搜档网
当前位置:搜档网 › 初中几何经典培优题型(三角形)

初中几何经典培优题型(三角形)

初中几何经典培优题型(三角形)
初中几何经典培优题型(三角形)

全等三角形辅助线

找全等三角形的方法:

(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;

(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;

(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:

①延长中线构造全等三角形;

②利用翻折,构造全等三角形;

③引平行线构造全等三角形;

④作连线构造等腰三角形。

常见辅助线的作法有以下几种:

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换

中的“对折”.

2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思

维模式是全等变换中的“旋转”.

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形

全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.

4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平

移”或“翻转折叠”

5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线

段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

6)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接

起来,利用三角形面积的知识解答.

常见辅助线写法:

⑴过点A作BC的平行线AF交DE于F

⑵过点A作BC的垂线,垂足为D

⑶延长AB至C,使BC=AC

⑷在AB上截取AC,使AC=DE

⑸作∠ABC的平分线,交AC于D

⑹取AB中点C,连接CD交EF于G点

例1 如图,AB=CD=1,∠AOC=60°,证明:AC+BD≥1。

例2(2007年北京中考)如图,已知△ABC

⑴请你在BC边上分别取两点D、E(BC的中点除外),连接AD、AE,写出使此图中只存在两对面积相

等的三角形的相应条件,并表示出面积相等的三角形;

⑵请你根据使⑴成立的相应条件,证明AB+AC>AD+AE。

例3 已知线段OA、OB、OC、OD、OE、OF。∠AOB=∠BOC=∠COD=∠DOE=∠EOF=60°。且AD=BE=CF=2。求证:S△OAB+S△OCD+S△OEF3。

O

C

D

A

B

例4 如图1,在四边形ABCD 中,连接对角线AC 、BD ,如果∠1=∠2,那么∠3=∠4。

仔细阅读以上材料,完成下面的问题。如图2,设P 为□ABCD 内一点,∠P AB =∠PCB ,求证:∠PBA =∠PDA 。

图1 图2

⑴集散思想:有些几何题,条件与结论比较分散,通过添加适当的辅助线,将图形中分散,远离了的元素聚集到有关的图形上,使它们相对集中,便于比较,建立关系,从而找出问题的解决途径。

⑵平移只能用来作为作辅助线的思路,具体做辅助线的时候不能直接说将△ABC 平移至△DEF 。

1.在正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的点,且EG ⊥FH ,求证:EG =FH 。

2.如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且

所构成的四边形的对角线的长度恰好分别等于AB 和BC 。

F

D C B

H

G

E

A

3.如图,已知△ABC 的面积为16,BC =8,现将△ABC 沿直线BC 向右平移a 个单位到△DEF 的位置。

⑴当a =4时,求△ABC 所扫过的面积;

⑵连接AE 、AD ,设AB =5,当△ADE 是以DE 为一腰的等腰三角形时,求a 的值。

4.如图,AA ′=BB ′=CC ′=1,∠AOB ′=∠BOC ′=∠COA ′=60°,求证:

3

4AOB BOC COA S

S

S

'

'

'

++<。

例1

如图,E、F分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,求证:AH =AB。

例2

△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且AP=3,CP=2,BP=1,求∠BPC的度数。

例3

已知在△ABC中,AB=AC,P为三角形内一点,且∠APB>∠APC,求证:PB<PC。

有边相等或者有角度拼起来为特殊角的时候可以用旋转

⑴边相等时常见图形为正方形,等腰三角形和等边三角形等等

⑵角度能拼成的特殊角指的是180°,90°等等

例4

已知△ABC,∠1=∠2,AB=2AC,AD=BD。求证:DC⊥AC。

例5

△ABC为等腰直角三角形,∠ABC=90°,AB=AE,∠BAE=30°,求证:BE=CE。

例6

在△ABC中,E、F为BC边上的点,已知∠CAE=∠BAF,CE=BF,求证:AC=AB。

出现轴对称的时候可以考虑翻折,尤其注意有角平分线,有角相等或者出现特殊角的一半的时候,翻折是常用添加辅助线的思想。

强调:

旋转和翻折只能是一种作辅助线的思路,具体做辅助线的时候不能直接说将△ABC旋转或翻折至△DEF。

E

D

C

B

A 1.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形 纸板的圆心方在O 点处,并将纸板绕O 点旋转,其半径分别交A

B 、AD 于点M 、N ,求 证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a 。

2.(2008山东)在梯形ABCD 中,AB ∥CD ,∠A =90°,AB =2,BC =3,CD =1,E 是 AD 中点,试判断EC 与EB 的位置关系,并写出推理过程。

C

B

A

E'

D

A

B C

F

D E

E

3.如图,P是等边△ABC内一点,若AP=3,PB=4,PC=5,求∠APB的度数。

3

4

3

P

C

B

A

4.已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,∠DAE=45°。

⑴猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;

⑵当动点E在线段BC上,动点D运动在线段CB延长线上时,其它条件不变,⑴中探究的结论是否发生

改变?请说明你的猜想并给予证明。

D E C B A 5.如图,已知等腰直角三角线ABC ,BD 平分∠ABC ,CE ⊥BD ,垂足为E ,求证:BD =2CE 。

6.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果AB =8,BC =10,求EC 的长。 F(D)D

E

C

B

A

一、倍长中线法

中点的妙用

例1

(北京文汇中学2009-2010期中测试题),AD 是△ABC 中BC 边上的中线,若AB =2,AC =4,则AD 的取值范围是___________。

D

C

B

A

例2

已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF =EF ,求证:AC =BE 。

A B C

D E

F

例3

⑴如图1,△ABC 与△BDE 均为等腰直角三角形,BA ⊥AC ,ED ⊥BD ,点D 在AB 边上。连接EC ,取EC 中点F ,连接AF ,DF ,猜测AF ,DF 的数量关系和位置关系,并加以证明。

F

D

E

A

C

B

图1

⑵如图2,将△BDE 旋转至如图位置,使E 在AB 延长线上,D 在CB 延长线上,其他条件不变,则⑴中AF ,DF 的数量关系和位置关系是否发生变化,并加以证明。

F

D A

C

B

E

图2

例4

已知四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,求证EFGH 为平行四边形。

H

G

F D

E

A

C

B

例5

如图,已知四边形ABCD 中,AB =CD ,M 、N 分别为BC 、AD 中点,延长MN 与AB 、CD 延长线交于E 、F ,求证∠BEM =∠CFM

E F

A

C

D

M

B

例6

已知△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,设M 为DE 的中点。 ⑴求证:MB =MC ;

⑵设∠BAD =∠CAE ,固定Rt △ABD ,让Rt △ACE 移至图示位置,此时MB =MC 是否成立?请证明你的结论。

E

A C

D

M

B

E

A

C

D

M

B

出现中点的时候一般有以下作辅助线的方法 ⑴倍长中线法 ⑵构造中位线

⑶如果是直角三角形,经常还会构造斜边上的中线

例7

如图,已知△ABC 和△ADE 都是等腰直角三角形,点M 为EC 中点,求证△BMD 为等腰直角三角形。

A

M

C

E

D

B

1.在△ABC 中,AB =12,AC =30,求BC 边上的中线AD 的范围。

A

B

C

D

2.在△ABC 中,D 为BC 边上的点,已知∠BAD =∠CAD ,BD =CD ,求证:AB =AC 。

A

B

C

D

3.如图,在△ABC 中,AD ⊥BC ,M 是BC 中点,∠B =2∠C ,如图,求证:DM =

12

AB

D

A

B

C

4.已知△ABC 中,AC =7,BC =4,D 为AB 中点,E 为边AC 上一点,且1

02

AED C ∠=?+∠9,求CE 的长。

B

A

E

D

C

5.在任意五边形ABCDE中,M,N,P,Q分别为AB、CD、BC、DE的中点,K、L、分别为MN、PQ的中点,

求证:KL平行且等于1

4 AE。

6.如图,已知△ABC中,AB=AC,CE是AB边上的中线,延长AB到D,使BD=AB,那么CE是CD的几分之几?

A

B

E

D

C

7.四边形ABCD四边中点分别为E、F、G、H,当四边形ABCD满足时,EFGH为菱形;当四边形ABCD满足时,EFGH为矩形;当四边形ABCD满足时,EFGH为正方形。

截长补短法

例1

在△ABC 中,∠B =2∠C ,∠BAC 的平分线AD 交BC 与D 。求证:AB +BD =AC 。

D

C

B

A

例2

ABCD 是正方形,P 为BC 上任意一点,∠P AD 的平分线交CD 于Q ,求证:DQ =AP -BP 。

P

Q

D

C

B

A

例3

已知△ABC ,∠ABC =90°,以AB 、AC 为边向外做正方形ABDE 和ACFG ,延长BA 交EG 于H ,则BC =2AH 。

G

H

F

E

D

C

B

A

例4

AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于E ,EF //AC 交AB 于F 。求证:AF =FB 。

E

A

B

C

D

F

例5

如图,六边形ABCDEF 的六个内角都相等,已知BC +CD =11,DE -AB =3,求DC +EF 的值。

补形法

A

B

C D

E F

例6

如图所示:BC>AB,AD=AC,BD平分∠ABC,求证:∠A+∠C=180°。

A

B

C

D

1.如图,在△ABC中,AB+BD=AC,∠BAC的平分线AD交BC与D,求证:∠B=2∠C

A

B C

D

已知△ABC,以AB、AC为边向外作正方形ABGF、ACDE,M是BC中点,连接AM

求证:EF=2AM且AM⊥EF。

3.在△ABC中,AB=AC,∠A=100°,BE评分∠B交AC与E,如图,求证:AE+BE=BC

A

B

E

《全等三角形》培优题型全集

《全等三角形》培优题型全集

2 《全等三角形》培优题型全集 题型一:倍长中线(线段)造全等 1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于 F ,且 AE=EF ,求证:AC=BF A C E F 2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______. D C B A 3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

《全等三角形》数学培优作业

A B C D E 固始三中八年级上期《全等三角形》数学培优作业 (考查内容:边角边) 命题人:吴全胜1、已知:如图,AB=AC,F、E分别是AB、AC的中点。求证:△ABE≌△ACF。 2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF. 3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE 4、如图,△ABC中,AB=AC,AD平分∠BAC,试说明△ABD≌△ACD。 A B D C 5、已知:如图,AD∥BC,CB AD=。求证:CBA ADC? ? ?。 6、已知:如图,AD∥BC,CB AD=,CF AE=。求证:CEB AFD? ? ?。 7、已知:如图,点A、B、C、D在同一条直线上,DB AC=,DF AE=,AD EA⊥,AD FD⊥,垂足分别是A、D。求证:FDC EAB? ? ?

8、已知:如图,AC AB=,AE AD=,2 1∠ = ∠。求证:ACE ABD? ? ?。 9、如图,在ABC ?中,D是AB上一点,DF交AC于点E,FE DE=,CE AE=, AB与CF有什么位置关系?说明你判断的理由。 10、已知:如图,DBA CAB∠ = ∠,BD AC=。求证∠C=∠D 11、已知:如图,AC和BD相交于点O,OC OA=,OD OB=。 求证:DC∥AB。 12、已知:如图,AC和BD相交于点O,DC AB=,DB AC=。求证:C B∠ = ∠。 13、已知:如图,D、E分别是△ABC的边AB,AC的中点,点F在DE的延长线上,且EF=DE. 求证:(1)BD=FC (2)AB∥CF 14、已知: 如图 , AB=AC , EB=EC , AE的延长线交BC于D.求证:BD=CD. 15、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证: BE=AD D C A B E

2019中考全等三角形经典培优题(教师版)

2017中考全等三角形经典培优题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

3已知:∠1=∠2,CD=DE,EF ? = ∠90 ACB BC AC=MN C MN AD⊥D MN BE⊥E1)当直线MN绕点C旋转到图1的位置时, 求证:①ADC ?≌CEB ?;②BE AD DE+ =; (2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立, 请给出证明;若不成立,说明理由. 15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证: (1)EC=BF;(2)EC⊥BF C D B A B C D P D A C B F A E D C B A P E D C B A D C B M F E C B A C B D E F A E B M C F B A C D F 2 1 E

16.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由 17.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE . A B C D E F 图9

全等三角形证明经典(答案) 1. 延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换 中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思 维模式是全等变换中的“旋转”. 3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形 全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线 段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6)特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接 起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

全等三角形经典培优题型(含答案解析)

全等三角形的提高拓展训练 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 全等三角形证明经典题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

word完整版培优专题3 等腰三角形含答案1推荐文档

3:在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系, 理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问 【知识精读】 (-)等腰三角形的性质 1.有关定理及其推论 定理:等腰三角形有两边相等; 3等腰三角形 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的 顶角平分线、底边上的中线、底边上的高互相重合。等腰三角形是以底边的垂直平分线为对 称轴的轴对称图形; 推论2:等边三角形的各角都相等,并且每一个角都等于 60 2.定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系, 由两边相等推出两 角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、 底边上的高、顶 角的平分线“三线合一”的性质是今后证明两条线段相等, 两个角相等以及两条直线互相垂 直的重要依据。 (二)等腰三角形的判定 1.有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成 “等角 对 等边”。) 推论 1:三个角都相等的三角形是等边三角形。 推论 2:有一个角等于60°的等腰三角形是等边三角形。 推论 它是证明线段相等的重要定

题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题, 在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合, 添加辅助线时, 有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况 来定。 【分类解析】 例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM 丄BC ,垂足为M 。求证:M 是BE 的中点。 所以/ 1 = - / ABC 2 又因为CE = CD ,所以/ CDE = / E 所以/ ACB = 2/ E 即/ 1=/ E 所以BD = BE ,又DM 丄BC ,垂足为 M 分析:欲证M 是BE 的中点,已知 DM 丄BC ,所以想到连结 BD ,证BD = ED 。因为△ ABC 是等边三角形,/ DBE = - / ABC ,而由 CE = CD ,又可证/ E = - / ACB ,所以/ 1 2 2 =/ E ,从而问题得证。 证明:因为三角形 ABC 是等边三角形,D 是AC 的中点 所以M 是BE 的中点 (等腰三角形三线合一定理) 例2.如图,已知: ABC 中,AB AC , D 是 BC 上一点,且 AD DB , DC CA , 求 BAC 的度数。 E D

人教备战中考数学相似(大题培优)及详细答案

一、相似真题与模拟题分类汇编(难题易错题) 1. (1)问题发现: 如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为________; (2)深入探究: 如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由; (3)拓展延伸: 如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.【答案】(1)NC∥AB (2)解:∠ABC=∠ACN,理由如下: ∵ =1且∠ABC=∠AMN, ∴△ABC~△AMN ∴, ∵AB=BC, ∴∠BAC= (180°﹣∠ABC), ∵AM=MN ∴∠MAN= (180°﹣∠AMN), ∵∠ABC=∠AMN, ∴∠BAC=∠MAN, ∴∠BAM=∠CAN, ∴△ABM~△ACN, ∴∠ABC=∠ACN (3)解:如图3,连接AB,AN,

∵四边形ADBC,AMEF为正方形, ∴∠ABC=∠BAC=45°,∠MAN=45°, ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN, ∵, ∴, ∴△ABM~△ACN ∴, ∴ =cos45°= , ∴, ∴BM=2, ∴CM=BC﹣BM=8, 在Rt△AMC, AM= , ∴EF=AM=2 . 【解析】【解答】解:(1)NC∥AB,理由如下: ∵△ABC与△MN是等边三角形, ∴AB=AC,AM=AN,∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, 在△ABM与△ACN中, , ∴△ABM≌△ACN(SAS), ∴∠B=∠ACN=60°, ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°, ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°, ∴CN∥AB; 【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以

全等三角形证明题培优提高经典例题练习题

全等三角形证明题专练 1、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B 3、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 A E D C B A B C D E F O

4、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 5、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。 (1) 请你再添加一个条件,使得△BEA≌△BDC,并给出证明。 你添加的条件是:________ ___ (2)根据你添加的条件,再写出图中的一对全等三角形: ______________(不再添加其他线段,不再标注或使用 其他字母,不必写出证明过程) 6、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 F E D C A B G H A B C D E F

7、已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。求证:△ABC ≌△A’B’C’。 8、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥CD 于F 。求证:OE=OF 。 A B C D E F O 9、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。 O B A C D E A B C D A' B' C' D' 1 2 3 4

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

三角形培优训练100题集锦.docx

三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折” 。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角 形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移” 或“翻转折叠” 。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证 明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连 接起来,利用三角形面积的知识解答。 1、已知,如图△ ABC 中, AB=5, AC=3,求中线 AD 的取值范围 . 2、如图,△ ABC中, E、 F 分别在 AB、 AC 上, DE⊥ DF, D 是中点,试比较BE+CF与 EF的大小 . A E F B D C

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

全等三角形培优经典题

全等三角形培优经典题

全等三角形培优习题 1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)直接写出线段EG与CG的数量关系; (2)将图1中△BEF绕B点逆时针旋转45o,如图2所示,取DF中点G,连接EG,CG. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明. (3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立? A D E G 图1 F A D C G 图2 F A E 图3 D

2、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E是边BC的中点.90 AEF ∠=o,且EF交正方 形外角DCG ∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的 中点M,连接ME,则AM=EC,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G E 图A D F C G E 图 A D F C G E B 图

全等三角形专题培优[带答案]

全等三角形专题培优 考试总分: 110 分考试时间: 120 分钟 卷I(选择题) 一、选择题(共 10 小题,每小题 2 分,共 20 分) 1.如图为个边长相等的正方形的组合图形,则 A. B. C. D. 2.下列定理中逆定理不存在的是() A.角平分线上的点到这个角的两边距离相等 B.在一个三角形中,如果两边相等,那么它们所对的角也相等 C.同位角相等,两直线平行 D.全等三角形的对应角相等 3.已知:如图,,,,则不正确的结论是() A.与互为余角 B. C. D. 4.如图,是的中位线,延长至使,连接,则的值为() A. B. C. D. 5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B. C. D. 6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有() A.个 B.个 C.个 D.个 7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可 供选择的地址有() A.一处 B.二处 C.三处 D.四处 8.如图,是的角平分线,则等于() A. B. C. D. 9.已知是的中线,且比的周长大,则与的差为() A. B. C. D. 10.若一个三角形的两条边与高重合,那么它的三个内角中() A.都是锐角 B.有一个是直角 C.有一个是钝角 D.不能确定 卷II(非选择题) 二、填空题(共 10 小题,每小题 2 分,共 20 分) 11.问题情境:在中,,,点为边上一点(不与点,重合) ,交直线于点,连接,将线段绕点顺时针方向旋转得

全等三角形培优题型含答案解析

全等三角形培优题型含 答案解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

全等三角形的提高拓展训练 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 全等三角形证明经典题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

相似三角形培优专题

相似三角形培优专题1. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D. 求证:(1)△ACD∽△ABC; (2)AC2=AD?AB; (3)CD2=AD?DB. A 证明:(1)∵∠ACB=90°,CD⊥AB, ∴∠CDA=90°=∠ACB, ∵∠A=∠A, ∴△ACD∽△ABC. (2)∵△ACD∽△ABC, ∴AC AD AB AC =, ∴AC2=AD?AB; (3)∵CD⊥AB, ∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°, ∵∠ACB=90° ∴∠A+∠B=90° ∴∠ACD=∠B ∴△ACD∽△BCD, ∴CD AD BD CD =, ∴CD2=AD?DB.

2.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证: (1)△ACP∽△PDB, (2)CD2=AC?BD. 证明:(1)∵△PCD是等边三角形, ∴∠PCD=∠PDC=∠CPD=60°, ∴∠ACP=∠PDB=120°, ∵∠APB=120°, ∴∠APC+∠BPD=60°, ∵∠CAP+∠APC=60° ∴∠BPD=∠CAP, ∴△ACP∽△PDB; (2)由(1)得△ACP∽△PDB, ∴, ∵△PCD是等边三角形, ∴PC=PD=CD, ∴, ∴CD2=AC?BD.

3. 如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC 的边BC=15,高AH=10, (1)求证:△ADG∽△ABC; (2)求这个正方形的边长和面积. 解:(1)∵四边形形DEFG是正方形, ∴DG∥BC ∴△ADG∽△ABC; (2) 如图,高AH交DG于M,设正方形DEFG的边长为x,则DE=MH=x, ∴AM=AH﹣MH=10﹣x, ∵ADG∽△ABC, ∴DG AM BC AH =, ∴ 10 1510 x x - =, ∴x=6, ∴x2=36. 答:正方形DEFG的边长和面积分别为6,36.

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版含解析) 一、八年级数学轴对称三角形填空题(难) 1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm. - 【答案】10310 【解析】 解:连接BD,在菱形ABCD中, ∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论: ①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10; ②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP -; 最小,最小值为10310 ③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在; -(cm). 综上所述,PA的最小值为10310 -. 故答案为:10310 点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.

2.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1 2 BC,则△ABC的顶角的度数为 _____. 【答案】30°或150°或90° 【解析】 试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可. 解:①BC为腰, ∵AD⊥BC于点D,AD=1 2 BC, ∴∠ACD=30°, 如图1,AD在△ABC内部时,顶角∠C=30°, 如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°, ②BC为底,如图3, ∵AD⊥BC于点D,AD=1 2 BC, ∴AD=BD=CD, ∴∠B=∠BAD,∠C=∠CAD,

相似三角形培优训练[含答案解析]

] 相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. ¥ 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. < 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 【 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB 以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度 向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似若能,求出AP的长;若不能说明理由.

相关主题