搜档网
当前位置:搜档网 › 线性代数2总复习题

线性代数2总复习题

线性代数2总复习题
线性代数2总复习题

线性代数2复习题

一、选择题

1、设D 是n 阶行列式,则以下说法错误的是( )

(A )若D 中有一行元素全为0,则.0=D (B) 若D 中有两行元素相同,则.0=D

(C) 若D 中有两行元素对应成比例,则.0=D (D) 若0=D ,则D 中有一行元素全为0. 2、设B A ,是n 阶方阵, 若B A ,等价,以下结论错误的是( )

(A )B A = (B) ()()B r A r = (C) 可逆可逆B A ?(D) 不可逆不可逆B A ? 3、设A 是一个n 阶可逆方阵,则( )

(A )A 的行向量组线性相关 (B) A 的列向量组线性相关

(C) A 的每一个行向量均不可由其余1-n 个行向量线性表出

(D) A 有一个行向量可由其余1-n 个行向量线性表出

4、如果A 是n 阶可逆矩阵,则( )

A 、0=A

B 、0=AX 有非零解

C 、A 的任一个特征值都不为零

D 、A 与

E 相似

5、设A 是一个n 阶实方阵,若A 相似于对角矩阵,则必有( )

(A )A 是一个n 阶实对称矩阵 (B) A 有n 个线性无关的特征向量

(C )A 有n 个互异的特征值 (D) ()n A r =

6、如果复二次型()321,,x x x f 的秩为2,则它的规范形的是( )

A 、-2221Z Z -

B 、 2

221Z Z + C 、-2321Z Z + D 、232221Z Z Z ++

6、设A 为n 阶实对称矩阵,若A 正定,则以下结论错误的是( )

(A )A 的每个元素均大于零 (B) A 的主对角元全大于零

(C) 0>A (D) A 的特征值全大于零

7、设D 是n 阶上三角形行列式,若,0=D 则必有( )

(A )D 中有一行元素全为0 (B) D 中有两行元素相同

(C) D 中有两行元素对应成比例 (D) D 的主对角线上的元素至少有一个为0 8、设A 是一个n 阶实对称阵,则必有( )

(A )A 是一个n 阶正定矩阵 (B) A 是一个n 阶正交矩阵

(C )A 相似于对角矩阵 (D) A 是一个n 阶可逆矩阵

9、将二阶矩阵A 的第一行的2倍加到第二行,得到矩阵B ,则B 等于( ) A 、A ??????1002 B 、A ??????0120 C 、A ??????1021 D 、A ??

????1201 10、若由AB=AC 必能推出B=C ,其中A ,B ,C 为同阶方阵,则A 应满足( ).

(A )O A ≠ (B )0≠A (C ) 0=A (D )A=O

11、以下矩阵不是初等矩阵的是( )

(A )???? ??0110 (B) ???? ??2001 (C )???? ??0001 (D) ???

? ??1101 12、设A 为一个n 阶方阵,以下不是A 可对角化条件的是:( )

(A )A 相似于一个对角形矩阵; (B) A 有n 个线性无关的特征向量;

(C )A 等价于单位阵E; (D) A 有n 个不同的特征值

13、以下矩阵是正定矩阵为( )

A 、???? ??3021

B 、???? ??3001

C 、???? ??3221

D 、???

? ??0310 14、已知0333231

2322

211312

11≠=k a a a a a a a a a ,则=323331222321121311323232a a a a a a a a a ( ). (A )2k (B )-3k (C )-6k (D )-5k

15、设A ,B 为n 阶矩阵,O A ≠且AB=O ,则( )

A 、 B=O

B 、 A=O

C 、 BA=O

D 、 00==A B 或

16、设A 为n 阶方阵,且A 的行列式**2A A A A 的伴随矩阵,则是,而==( )

A 、12-n

B 、 n 2

C 、 2

D 、 2

1 17、设A 为n 阶可逆方阵,则关于A的说法错误是( )

A、A等价于单位阵E B、 齐次线性方程组AX=0只有零解 C、A的秩为n D、A的行(列)向量组线性相关

18、设四元齐次线性方程组AX=O 中,()3r A =,齐次线性方程组AX=O 的基础解系中含有向量的个数为 ( )

A 、1个

B 、2个

C 、3个

D 、 4个

19、以下矩阵是正定矩阵为( )

A 、???? ??3002

B 、???? ??-3002

C 、???

? ??-3002 D 、???? ??--3002 20、下列3阶排列是奇排列的是:( )

(A )123 (B )231 (C ) 321 (D )312

21、矩阵的乘法满足( ).

(A )交换律 (B )消去律 (C ) 结合律 (D )两个非零矩阵相乘一定不为零

22、以下矩阵不是初等矩阵的是( )

(A )100010001?? ? ? ??? (B)

101010001?? ? ? ??? (C )001010100?? ? ? ??? (D) 100010000?? ? ? ???

23、设A 为n 阶可逆方阵,则关于A的说法错误是( )

A、kA 也可逆,其中k 为任意的数; B、A *也可逆,其中A *为A 的伴随矩阵; C、11A A --= D、1n A A -*=

24、设A 为n 阶可逆方阵,则关于A的说法错误是( )

A、kA 也可逆,其中k 为任意的数; B、A *也可逆,其中A *

为A 的伴随矩阵; C、11A A --= D、1n A A -*=

25、关于行列式的运算性质,错误的说法是( )

(A )行列式行列互换,其值不变;(B )行列式一行的k 倍加到另一行上去,其值不变;

(C )互换行列式两行的位置,其值不变;(D )互换行列式两行的位置,其值异号;

26、设A 、B 是两个n 阶方阵,k 是数。则以下关于矩阵行列式的运算,不正确的是:(

(A )T A A = (B )kA k A = (C )n kA k A = (D )AB A B =

27、以下矩阵是正定矩阵为( )

A 、110120003?? ? ? ???

B 、120220003?? ? ? ???

C 、100023033?

?

? ? ??? D 、130320003?

?

?

? ???

28、设A 为n 阶可逆方阵,则关于A的说法错误是( ) A、0A ≠ B、11A A --=

C、A的秩为n D、齐次线性方程组AX=0有非零解

29、设A ,B 为n 阶可逆矩阵,则下列式子不正确的是( )

A 、 AB=BA

B 、 BA AB =

C 、()T T T A B AB =

D 、()111---=A B AB

30、设A 为三阶方阵且2A =, T A 表示A 的转置,则3T A -=( )

A 、6

B 、-6

C 、-27

D 、-54

31、设矩阵A =221042,000?? ? ?

???

P 可逆,则PA 的秩为( )

A 、0

B 、1

C 、2

D 、3

32、已知向量组321,,ααα线性无关,则下列向量组一定线性相关的是( )

A 、12,αα;

B 、1234,,,αααα;其中4α是任意的一个向量;

C 、12,,0αα;

D 、112123,,αααααα+++

二、填空题

1、设1544332251a a a a a 是5阶行列式中的一项,则此项前应取 号.

2、已知3阶行列式|A|中第3列元素依次为-1,2,0,它们的余子式依次为5,3,-7,则|A|=__________.

3、已知???

? ??=3021A ,???? ??=4011B , 则=A B T . 4、矩阵????

? ??--=003016031211A 的秩为 . 5、向量方程()()1,20,13,0,1,02-=+X 的解X= .

6、已知三阶矩阵的????

? ??=548-6-702-53A ,则A 的全部特征值之和= .

7、六阶排列136542为一个 排列(填奇或偶).

8、设A 是5阶矩阵,且5=A ,则=*A .

9、齐次线性方程组0201321=+++x x x 的基础解系中含有 个解向量. 10、已知是B A ,为两个3阶方阵且B A ~,若A 的特征值为1,1,1-,=+-1B E . 11、二次型()2223424,,z yz y xy x z y x f ++++=的矩阵为 .

12、六阶排列135642的逆序数= .

13、设146024003A ?? ?= ? ???,则()=-1*

A .

14、已知,

504030201????

? ??=A 的伴随矩阵为*A ,则.______=*AA 15、已知向量组321,,ααα线性相关, 向量组432,,ααα线性无关,则向量组321,,ααα的极大线性无关组为 .

16、已知向量组()()()a 22,320,201321==-=ααα,当a = 时,向量组321,,ααα线性相关

17、已知2是矩阵????

? ??=32131003t A 的特征值,则=t .

18、二次型()2223424,,z yz y xy x z y x f ++++=的秩为 .

19、设1544532231a a a a a 是5阶行列式中的一项,则此项前应取 号.

20、已知????? ??=3-745-964-85A ????

? ??=3569231-44523B , 则=A B T . 21、矩阵????

? ??--=003016031211A 的标准形为 . 22、已知4阶方阵的A 秩为2,则A 的等价标准型矩阵是 .

23、已知向量组()()()712,310,20121--==-=βαα,将β写成21,αα 的一个线性组合: .

24、向量方程()()1,2,3,13,2,1,03-=-+X 的解X= .

25、已知三阶矩阵A 的特征值为1,2,3则=A .

26、已知3阶行列式D 的第三行元素分别是-1,0,2;第三行元素对应的余子式依次是1,

2,4,则D= .

27、设矩阵1111a a a a a a A a a a a a a ?? ? ?= ? ???

的秩为1,则a = ____. 28、向量方程组3(1,1,1)2(1,0,1)X Y X Y +=??-=-?

的解X= . Y= . 29、已知三阶矩阵的15-27300-26-641A ??

?= ? ?-??

,则A 的全部特征值之和= . 30、设14233241a a a a 是阶行列式中的一项,则此项前应取 号.

31、向量方程()()1,2,0,13,2,1,15-=-+X 的解X= .

32、已知5阶矩阵A 的特征值为1,2,3,4,5.则=A .

33、已知矩阵????

? ??=50002021a A 正定,则a 的取值范围是: . 34、已知线性方程组123112233

2

2

2

112233000

x x x a x a x a x a x a x a x ++=?

?++=??++=?有非零解,则123,,a a a 满足关系:_______.

三、计算与证明

1、计算行列式

(1) 1111121111311114 (2) 1111

120010301004 (3) 1312

1102637345

-

(4) 1111123414916182764 (5) 131125134

20111533D ---=--- (6) 444

4420

0403

04004 (7) 11112211313111n n (8) 1232200303000n n n --- (9) n n n

0002020011210

2、求满足条件B AX =的矩阵,X 其中????

??=???? ??=61306

59

1,833

1B A .

3、设

??

??

??

?

??----=??????? ??=???????

??-=??????? ??=3231,7141,0110,73214321αααα.

求:(1)向量组4321,,,αααα的秩;

(2)向量组4321,,,αααα的一个极大线性无关组;

(3)用所求的极大线性无关组将其余向量线性表出.(12分)

4、设????? ??=a a a A 111111,????

? ??-=221a a b . 已知线性方程组b Ax =有无穷多解,求实数a 的值及方程组的一切解。(12分)

5、求复二次型()32312123222132162252,,x x x x x x x x x x x x f +++++=的规范形.(8分)

6、设A 是一个n 阶方阵,若A 满足03

=A . 证明:21)(A A E A E ++=--.(6分) 7、求满足条件B AX =的矩阵,X 其中???

? ??=???? ??=41310215,5321B A .(8分) 8、已知实二次型()323121232221321222222,,x x x x x x x x x x x x f +++++=。

求(1)二次型的规范形;

(2)判定二次型的正定性.(10分)

9、求满足条件B AX =的矩阵,X 其中????

? ??=????? ??=011001,123012001B A .(8分)

10、设线性方程组 ?????=--+=+--=--+a x x x x x x x x x x x x 4321

432143212312022试确定a 的值,使方程组有解,并求其全部解。

11、设实二次型32212322213214432),,(x x x x x x x x x x f --++=

1)写出该二次型的矩阵;并计算其所有的特征值和特征向量;

2) 用正交线性替换二次型为标准形.

12、已知向量组321,,ααα线性无关,设向量组211ααβ+=,322ααβ+=,133ααβ+=,证明: 向量组321,,βββ线性无关.

13、设A =,221243121????

? ??求A -E 的逆矩阵.

14、已知线性方程组?????=++=++=-+233321321

321321x ax x ax x x x x x

(1) 讨论a 取何值时,方程组有唯一解?有无穷多解?无解?

(2) 方程组有无穷多解时,求其通解.(12分)

15、求满足条件2AX X B -=的矩阵,X 其中30010230,0132310A B ???? ? ?== ? ? ? ?????

. 16、λ取何值时,线性方程组?????λ=+-=+-=+-321

321321x 3x 8x 42x 4x 6x 31

x 5x 4x 2 有解?在有解时求出通解.

17、已知向量组321,,ααα线性无关,设向量组112βαα=-,223βαα=-,3312βαα=-,证明: 向量组321,,βββ线性无关.(6分)

18、求满足条件2AX X B -=的矩阵,X 其中30010230,0132310A B ???? ? ?== ? ? ? ?????

.(8分) 19、设????

? ??-=????? ??-=112,1101011b A λλλ.已知线性方程组b AX =有无穷多解. 1)、求λ的值;2)、求方程组的一般解.(12分)

20、设实二次型123121323(,,)222f x x x x x x x x x =---

1)、写出该二次型的矩阵;并计算其所有的特征值和特征向量;

2)、用正交线性替换化二次型为标准形.

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m?n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m?n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个4?5矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m?n的矩阵A和B可以相加(减),得到的和(差)仍是m?n矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m?n的矩阵A与一个数c可以相乘,乘积仍为m?n的矩阵,记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0? c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.

线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,, ,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

《线性代数》模拟试卷B及答案

《线性代数》模拟试卷B 及答案 一、选择题(每小题3分,共30分) (1)若A 为4阶矩阵,则3A =( ) (A) 4A (B) 43A (C) 34A (D)3A (2)设A ,B 为n 阶方阵,0A ≠且0AB =,则( ) (A)0B = (B)0BA = (C)222()A B A B +=+ (D)00A B ==或 (3)A ,B ,C 均为n 阶方阵,则下列命题正确的是( ) (A) AB BA = (B)0,00A B AB ≠≠≠则 (C) AB A B = (D) ,AB AC B C ==若则 (4)222()2A B A AB B +=++成立的充要条件是( ) (A)AB BA = (B) A E = (C)B E = (D)A B = (5)线性方程组(1)22(1)k x y a x k y b -+=??+-=?有唯一解,则k 为( ) (A)任意实数 (B) 不等于 (C) 等于 (D) 不等于0 (6)若A 为可逆阵,则1()A *-=( ) (A)A A (B)A A * (C)1 A A - (D)1 A A -* (7)含有4个未知数的齐次方程组0AX =,如果()1R A =,则它的每个基础解系中解向量的个数为( ) (A) 0 (B) 1 (C) 2 (D) 3

(8)设A 为m n ?矩阵,齐次方程组0AX =仅有零解的充要条件是A 的( ) (A) 列向量线性无关 (B) 列向量线性相关 (C) 行向量线性无关 (D) 行向量线性相关 (9)已知矩阵A=3111?? ?-?? ,下列向量是A 的特征向量的是( ) (A)10?? ??? (B)12?? ??? (C)12-?? ??? (D) 11-?? ??? (10)二次型222123123121323(,,)44224f x x x x x x x x x x x x λ=+++-+为正定二次型,则λ 的取值范围是( ) (A)21λ-<< (B)12λ<< (C)32λ-<<- (D)2λ> 二、计算题(第1、2小题每题5分,第3、4小题每题10分,共30分) 1、计算行列式 4x a a a a x a a D a a x a a a a x = 。(5分) 2、设321A=315323?? ? ? ??? ,求A 的逆-1A 。(5分)

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

8线性代数练习题(带解题过程)

8线性代数练习题(带解题过程)

0 线性代数试题 一 填空题 ◆1. 设 A 为3阶方阵且 2 =A ,则 = -*-A A 231 ; 【分析】只要与* A 有关的题,首先要想到公式, E A A A AA ==**,从中推 你要的结论。这里1 1* 2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3 )1(- ◆2. 设1 33322211 ,,α+α=βα+α=βα+α=β, 如 3 21,,ααα线性相关,则3 21,,βββ线性 ______(相关) 如 3 21,,ααα线性无关,则 3 21,,βββ线性 ______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘

1 法的关系,然后用矩阵的秩加以判明。 ?? ?? ? ?????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定 是方阵!! ◆3. 设非齐次线性方程b x A m =?4 ,2)(=A r ,3 2 1 ,,ηη η是 它的三个解,且 T T T )5,4,3,2(,)4,3,2,1(,)7,6,4,3(133221=+=+=+ηηηηηη 求该方程组的通解。(答案: T T T k k x )2,2,1,1()1,1,1,1()6,5,3,2(2 1 21++= ,形式不 唯一) 【分析】对于此类题,首先要知道齐次方程组基础解系中向量的个数(也是解空间的维数) 是多少,通解是如何构造的。其次要知 道解得性质(齐次线性方程组的任意两解的线性

线性代数1-2章精选练习题

第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n (C) k n 2 ! (D)k n n 2)1( 3. n 阶行列式的展开式中含1122a a 的项共有( )项. (A) 0 (B)2 n (C) )!2( n (D) )!1( n 4. 001001001001 000( ). (A) 0 (B)1 (C) 1 (D) 2 5. 0 001100000100100( ). (A) 0 (B)1 (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f 中3x 项的系数是( ). (A) 0 (B)1 (C) 1 (D) 2 7. 若2 1 33 32 31 232221 131211 a a a a a a a a a D ,则 32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4 (C) 2 (D) 2 8.若 a a a a a 22 2112 11,则 21 11 2212ka a ka a ( ).

(A)ka (B)ka (C)a k 2 (D)a k 2 9. 已知4阶行列式中第1行元依次是3,1,0,4 , 第3行元的余子式依次为 x ,1,5,2 , 则 x ( ). (A) 0 (B)3 (C) 3 (D) 2 10. 若5 7 3 4 111113263478 D ,则D 中第一行元的代数余子式的和为( ). (A)1 (B)2 (C)3 (D)0 11. 若2 23 5 1 011110403 D ,则D 中第四行元的余子式的和为( ). (A)1 (B)2 (C)3 (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1 (B)2 (C)3 (D)0 二、填空题 1. n 2阶排列)12(13)2(24 n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是. 3.四阶行列式中包含4322a a 且带正号的项是 . 4.若一个n 阶行列式中至少有12 n n 个元素等于0, 则这个行列式的值等于 .

线性代数模拟试题(4套)

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则B A B A +=+.……………………() 2、可逆方阵A 的转置矩阵T A 必可逆.……………………………() 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…() 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………() 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合1、23456. 7、(R 8、若9、设10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为. 三、计算:(每小题8分,共16分) 1、已知4阶行列式1 6 11221212 112401---= D ,求4131211132A A A A +-+.

2、设矩阵A 和B 满足B A E AB +=+2,其中??? ? ? ??=101020101A ,求矩阵B . 四、(10分)求齐次线性方程组???????=++-=-++=--+-=++-024********* 432143214 3214321x x x x x x x x x x x x x x x x 的基础解系和它的通解. 五、(10分)设三元非齐次线性方程组b Ax =的增广矩阵为 2六、(10(1(2(3(41. 2、(单 (1)做矩阵53?A 表示2011年工厂i a 产矿石j b 的数量)5,4,3,2,1;3,2,1(==j i ;

(2)通过矩阵运算计算三个工厂在2011年的生产总值. 模拟试题二 一、 判断题(正确的打√,不正确的打?)(每小题2分,共10分) ()1、设,A B 为n 阶方阵,则A B A B +=+; ()2、可逆矩阵A 总可以只经若干次初等行变换化为单位矩阵E ; ()3、设矩阵A 的秩为r ,则A 中所有1-r 阶子式必不是零; ()4、若12,x x ξξ==是非齐次线性方程组Ax b =的解,则12x ξξ=+也是该方程组的解. ()5、n 阶对称矩阵一定有n 个线性无关的特征向量。 123、设4、(33α5一; 67、设向量(1,2,1)T α=--,β=()T 2,,2λ-正交,则λ=; 8、设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为。 三、计算题(每小题8分,共16分) 1、设矩阵??? ? ??=???? ??--=1201,1141B A ,求矩阵AB 和BA 。

历年自考04184线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++2 21 12 1 c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+=++2 12 12121 221121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 211312 11a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332 31 232221 131211 a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

大学线性代数模拟题

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。(知识点:行列式的逆序数) 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D -。 3、设1101A ??= ? ?? , 则100A =110001?? ???。 23111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? 可得 4、设A 为5 阶方阵,5A =,则5A = 1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。答案应该为5的n 次方 5、A 为n 阶方阵,T AA E =且=+

2020线性代数试题(带解题过程)

线性代数试题 一 填空题 ◆1. 设A 为3阶方阵且2=A ,则=-*-A A 231 ; 【分析】只要与*A 有关的题,首先要想到公式,E A A A AA ==**,从中推 你要的结论。这里11*2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3)1(- ◆2. 设133322211,,α+α=βα+α=βα+α=β, 如321,,ααα线性相关,则321,,βββ线性______(相关) 如321,,ααα线性无关,则321,,βββ线性______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘 法的关系,然后用矩阵的秩加以判明。 ???? ??????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定是方阵!! 你来做 下面的三个题: (1)已知向量组m ααα,,,21 (2≥m )线性无关。设 111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m 试讨论向量组m βββ,,,21 的线性相关性。(答案:m 为奇数时无关,偶数时相关) (2)已知321,,ααα线性无关,试问常数k m ,满足什么条件时,向量组 312312,,αααααα---m k 线性无关?线性相关?(答案:当1≠mk 时,无关;当1=mk 时,相关) (3)教材P103第2(6)题和P110例4和P113第4题 ◆3. 设非齐次线性方程b x A m =?4,2)(=A r ,321,,ηηη是它的三个解,且

相关主题