度的换算公式: 360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 弧长公式:R l θ= ; 扇形面积:S=α2 2 12 1r r l =? 任意角三角函数: (一)任意角的三角函数定义: 三角函数 定义域 =)(x f sinx {}R x x ∈| =)(x f cosx {}R x x ∈| =)(x f tanx ? ?? ???∈+≠∈Z k k x R x x ,21|ππ且 =)(x f cotx {}Z k k x R x x ∈≠∈,|π且 =)(x f secx ? ?? ???∈+≠∈Z k k x R x x ,21|ππ且 =)(x f cscx {}Z k k x R x x ∈≠∈,|π且 (二)三角函数在各象限内的符号规律:

5.1锐角三角函数的概念(2016年)

A B C D 图3 1. (2016 福建省龙岩市) 】.如图,若点A 的坐标为,则sin ∠1= . 答案: 】.考点锐角三角函数的定义;坐标与图形性质. 分析根据勾股定理,可得OA 的长,根据正弦是对边比斜边,可得答案. 解答解:如图,, 由勾股定理,得 OA= =2. sin ∠1= =, 故答案为: . 20160927091226406001 5.1 锐角三角函数的概念 填空题 基础知识 2016/9/27 2. (2016 四川省乐山市) 】.如图3,在Rt ABC ?中,90BAC ∠=,AD BC ⊥于点D ,则下列结论不正确... 的是 ()A sin AD B AB = ()B sin AC B BC = ()C sin AD B AC = ()D sin CD B AC =

答案:】.答案:C 考点:考查正弦函数的概念。 解析:由正弦函数的定义,知:A、B正确,又∠CAD=∠B, 所以,sin sin CD B CAD AC =∠=,D也正确,故不正确的是C。20160925143801781255 5.1 锐角三角函数的概念选择题双基简单应用2016/9/25 3. (2016 湖北省襄阳市) 】.如图,△ABC的顶点是正方形网格的格点,则sinA的值为() A. B. C. D. 答案:】. 考点勾股定理;锐角三角函数的定义. 分析直接根据题意构造直角三角形,进而利用勾股定理得出DC,AC的长,再利用锐角三角函数关系求出答案. 解答解:如图所示:连接DC, 由网格可得出∠CDA=90°, 则DC=,AC=, 故sinA===. 故选:B. 点评此题主要考查了勾股定理以及锐角三角函数关系,正确构造直角三角形是解题关键.

-高中三角函数知识点复习总结

第四章 三角函数 一、三角函数的基本概念 1.角的概念的推广 (1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+?=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量 (1)角度制与弧度制的概念 (2)换算关系:8157)180(1) (180'≈==οο ο π π弧度弧度 (3)弧长公式:r l ?=α 扇形面积公式:22 1 21r lr S α== 3.任意角的三角函数 y x x y x r r x y r r y = ===== ααααααcot tan sec cos csc sin 注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一) 诱导公式: α±? 2 k )(Z k ∈与α的三角函数关系是“立变平不变,符号 看象限”。如: ()?? ? ??--??? ??+απαπαπ25sin ;5tan ,27cos 等。 (二) 同角三角函数的基本关系式:①平方关系1 cos sin 22 =+αα; α ααα22 22tan 11cos cos 1tan 1+=?= +②商式关系 α α α tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。 (三) 关于公式1cos sin 22 =+αα的深化

() 2 cos sin sin 1ααα±=±; α ααcos sin sin 1±=±; 2 cos 2 sin sin 1α α α+=+ 如: 4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=- 注:1、诱导公式的主要作用是将任意角的三角函数转化为ο0~ο90角的三角函数。 2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 证明同角的三角恒等式。 三、两角和与差的三角函数 (一)两角和与差公式 ()βαβαβαsin cos cos sin sin ±=± ()β αβαβαsin sin cos cos cos μ=± ()β αβ αβαtan tan 1tan tan tan μ±= ± (二)倍角公式 1、公式βαα cos sin 22sin = cos 2α= 2 2cos 1α + sin 2α= 2 2cos 1α - ααααα2222sin 211cos 2sin cos 2cos -=-=-= α αα2tan 1tan 22tan -= α α ααα sin cos 1cos 1sin 2 tan -= += )sin(cos sin 22?ααα++=+b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注: (1)对公式会“正用”,“逆用”,“变形使用”。(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。 2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值 ①“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 ②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 ③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 ④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论

高中文科数学三角函数知识点总结

三角函数知识点 一.考纲要求 考试内容3 要求层次 A B C 三角函数、 三角恒等 变换、 解三角形 三角函数 任意角的概念和弧度制 √ △ 弧度与角度的互化◇ √ 任意角的正弦、余弦、正切的定义 √ 用单位圆中的三角函数线表示正弦、余弦和正切 √ 诱导公式 √ △ 同角三角函数的基本关系式 √ 周期函数的定义、三角函数的周期性 √ 函数sin y x =,cos y x =,tan y x =的图象 和性质 √ 函数sin()y A x ω?=+的图象 √ 用三角函数解决一些简单的实际问题◇ √ 三角 恒等 变换 两角和与差的正弦、余弦、正切公式 √ 二倍角的正弦、余弦、正切公式 √ 简单的恒等变换 √ 解三角形 正弦定理、余弦定理 √ △ 解三角形 √ △ 二.知识点 1.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 2.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 3.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x +

(1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α 4、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 5.同角三角函数的基本关系: (1)平方关系:sin 2α+ cos 2α=1。 (2)商数关系: ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式:奇变偶不变,符号看象限 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . x y +O — — + x y O — + + — + y O — + + — (3) 若 o|cosx| |cosx|>|sinx| |cosx|>|sinx| |sinx|>|cosx| sinx>cosx cosx>sinx 16. 几个重要结论:O O x y x y T M A O P x y

2,三角函数的基本概念

实用文档 §4.2三角函数的基本概念 【复习目标】 1. 掌握任意角三角函数的定义,能写出各三角函数的定义域,能判断三角函数的符号; 2. 理解三角函数线的本质,能用三角函数线和单位圆解决简单的数学问题 【重点难点】 理解三角函数线的本质,能用三角函数线和单位圆解决简单的数学问题 【课前预习】 1. 已知角α的终边经过点)12,5(--P ,则sin ____,cos ___,tan ____ααα===. 2. 已知点)tan ,cos (sin ααα-P 在第一象限,则在)2,0[π内的α的取值范围 为 。 3. 已知,αβ均为第二象限角,且sin sin αβ>,则必有 ( ) A .αβ< B .tan tan αβ> C .cos cos αβ> D .cos cos αβ< 4. 填空: (1) 不等式x cos 22+≤0的解集是____________________________. (2) 函数1tan += x y 的定义域是______________________________. 【典型例题】 例1 已知角α终边上一点),3(y P -,且 y 42sin =α,求αcos 和αtan 的值.

实用文档 例2(1)若0cos sin >?θθ,则θ在 ( ) (A) 第一、四象限 (B) 第一、三象限 (C) 第一、二象限期 (D )第二、四象限 (2)若α是第二象限角,用2cos |2cos |α α-=,则2α是 ( ) (A) 第一象限 (B) 第二象限 (C) 第三象限期 (D )第四象限 例3 已知锐角α终边上一点A 的坐标为)3cos 2,3sin 2(-,求α的弧度数. 【巩固练习】 1. 已知cos sin 1αα-<-,则α是第 象限角。

5.2 三角函数的概念(解析版).docx

5.2 三角函数的概念 A 组-[应知应会] 1.(2020·周口市中英文学校高一期中)已知角α终边经过点122P ?? ? ??? ,则 cos α=( ) A . 1 2 B C D .12 ± 【参考答案】B 【解析】由于1,r OP x === ,所以由三角函数的定义可得cos x r α==,应选参考答案B . 2.(2019·渝中·重庆巴蜀中学高一期末)若cos 0θ<,cos sin θθ-=那么θ的( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【参考答案】C 【解析】由题意得sin cos θθ==-, 即cos sin sin cos θθθθ-=-,所以sin θcos θ 0,即sin cos θθ≤,又cos 0θ<,所以sin 0,θ<θ位于第三象限,故选C. 3.若α为第二象限角,则下列各式恒小于零的是( ) A .sin cos αα+ B .tan sin αα+ C .cos tan αα- D .sin tan αα- 【参考答案】B 【分析】画出第二象限角的三角函数线,利用三角函数线判断出sin tan 0αα+<,由此判断出正确选项. 【解析】如图,作出sin ,cos ,tan ααα的三角函数线,显然~OPM OTA ??,且MP AT <,∵0MP >,0AT <,∴MP AT <-.∴0MP AT +<,即sin tan 0αα+<.故选B. 4.若角α的终边经过点()() sin 780,cos 330P ?-?,则sin α=( ) A B . 12 C D .1 【参考答案】C 【分析】利用诱导公式化简求得P 点的坐标,在根据三角函数的定义求得sin α的值.

第1节 锐角三角函数的概念

第1节 锐角三角函数的概 念 ※知识要点 1.正切的概念 如图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正切, 记作: = = . 注意:(1)表示锐角三角函数时,用顶点字母表示角时,角的符号“∠”可以 ,其他情况,不可 ; (2)正切的实质是 , 大小, 单位; (3)正切的几何意义是反映斜边 的大小; (4)正切的大小只与 有关,相等的两个角的正切值 . 2.与坡有关的概念 (1)坡的构成: 、 、 ; (2)坡角: 与 所成的角; (3)坡度:又称 ,是斜坡上两点间 与水平距离的比,常用 表示, 即坡角的 值. 注:坡角越大,坡度 ,坡面 . 3.正弦与余弦的概念 (1)正弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的正弦,记作: = = . (2)余弦:如上图,在Rt △ABC 中,我们把锐角A 的 与 的 叫做角A 的余弦,记作: = = . 注:互余关系:若A +B =90°,则有下列关系成立: ※题型讲练 【例1】如图,在△ABC 中,∠C =90°,AB =13,AC =5, 求tanB 和tan ∠BCD 的值. 变式训练1: 1.如图,E 是BC 上一点,∠B =∠C =90°,连接AE 、DE 且 AE ⊥DE ,若tanA =3 4 . (1)求tanD ; (2)若BC =AE =10,求DC 的长. 【例2】如图,一段河坝的横断面为梯形ABCD ,根据图中的数据,回答下列问题(单位:m ): (1)求坡面AB 的坡度; (2)求出坝底宽AD . 变式训练2: 1.如图是拦水坝的横断面,坡AB 长65米,坡度为1∶2,另一侧堤坡DE 长8米. (1)求坡AB 的水平距离AC 的长; (2)求堤坡DE 的坡度. 【例3】如图,Rt △ABC 中,斜边BC 上的高AD =4,cosB =45 . (1)求sinB 和tanB 的值; (2)求AC 和BC 的长度. 变式训练3: 1.在△ABC 中,∠C =90°,若tanA =2,AC =4,求cosB 、 sinB 、sinA 、cosA 、tanB 的值并思考它们之间的关系. 【例4】如图,△ABC 中,AC =12cm ,AB =16cm ,sinA =1 3 . (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tanB . ※课后练习 1.△ABC 中,∠C =90°,若BC =4,AB =5,则tanB =( ) A .45 B .35 C .34 D .43 2.Rt △ABC 中,∠C =90°,若sinA =3 5 ,则cosB 的值是( ) A .45 B .35 C .34 D .43 3.如图是教学用的直角三角板,边AC =30 cm ,∠C =90°, tan ∠BAC =3 3 ,则边BC 的长为( ) A .303cm B .203cm C .103cm D .53cm 4.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =5 m ,则坡面AB 的长度是( ) A .10 m B .103m C .15 m D .53m 5.如图,在下列网格中,小正方形的边长均为1,点A ,B ,O 都在格点上,则∠AOB 的正弦值是( ) A . 31010 B .12 C .13 D .1010 6.在Rt △ABC 中,∠C =90°,AB =10,sinA =25,则BC 的长 为 ,tanA = . 7.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD = . 8.如图,是拦水坝的横断面,斜坡AB =125米,BD =10米,AE =38米,若斜面AB 坡度为1∶2,则坡DE 的坡度为 . 9.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论: ①sinA =32; ②cosB =12; ③tanA =3 3 ; ④tanB = 3 其中正确的是 .(填序号) 10.已知Rt △ABC 中,∠C =90°,BC =12,tanA =3 4 . 求AC 、AB 和cosB . 11.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,求tan ∠AFE 和sin ∠BCE 的值. 12.如图是一个大坝的横断面,它是一个梯形ABCD ,其中坝顶AB =3米,经测量背水坡AD =20米,坝高10米,迎水坡BC 的坡度i =1:0.6,求坡AD 的坡度和坝底宽CD . 13.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积 第3题图 第5题图 第4题图 第8题图 第7题图

相关主题