搜档网
当前位置:搜档网 › 直流电机双闭环调速系统设计.

直流电机双闭环调速系统设计.

直流电机双闭环调速系统设计.
直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

目录

1 绪论 (1)

1.1课题研究背景 (1)

1.2研究双闭环直流调速系统的目的和意义 (1)

2 直流电机双闭环调速系统 (3)

2.1直流电动机的起动与调速 (3)

2.2直流调速系统的性能指标 (3)

2.2.1静态性能指标 (3)

2.2.2动态的性能指标 (4)

2.3双闭环直流调速系统的组成 (6)

3 双闭环直流调速系统的设计 (8)

3.1电流调节器的设计 (8)

3.2转速调节器的设计 (10)

3.3闭环动态结构框图设计 (12)

3.4设计实例 (12)

3.4.1设计电流调节器 (13)

3.4.2设计转速调节器 (15)

4.Matlab仿真 (17)

4.1仿真结果分析 (19)

5 结论 (20)

参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论

1.1课题研究背景

直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。

以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。

1.2研究双闭环直流调速系统的目的和意义

双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。

20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。

通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊生产领域。

在过去,人们感到自动控制理论的研究发展很快,但是在应用方面却不尽人意。但近年来,现代控制理论在电动机控制系统的应用研究方面却出现了蓬勃发展的兴旺景象,这主要归功于两方面原因:第一是高性能处理器的应用,使得复杂的运算得以实时完成。第二是在辨识,参数估值以及控制算法鲁棒性方面的理论和方法的成熟,使得应用现代控制理论能够取得更好的控制效果。

本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊2 直流电机双闭环调速系统

2.1直流电动机的起动与调速

(1)直流电动机的起动

直流电动机接通电源以后,转速从零达到稳态转速的过程称为起动过程。直流电机的起动条件应满足以下原则:①起动转矩要大于负载转矩;②起动电流限制在安全范围以内;③起动设备投资要经济适用,设备运行要安全可靠,起动时间要短。

(2)直流电动机速度的调节

①改变电枢供电电压U

②减弱励磁磁通Φ

③改变电枢回路电阻R

从以上三种方法的介绍中可知,对于要求在一定范围内无级平滑调速的系统来说,以调节电枢电压的方式为最好。变电阻只可以实现有级调速;弱磁调速虽然可以实现平滑调速,但它可调节的范围不太大,经常要和调压方式配合,在额定转速以上可作较小范围的弱磁升速。因此,调压调速为自动控制系统主要调速方式,本论文正是采用此方法来设计系统。

2.2直流调速系统的性能指标

根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响。

2.2.1静态性能指标

(1)调速范围

生产机械要求电动机在额定负载运转时,提供的最高运转速度

max

n与最低

运转速度

min

n之比,称为调速范围,用符号D表示,即

min

max

n

n

D=(2-6)(2)静差率

当电机拖动系统在某一转速下运转时,系统从理想空载转速

n至额定负载

时转速降落了

N

n

?与理想空载转速

n之比,叫做静差率s,即

n

n

s N

?

=(2-7)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊用百分数可表示为

%

100

?

?

=

n

n

s N(2-8)由以上可知,静差率能反映拖动系统在负载变化时调速的稳定性。它与机械特性的硬度有关,机械特性越硬,静差率就越小,转速稳定度就越高。

但是静差率与特性硬度又是不同的。变压调速系统在不同转速的情况下机械特性是相互平行的,对于相同硬度的机械特性,理想空载时转速越低,静差率就越大,转速相对稳定度也越差。

由此可见,调速范围与静差率这两项指标之间的关系不是相互独立的,它们必须一起被提出时才有意义。若调速的额定速降一样,则运转的越慢,静差率就越大。在低速的情况下,如果静差率能符合设计要求,那么静差率在高速运转时就更能满足要求了。所以,在调速系统中,静差率指标的基准就是最低速运转时所能达到的参数。

2.2.2动态的性能指标

拖动系统动态过程的性能指标是生产工艺流程要求对控制系统动态指标的

要求经折算与量化后得到的。在自动化系统中,动态指标是指跟踪给定信号的跟随性能指标和抗扰动信号的鲁棒性能指标。

(1)系统跟随性指标

在参考输入信号R(t)的作用下,跟随性能指标可用来描述系统输出量C(t)的变化。当给定信号表示方式不同时,输出响应也不一样。通常以输出量的初始值为零,在阶跃变化下的过渡过程中给定信号作为典型的跟随过程,这时的

动态响应又称为阶跃响应。一般希望在阶跃响应中输出量C(t)与其稳态值

C的

偏差越小越好,达到

C的时间越快越好。常用的阶跃响应跟随性能指标有上升时间,超调量和调节时间:

①上升时间

r

t

在典型的阶跃响应跟随过程中,输出量从零开始第一次上升到稳态值

C所经过的时间称为阶跃响应的上升时间,它表示动态响应的快速性,见图2-4。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

图2-1 典型的阶跃响应过程和跟随性能指标

②超调量σ

在典型的阶跃响应跟随系统中,超调量输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示:

%

100

max?

-

=

C

C

C

σ(2-10)

③调节时间

s

t

系统整个调节过程的快慢的衡量可以用调节时间来衡量。在原则上,应该

是从阶跃变化开始到输出量完全稳定下来为止所需的时间。在线性控制系统中,理论上∞

=

t才是真正的稳定,然而在实际系统中,因为各种非线性因素的存在,过渡过程到一定时间就终止了。因此,一般在阶跃响应曲线的稳态值附近,取%

5

±(或取%

2

±)的范围作为允许误差带,以响应曲线达到并不再超出该误差带所需的最短时间定义为调节时间,可见图2-4。

(2)抗扰动能力性能指标

控制系统在稳定运行时,突加负载的阶跃扰动后的动态响应过程作为典型的抗扰过程,并定义抗扰动能力动态性能指标,如图2-5所示。常用的抗扰动能力性能指标为动态降落和恢复时间:

①动态降落

max

C

?

系统在稳定条件下运行时,突加一定数值的扰动(如负载扰动)后引起转

速降落的最大值

max

C

?叫做动态降落,常用

max

C

?与输出量的原稳态值

1

C之比的百分数%

100

/

1

max

?

?

C

C来表示(或用某基准值

b

C的百分数%

100

/

m a x

?

?

b

C

C来表示)。在动态降落后输出量逐渐恢复,达新的稳态值

2

C,

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

)

(

2

1∞

-C

C是系统在该扰动作用下的稳态误差,即静差。一般情况下,动态降落大于稳态误差。调速系统在突加额定负载扰动时转速的动态降落叫做动态降

max

n

?。

②恢复时间

v

t

从阶跃扰动作用开始,到输出量基本上恢复稳态,距新稳态值

2

C之差进入

某基准量

b

C的%

5

±(或取%

2

±)范围之内所需的时间,定义为恢复时间

v

t,其

b

C称为抗扰指标中输出量的基准值。

实际系统中对于各种动态指标的要求各有不同,要根据生产机械的具体要求而定。一般来说,调速系统的动态指标以抗扰性能为主。

C

图2-2 突加扰动的动态过程和抗扰性能指标

2.3双闭环直流调速系统的组成

双闭环直流调速系统中存在转速、电流两个调节器,分别调节转速和电流,并引入转速和电流负反馈。在二两者中采用嵌套(或称串级)联接,如图2-6所示。将转速调节器的输出作为电流调节器的输入,再将电流调节器的输出控制电力电子变换器UPE。从系统结构上来看,电流环在里边,称作内环;转速环在外面,称作外环。这样就构成转速、电流双闭环直流调速系统。

┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

图2-3 转速、电流反馈控制直流调速系统原理图

ASR─转速调节器 ACR─电流调节器 TG─测速发电机

TA─电流互感器 UPE─电力电子变换器*

n

U─转速给定电压n

U─转速反馈电压*

i

U─电流给定电压

i

U─电流反馈电压

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊3 双闭环直流调速系统的设计

双闭环调速系统属于多环控制系统,每一环都有调节器,构成一个完整的闭环系统。工程设计方法遵循先内环后外环的原则。步骤为:先设计电流环(内环),对其进行必要的变换和近似处理,然后依照电流环的控制要求确定把它校正成哪一种典型系统,再根据控制对象确定其调节器的类型,最后根据动态性能指标的要求来确定其调节器的有关参数。电流环设计完成以后,把电流环看成转速环(外环)中的一个环节,再用同样的方法设计转速环。

在电流检测信号中常有交流分量,为了不让它影响调节器的输入,加入了低通滤波器,然而滤波环节可以使反馈信号延迟,为了消除此延迟在给定位置加一个相同时间常数的惯性环节。同理,由测速发电机得到的转速反馈电压常含有换向纹波,因此也在给定和反馈环节加入滤波环节。由此,双闭环直流调速系统的实际动态结构框图如图3-1所示:

图3-1 双闭环调速系统的动态结构图

3.1电流调节器的设计

(1)电流环结构框图的化简

图3-3点画线框内的为电流环,反电动势对于电流环是一个改变缓慢的干扰,当电流的突然变化时,可以认为0

?E。这样,依据动态性能来设计电流环时,可以暂时忽略反电动势变化的动态影响。不考虑电机电枢反感电动势,对电流环干扰的条件是

(3-4)

式中

ci

ω─电流环开环截止频率。l

m

ci T

T

1

3

ω

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊将给定信号及反馈滤波同时移至环内前向通道上,再将给定信号变成

,则电流环将等效为单位负反馈控制系统。

最后,由于一般情况下

oi

T和

s

T都比

l

T小得多,从而可当作小惯性群近似地看成是一个惯性环节,其时间常数为

oi

s

i

T

T

T+

=

(3-5)则电流环内部结构简化的近似条件为

(3-6)(2)电流调节器结构的选择

从静态要求上看,希望电流无静差。从动态要求上看,电枢电流不允许有太大的超调。因此,电流环主要以跟随性能为主,应采用典型Ⅰ型系统。

电流环的控制对象是双惯性型的,校正成Ⅰ型系统时,电流调节器要选用PI型的,其传递函数用如下式子表示

(3-7)

式中

i

τ─电流调节器的超前时间常数;

i

K─电流调节器的比例系数。

为了实现控制对象的大时间常数极点和调节器的零点对消,选择

i

τ=

l

T(3-8)于是电流环的动态结构框图变成图3-4所示的典型形式,其中

(3-9)图3-2

校正成典型Ⅰ型系统的电流环动态结构框图

上述结果是在一系列假设条件下得到的,这些条件是:

①电力电子变换器纯滞后的近似处理

s

ci T3

1

ω(3-10)

②不考虑反电动势的变化对电流环的动态影响

β

)

(*s

U

i

oi

s

ci T

T

1

3

1

ω

s

s

K

s

W

i

i

i

ACRτ

τ)1

(

)

(

+

=

R

K

K

K

i

s

i

τ

β

=

I

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

l

m

ci T

T

1

3

ω(3-11)

③电流环小惯性群的近似处理

oi

s

ci T

T

1

3

1

ω(3-12)

(3)电流调节器的参数计算

由(3-6)得,电流调节器的参数为

i

K和

i

τ,而

i

τ已经选定,需要求的只

i

K,可依照所要求的动态性能指标来选取。一般情况下,希望电流超调量为%

5

=

i

σ,由表3-2,可选707

.0

=

ε,5.0

=

I i

T

K,则

i

ci T

K

I

=

=

2

1

ω(3-13)再结合式(3-6)和式(3-7)可得

)

(

2

2

i

l

s

i

s

l

i T

T

K

R

T

K

R

T

K

=

=

β

β

(3-14)3.2转速调节器的设计

(1)电流环的等效闭环传递函数

电流环经简化后可看作转速环内的一个环节,因此,需要先求其闭环的传递函数)

(s

W

cli

1

1

1

)1

(

1

)1

(

/)

(

)

(

)

(

2

*

+

+

=

+

+

+

=

=

I

I

I

I

s

K

s

K

T

s

T

s

K

s

T

s

K

s

U

s

I

s

W

i

i

i

i

d

cliβ

(3-15)不考虑高次项,)

(s

W

cli

可以降低阶次近似表示成

1

1

1

)

(

+

I

s

K

s

W

c l i

(3-16)近似条件式为

i

cn T

K

I

3

1

ω(3-17)

式中,

cn

ω─转速环开环频率特性的截止频率。

电流环作为转速环内的一环节其输入量为)

(*s

U

i

,于是电流环可在转速环内等效成

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

1

1

1

)

(

)

(

)

(

*

+

=

I

s

K

s

W

s

U

s

I

c l i

i

d

β

β

(3-18)

(2)转速调节器结构的选择

和电流环一样,将转速给定滤波及反馈滤波两个环节移入环内,并将给定信号变为α

)

(*s

U

n

,再将两个时间常数为

I

K

1和

on

T的小惯性环节合并在一起,

近似成一个时间常数为

n

T

的惯性环节,其中

on

I

n

T

K

T+

=

1

(3-19)为了既要满足电机转速调节无静差,又想满足好的动态性能指标的要求,转速环开环传递函数要有两个积分环节,因此设计为Ⅱ型系统,也使用比例积分(PI)调节器,它的传递函数可表示为:

s

s

K

s

W

n

n

n

A S Rτ

τ)1

(

)

(

+

=(3-20)

式中

n

τ─转速环PI调节器的超前时间常数;

n

K─转速环PI调节器的比例系数。

这样,直流电机调速控制系统的开环传递函数可表示为

)1

(

)1

(

)1

(

)

(

)1

(

)

(

2

e

e

+

+

=

+

+

=

s

T

s

T

C

s

R

K

s

T

s

T

C

R

s

s

K

s

W

n

m

n

n

n

n

m

n

n

n

τ

τ

α

β

α

τ

τ

(3-21)

令转速环的开环增益

N

K为

m

n

n

N T

C

R

K

K

e

β

τ

α

=(3-22)

)1

(

)1

(

)

(

2+

+

=

s

T

s

s

K

s

W

n

n

N

n

τ

(3-23)上述结果所需服从的近似条件归纳如下:

i

cn T

K

I

3

1

ω(3-24)

on

cn T

K

I

3

1

ω(3-25)(3)转速环PI调节器的参数计算

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

转速环调节器包含

n

K和

n

τ两个参数。依据典型Ⅱ型系统的相关参数关系,并由式hT

=

τ得

n

n

hT

=

τ(3-26)

再据式

2

2

2

2

2

1

2

1

)

1

(

2

1

T

h

h

h

hT

h

K

l

c

l

+

=

+

=

+

=

ω

ω,得

2

2

2

1

n

N T

h

h

K

+

=(3-27)

于是

n

m

n RT

h

T

C

h

K

+

=

α

β

2

)1

(

e(3-28)

中频宽h大小的选择,需由动态性能的要求来决定,因为h=5时调节时间最短,跟随性能及抗扰性能适中,所以,一般情况下选择h=5为好。

3.3闭环动态结构框图设计

双闭环直流调速系统的转速环在电流环之外,控制电动机的转速,输出作为电流环的给定值,实现转速无静差。电流环控制电动机的电流,输出整流触发装置的触发电压,可以通过调节电流快速调节转矩,以实现快速加减速。两个控制器均采用PI调节器,双闭环的直流调速系统动态结构框图如下图3.3所示。

图3.3 双闭环直流调速系统动态结构框图

3.4设计实例

某一个采用三相桥式晶闸管整流装置供电的转速、电流双闭环调速系统中,有关数据如下:

直流电动机的有关参数:V

U

N

220

=,A

I

N

136

=,min

/

1460r

n

N

=,电动机的电动势系数r

V

C min/

132

.0

e

?

=,允许过载的倍数5.1

=

λ;

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

电枢回路的总电阻:Ω

=5.0

R;

晶闸管装置的放大系数:40

=

s

K;

时间常数:电枢回路电磁时间常数s

T

l

03

.0

=,电力拖动系统机电时间常数s

T

m

18

.0

=;

电流的反馈系数:A

V

I

V

N

/

05

.0

5.1

10=

=

β;

转速的反馈系数:r

V

n

V

N

min/

007

.0

10?

=

=

α。

要求:(1)稳态指标:无静差;

(2)动态指标:电流的超调量%

5

i

σ;空载起动到转速达到额定时

的转速的超调量%

10

n

σ。

3.4.1设计电流调节器

1.时间常数的确定

(1)整流装置的滞后时间常数

s

T。设计成三相桥式全控整流电路,其平均失控时间s

T

s

0017

.0

=;

电枢回路电感mH

H

R

T

L

l

15

015

.0

5.0

03

.0=

=

?

=

=;

电枢电阻Ω

=

?

-

=

-

=2.0

136

1460

132

.0

220

e

N

N

N

a I

n

C

U

R;

(2)电流滤波时间常数

oi

T。三相桥式全控整流电路的每个波头时间为3.33ms,

为了基本滤平波头,应有(1~2)

oi

T=3.33ms,于是取

oi

T=2ms=0.002s。

(3)电流环小时间常数之和

i

T

。按小时间常数近似处理,取i

T

=

s

T+

oi

T=0.0037s。

2.选择电流环调节器结构

根据设计要求电流超调量%

5

i

σ,并保证稳态电流无差,可按典型Ⅰ型系统设计电流环调节器。电流环控制对象是两个惯性环节,因此可用比例积分(PI)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊型调节器设计电流环,其传递函数为

s

s

K

s

W

i

i

i

ACRτ

τ)1

(

)

(

+

=。

校验对系统中电源电压变化的抗扰性能:,

参看表3-1的典型Ⅰ型系统的动态抗扰动性能指标,表中给出的各项性能指标都是设计系统可以满足的,因此电流环可按典型Ⅰ型系统标准模型设计。3.电流环调节器参数计算

电流环调节器超前时间常数:s

T

l

i

03

.0

=

=

τ。

系统电流环的开环放大倍数:要求%

5

i

σ时,按表3-2,应取5.0

=

∑i

I

T

K,因此1

11.

135

0037

.0

5.0

5.0

-

-

=

=

=s

s

T

K

i

I

于是,电流环ACR的比例放大系数为:

013

.1

05

.0

40

5.0

03

.0

1.

135

=

?

?

?

=

=

β

τ

s

i

I

i K

R

K

K。

4.电流环似条件的校验

电流环频率特性中的截止频率:1

1.

135-

=

=s

K

I

ci

ω。

(1)校验晶闸管三相全控桥式整流装置传递函数的近似条件

ci

s

s

s

T

ω

>

=

?

=-

-1

11.

196

0017

.0

3

1

3

1

满足要求;

(2)校验不考虑反电动势对电流环动态性能影响的条件

ci

l

m

s

T

T

ω

<

=

?

?

=-1

82

.

40

03

.0

18

.0

1

3

1

3满足要求;

(3)校验电流环内的动态时间常数的近似条件

满足要求。根据上述参数,电流环可达到的动态性能指标为%

5

%

3.4<

=

i

σ(见表3-2),

ci

oi

s

s

s

T

T

ω

>

=

?

?

=-

-1

18.

180

002

.0

0017

.0

1

3

1

1

3

1

10

11

.8

0037

.0

03

.0

<

=

=

∑i

l

T

T

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊满足设计要求。

3.4.2设计转速调节器

1.时间常数的确定

(1)电流环的等效电路动态过程时间常数

I

K

1

。已取5.0

=

∑i

I

T

K,则

s

s

T

K i

I

0074

.0

0037

.0

2

2

1

=

?

=

=

(2)转速滤波时间常数取s

T

on

01

.0

=。

(3)转速环小时间常数

n

T

。依据小时间常数的近似处理,取

s

s

s

T

K

T

on

I

n

0174

.0

01

.0

0074

.0

1

=

+

=

+

=

2.转速调节器结构的选择

由于设计时要求转速无静差,转速调节器要含有积分环节;又按照动态性能要求,应按Ⅱ型系统设计调速环。也采用PI调节器,其传递函数可表示成

s

s

K

s

W

n

n

n

ASRτ

τ)1

(

)

(

+

=

3.转速环PID调节器参数的计算

根据跟随性能和抗扰动动态性能同时满足的原则,取h=5,于是转速环的超前时间常数

s

hT

n

n

087

.0

0174

.0

5=

?

=

=

τ

转速环的开环增益2

2

2

2

4.

396

0174

.0

25

2

6

2

1

-

=

?

?

=

+

=s

T

h

h

K

n

N

于是,可得转速环调节器(ASR)的比例系数为

7.

11

0174

.0

5.0

007

.0

5

2

18

.0

132

.0

05

.0

6

2

)1

(

e=

?

?

?

?

?

?

?

=

+

=

∑n

m

n RT

h

T

C

h

K

α

β

4.近似条件的校验

转速环的频率特性中的截止时的频率为

1

15.

34

087

.0

4.

396-

-=

?

=

=s

s

K

n

N

cn

τ

ω

(1)电流环调节器的传递函数的简化条件为

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

cn

i

I s

s

T

K

ω

>

=

=-

-

1

17.

63

0037

.0

1.

135

3

1

3

1

满足条件;

(2)转速环较小的时间常数的近似条件为

cn

on

I s

s

T

K

ω

>

=

=-

-1

17.

38

01

.0

1.

135

3

1

3

1

满足条件。5.转速超调量的校核

当h=5时,查表3-3得%

6.

37

=

n

σ,不能满足设计的要求,应该按ASR退饱和的情况重新计算。

由%

10

)

(

2

*

max<

?

-

??

?

?

?

??

=∑

m

n

N

b

n T

T

n

n

z

C

C

λ

σ,求出%

3.

81

max<

?

b

C

C

取h=5,查表3-4得%

2.

81

max=

?

b

C

C

而min

/

15

.

515

min

/

132

.0

5.0

136

e

r

r

C

R

I

n d

N

=

?

=

=

?

因此,%

10

%

31

.8

18

.0

0174

.0

1460

15

.

515

5.1

%

2.

81

2<

=

?

?

?

?

=

n

σ,即h=5,能满足设计的要求。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊4.Matlab仿真

根据理论设计结果,构建直流双闭环调速系统的仿真模型,如图4-1

所示:

图4-1直流双闭环调速系统的仿真模型

为了使系统模型更简洁,利用了Simulink的打包功能将调节器模型缩小为一个分支模块,如图4-2(a)、(b)所示:

(a)

(b)

图4-2 (a)转速调节器ASR (b)电流调节器ACR

运行已构建好的Simulink直流双闭环调速系统仿真模块,在空载、满载和扰动下,对系统进行仿真得到电动机转速、电流的仿真波形分别如图4-3、4-4、4-5所示:

┊┊┊┊┊┊┊┊┊┊┊┊┊装

┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

图4-3转速环空载高速起动波形图

图4-4转速环满载高速起动波形图

-200

200

400

600

800

1000

1200

1400

1600

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊

图4-5 t=1s时加入负载扰动转速环的抗扰波形图

4.1仿真结果分析

根据以上仿真结果对系统的性能指标进行分析:

(1)上升时间

r

t:上升时间为0.3622s,响应时间较快。

(2)超调量σ:。超调量满足

系统的设计要求,系统的相对稳定性较好。

(3)调节时间

s

t:系统再1.167s以后就达到了稳定,稳定后基本上无静差,系统较稳定。

(4)峰值时间

p

t:该时间约为0.4079s,系统的瞬间响应较快。

(5)在系统稳定后1s时突加2

1额定负载,系统仅用0.18s时间又恢复稳态,系统稳定抗扰性良好。

%

10

%

5.8

1430

1430

1552

%

100

max<

=

-

=

?

-

=

C

C

C

σ

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

转速单闭环调速系统设计

目录 第1章概述 (1) 1.1 转速单闭环调速系统设计意义 (1) 1.2 转速单闭环调速系统的设计要求 (1) 第2章原系统的动态结构图及稳定性的分析 (2) 2.1 原系统的工作原理 (2) 2.2 原系统的动态结构图 (3) 2.3 闭环系统的开环放大系数的判断 (3) 2.4 相角稳定裕度γ的判断 (4) 第3章调节器的设计及仿真 (5) 3.1 调节器的选择 (5) 3.2 PI调节器的设计 (5) 3.3 校正后系统的动态结构图 (8) 3.4 系统的仿真结构图及测试结果 (8) 第4章课程设计总结 (9) 参考文献 (1)

转速单闭环调速系统设计 1、概述 1.1 转速单闭环调速系统设计意义 为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。在对调速性能有较高要求的领域常利用直流电动机作动力,但直流电动机开环系统稳态性能不能满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可用积分调节器代替比例调节器. 反馈控制系统的规律是要想维持系统中的某个物理量基本不变,就引用该量的负 反馈信号去与恒值给定相比较,构成闭环系统。对调速系统来说,若想提高静态指标, 就得提高静特性硬度,也就是希望转速在负载电流变化时或受到扰动时基本不变。要 想维持转速这一物理量不变,最直接和有效的方发就是采用转速负反馈构成转速闭环 调节系统。 1.2 转速单闭环调速系统的设计要求

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in 时,由于比例部分的作用,输出量立即响应,突跳到U ex (t )=K P U in ,实现了快速响应;随后U ex (t )按积分规律增长,U ex (t )=K P U in +(t/τ)U in 。在t =t 1时,输入突降为0,U in =0,U ex (t )=(t 1/τ)U in ,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P 和1/τ的参数的确定 5.1各环节的参数: 直流电动机:额定电压U N =220V ,额定电流I dN =55A,额定转速n N =1000r/min,电动机电动势系数C e =0.192V ? min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s =44,滞后时间常数T s =0.00167s 。

课程设计——单闭环不可逆直流调速系统设计

单闭环不可逆直流调速系统设计 目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ··········································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

带电流截止负反馈转速单闭环直流调速系统设计

目录 摘要 (2) 1主电路的设计 (2) 1.1变压器参数的设计与计算 (2) 1.2平波电抗器参数的设计与计算 (3) 1.3晶闸管元件参数的计算 (3) 1.4保护电路的设计 (4) 2反馈调速及控制系统 (4) 2.1闭环调速控制系统 (4) 2.2带电流截止负反馈闭环控制系统 (5) 2.3调节器设定 (8) 2.4控制及驱动电路设计 (9) 3参数计算 (10) 3.1基本参数计算 (10) 3.2电流截止负反馈环节参数计算与设计 (12) 3.3调节器的参数设计与计算 (12) 3.4调节器串联校正设计 (15) 4总电气图 (16) 5心得体会 (18) 参考资料 (18)

带电流截止负反馈转速单闭环直流调速 系统设计 摘要 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,并且直流调速系统在理论和实践上都比较成熟,是研究其它调速系统的基础。在直流电动机中,带电流截止负反馈直流调速系统应用也最为广泛,其广泛应用于轧钢机、冶金、印刷、金属切割机床等很多领域的自动控制。本次课设就带电流截止负反馈转速单闭环直流调速系统进行参数的设计。 1主电路的设计 1.1变压器参数的设计与计算 变压器副边电压采用如下公式进行计算: ??? ? ?? -+= N sh T d I I CU A nU U U 2min max cos αβ V U C I I U A n V U V U N sh T d 110) 105.05.09848.0(9.034.21 22205 .0105 .0109 .034 .22 1,220222 min max =??-??+==========则取已知αβ 因此变压器的变比近似为:45.3110 3802 1===U U K 一次侧和二次侧电流I 1和I 2的计算 I 1=1.05×287×0.861/3.45=75A I 2=0.861×287=247A

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

双闭环直流调速系统的设计

双闭环直流调速系统设计 一、系统组成与数学建模 1)系统组成 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。 L + - 图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。

2)数学建模 图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI 调节器,则有 s s K s W i i i ACR 1 )(ττ+= s s K s W n n n ASR 1 )(ττ+= 二、 设计方法 采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记; 双闭环直流调速系统的动态结构图

(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。 2、工程设计方法的基本思路: (1)选择调节器结构,使系统典型化并满足稳定和稳态精度。 (2)设计调节器的参数,以满足动态性能指标的要求。 一般来说,许多控制系统的开环传递函数都可表示为 ∏∏==++= n 1 i i r m 1j j ) 1() 1()(s T s s K s W τ 上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。 自动控制理论已经证明,0型系统稳态精度低,而Ⅲ型和Ⅲ型以上的系统很难稳定。 因此,为了保证稳定性和较好的稳态精度,多选用I 型和II 型系统。 三、 电流环设计 反电动势与电流反馈的作用相互交叉,给设计工作带来麻烦。 转速的变化往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,0≈?E 。 忽略反电动势对电流环作用的近似条件是 l m ci T T 1 3 ≥ω (3-45) 式中ωci ——电流环开环频率特性的截止频率。 图3-19 电流环的动态结构图及其化简 (a)忽略反电动势的动态影响 把给定滤波和反馈滤波同时等效地移到环内前向通道上,再把给定信号改成 ,则电流环便等效成单位负反馈系统。 ) (s W R (s ) C (s )

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

相关主题