搜档网
当前位置:搜档网 › 基于CMA-ES算法的支持向量机模型选择

基于CMA-ES算法的支持向量机模型选择

基于CMA-ES算法的支持向量机模型选择
基于CMA-ES算法的支持向量机模型选择

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

公交最优路径选择的数学模型及算法_雷一鸣

第17卷第2期 湖南城市学院学报(自然科学版)V ol.17 No.2 2008年6月 Journal of Hunan City University (Natural Science) Jun. 2008 公交最优路径选择的数学模型及算法 雷一鸣 (广东工业大学华立学院,广州 511325) 摘要:在公交出行查询系统中,最关键的部分是寻找两站点间乘车的出行最优路径问题.建立了以最小换乘次数为第一目标,最小途经站点为第二目标的公交出行最优路径模型.同时,设计了一种算法以确定最优公交线路序列,分析了线路相交的几种情况,给出了换乘点选择方法. 关键词:最优路径;换乘次数;公交网络 中图分类号:O232文献标识码:A文章编号:1672–7304(2008)02–0050–03 公交最优路径问题一直是应用数学、运筹学、计算机科学等学科的一个研究热点.对公交最优路径问题的理论研究主要包括公交网络的数学描述和设计最优路径算法.在公交网络描述方面,Anez等用对偶图描述能够涵盖公交线路的交通网络,Choi等讨论了利用GIS技术从街道的地理数据产生公交线路和站点的问题;在设计最优算法方面,常用的算法[1]有Dijkstra算法、Floyd 算法、Moore-pape算法等.Moore-pape算法计算速度较快,适用于大型网络,但它无法进行“一对一”的计算.Floyd算法虽然可以快速地进行“多对多”的计算,但它不能应用于大型网络,而Dijkstra算法是目前公认的最好的算法,但它数据结构复杂、算法时间长,不适合公交线路的查询.本文首先对公交网络进行了数学描述,考虑到公交乘客出行时所面临的各种重要因素,包括换乘次数、途径站点、出行耗时和出行费用等,选择以换乘次数最少作为最优路径算法的第一约束目标,而出行耗时虽难以准确测算但它与途径站点数相关,所以选择易于量化的途经站点数最少作为第二约束目标,建立公交乘车数学模型,设计相应的算法,并利用有关实验数据验证了它的有效性和可行性. 1 模型的建立及其算法 1.1 模型假设及符号规定 为了更好地建立数学模型,首先对公交网络及出行者作出以下假设[2]: 1)不考虑高峰期、道路交通堵塞等外界因素对乘车耗时的影响. 2)假设出行者熟悉公交站点及附近地理位置,并且知道可乘的各种公汽和地铁以及到达目的地有哪几种不同选择的机会.在公交线路网中, 不同的公交线路在行程上一定会有重叠,也就是说不同的线路上一定会有同名站点.在进行网络分析时,把空间上相近的异线同名站点合理抽象成一个节点. 3)假设出行者对公汽和地铁的偏好程度不一样.在不换乘的情况下,宁愿乘地铁,以求舒适;在路途较近的情况下,宁愿坐公汽而放弃乘地铁.出行者可根据自己的偏好结合自己的出行需求(换乘次数、最短路程、费用等),可在各种出行方案中选出满足自己出行需求的乘车方案.设() L I为经过点A或其附近的公交线路集,其中1,2,..., I m =;() S J为经过点B或其附近的公交线路集,其中,,..., J12n =;(,) E I U为线路 ) (I L上的站点,其中,,..., U12p =;(,) F J V为线路) (J S上的站点,其中,,..., V12q =;() X K为经过站点) ,(U I E的线路,其中,,..., K12w =;() Y O 为经过站点) , (V J F的线路,其中,,..., O12v =;(,) d E F M ≤表示从站点E步行到站点F之间的距离不超过乘客换车时步行的最大心理承受值M,其中M表示乘客在换车时步行的最大心理承受值.通常,M与公交站点间的平均距离呈线性正相关. Ai Z表示站点A的下行第i个站点; Bj Z表示站点B的上行第j个站点;另外,公交的可行线 路的集合可表示为:{| i i TR TR TR == 0112,1 ,,,,,, i i i i d a p a p a ? < ,} id d p a>,其中,{} 01,1 ,,,, i i d d a a a a ? 为站点集合,{} 12,1 ,,,, i i i d d p p p p ? 为公交车次的集合, i TR 收稿日期:2008-03-10 作者简介:雷一鸣(1972-),男,湖南临武人,助教,硕士,主要从事数学模型及经济信息管理研究.

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6 月20日

支持向量机的算法学习 1. 理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据 (样本) 出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论( Statistical Learning Theory 或SLT) 是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1] ,到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是VC维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine) 的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency) 、收敛速度、推广性能(GeneralizationPerformance) 等的重要结论。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy) 和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.sodocs.net/doc/198230511.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

(整理)ARMA算法整理.

信息通信网络时序指标动态阈值选取方法研究 整篇文章分为三部分,第一部分是点预测,第二部分是阈值d 的选取,第三部分是结合两者进行区间预测。其中第一部分是重点,分为两个小部分,分别为前期预处理检验和模型建立,模型建立部分又分别由6个小部分组成。 一、建立模型进行中心点预测 思路:根据给出的数据序列,利用自相关系数,偏相关系数的性质,选择合适的模型进行模拟,如AR 模型(AR(p)),MA 模型(MA(q)),ARMA 模型(ARMA(p ,q)),并确定它们的阶数。然后估计模型中未知参数的值,并利用AIC 准则来进行模型优化,从而可以对未来数据进行预测。 注:)(p AR 定义:????????=≠===≠+++++=---t s x E t s E Var E x x x x t s s t t t p t p t p t t t ,0(,0)(,)(,0)(02 22110) εεεσεεφεφφφφε )(q MA 定义:?? ? ??≠===≠----+=---t s E Var E x s t t t q q t q t t t t ,0)(,)(,0)(022211εεσεεθεθεθεθεμε ),(q p A R M A 定义:????????=≠===≠≠---+++++=-----t s x E t s E Var E x x x x t s s t t t q p q t q t t p t p t t t ,0)(,0)(,)(,0)(0,02 1122110εεεσεεθφεθεθεφφφφε 建模: 1. 前提准备 得到数据之后(比如移动公司一个月的通话时长记录),我们要对数据进行一个预处理,判定给出的数据满足为平稳非白噪声序列,

规则化和模型选择(Regularization and model selection)

1 问题 模型选择问题:对于一个学习问题,可以有多种模型选择。比如要拟合一组样本点,可以使用线性回归,也可以用多项式回归。那么使用哪种模型好呢(能够在偏差和方差之间达到平衡最优)? 还有一类参数选择问题:如果我们想使用带权值的回归模型,那么怎么选择权重w公式里的参数? 形式化定义:假设可选的模型集合是,比如我们想分类,那么SVM、logistic 回归、神经网络等模型都包含在M中。 2 交叉验证(Cross validation) 我们的第一个任务就是要从M中选择最好的模型。 假设训练集使用S来表示 1、使用S来训练每一个,训练出参数后,也就可以得到假设函数。(比如,线性模型 中得到后,也就得到了假设函数) 2、选择错误率最小的假设函数。 遗憾的是这个算法不可行,比如我们需要拟合一些样本点,使用高阶的多项式回归肯定比线性回归错误率要小,偏差小,但是方差却很大,会过度拟合。因此,我们改进算法如下: 1、从全部的训练数据S中随机选择70%的样例作为训练集,剩余的30%作为测试 集。 2、在上训练每一个,得到假设函数。 3、在上测试每一个,得到相应的经验错误。 4、选择具有最小经验错误的作为最佳模型。 这种方法称为hold-out cross validation或者称为简单交叉验证。 由于测试集是和训练集中是两个世界的,因此我们可以认为这里的经验错误接近于泛化错误(generalization error)。这里测试集的比例一般占全部数据的1/4-1/3。30%是典型值。

还可以对模型作改进,当选出最佳的模型后,再在全部数据S上做一次训练,显然训练数据越多,模型参数越准确。 简单交叉验证方法的弱点在于得到的最佳模型是在70%的训练数据上选出来的,不代表在全部训练数据上是最佳的。还有当训练数据本来就很少时,再分出测试集后,训练数据就太少了。 我们对简单交叉验证方法再做一次改进,如下: 子集有m/k个训练样例,相应的子集称作{}。 2、每次从模型集合M中拿出来一个,然后在训练子集中选择出k-1个 {}(也就是每次只留下一个),使用这k-1个子集训练后,得到假设函数。最后使用剩下的一份作测试,得到经验错误。 3、由于我们每次留下一个(j从1到k),因此会得到k个经验错误,那么对于一个, 4、选出平均经验错误率最小的,然后使用全部的S再做一次训练,得到最后的。 这个方法称为k-fold cross validation(k-折叠交叉验证)。说白了,这个方法就是将简单交叉验证的测试集改为1/k,每个模型训练k次,测试k次,错误率为k次的平均。一般讲k 取值为10。这样数据稀疏时基本上也能进行。显然,缺点就是训练和测试次数过多。 极端情况下,k可以取值为m,意味着每次留一个样例做测试,这个称为leave-one-out cross validation。 如果我们发明了一种新的学习模型或者算法,那么可以使用交叉验证来对模型进行评价。比如在NLP中,我们将训练集中分出一部分训练,一部分做测试。 3 特征选择(Feature selection) 特征选择严格来说也是模型选择中的一种。这里不去辨析他们的关系,重点说明问题。假设我们想对维度为n的样本点进行回归,然而,n可能大多以至于远远大于训练样例数m。但是 我们感觉很多特征对于结果是无用的,想剔除n中的无用特征。n个特征就有种去除情况(每个特征去或者保留),如果我们枚举这些情况,然后利用交叉验证逐一考察在该情况下模型的错误率,太不现实。因此需要一些启发式搜索方法。 第一种,前向搜索:

支持向量机训练算法的实验比较

支持向量机训练算法的实验比较 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:S VM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。并对目前的三种主流算法S VM light,Bsvm与SvmFu在人脸检测、M NIST和USPS手写数字识别等应用中进行了系统比较。 关键词:统计学习理论;支持向量机;训练算法 中图法分类号:TP30116 文献标识码:A 文章编号:100123695(2004)1120018203 Experimental C omparison of Support Vector Machine Training Alg orithms J I Shui2wang,J I Wang2tian (Shanxi Mobile Communication Co.,LTD,Xi’an Shanxi710082,China) Abstract:Support vector learning alg orithm is based on structural risk minimization principle.It combines tw o remarkable ideas:maxi2 mum margin classifiers and im plicit feature spaces defined by kernel function.Presents a com prehensive com paris on of three mainstream learning alg orithms:S VM light,Bsvm,and SvmFu using face detection,M NIST,and USPS hand2written digit recognition applications. K ey w ords:S tatistical Learning T heory;Support Vector Machine;T raining Alg orithms 1 引言 支持向量机(Support Vector Machine)是贝尔实验室研究人员V.Vapnik等人[30]在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也是统计学习理论第一次对实际应用产生重大影响。S VM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于S VM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于S VM方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。但是,到目前为止,还没有看到有关支持向量算法总体评价和系统比较的工作,大多数研究人员只是用特定的训练和测试数据对自己的算法进行评价。由于支持向量机的参数与特定的问题以及特定的训练数据有很大的关系,要对它们进行统一的理论分析还非常困难,本文试从实验的角度对目前具有代表性的算法和训练数据进行比较,希望这些比较所得出的经验结论能对今后的研究和应用工作有指导意义。本文所用的比较算法主要有S VM light[14],Bsvm[12]和SvmFu[25],它们分别由美国C ornell University的Thorsten Joachims教授,National T aiwan U2 niversity的Chih2Jen Lin教授和美国麻省理工学院Ryan Rifkin博士编写的,在实验的过程中,笔者对算法进行了修改。由于这些算法有很大的相似之处,而且训练支持向量机是一个凸函数的优化过程,存在全局唯一的最优解,训练得到的模型不依赖于具体的算法实现,因此,本文在实验过程中不对具体的算法做不必要的区别。实验所采用的训练和测试数据也是目前非常有代表性的,它们大部分由国内外研究人员提供。 2 比较所用数据简介 本文所用的人脸检测数据是从美国麻省理工学院生物和计算学习中心[31](Center for Biological and C omputational Lear2 ning)得到的,这些数据是C BC L研究人员在波士顿和剑桥等地收集的,每个训练样本是一个由19×19=361个像素组成的图像,我们用一个361维的向量来代表每一个图像,每一个分量代表对应的像素值。用于训练的样本共有6977个,其中有2429个是人脸,其余4548个是非人脸;在测试样本集中共有24045个样本,包含472个人脸和23573个非人脸。这是一个两类分类问题。图1是训练样本中部分人脸的图像。 图1 人脸检测数据中部分人脸的图像 M NIST手写数字识别数据是由美国AT&T的Y ann LeCun 博士收集的[32],每个样本是0~9中的一个数字,用28×28= 784维的向量表示。在训练集中有60000个样本,测试集中有10000个样本。图2是训练样本中前100个样本的图像。 USPS手写识别数据是由美国麻省理工学院和贝尔实验室的研究人员共同从U.S.P ostal Service收集的[33],每个样本是0~9中的一个数字,用16×16=256维的向量中的各个分量表示所对应像素的灰度值。训练集中共有7291个样本,测试集中有2007个样本。图3是训练集中部分样本的图像。 ? 8 1 ?计算机应用研究2004年 收稿日期:2003206220;修返日期:2003211212

支持向量机等各种算法和模型的优点和缺点

1决策树(Decision Trees)的优缺点 决策树的优点: 一、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 四、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 五、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 六、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 七、可以对有许多属性的数据集构造决策树。 八、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 一、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 二、决策树处理缺失数据时的困难。 三、过度拟合问题的出现。 四、忽略数据集中属性之间的相关性。 2 人工神经网络的优缺点 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。 3 遗传算法的优缺点 遗传算法的优点: 一、与问题领域无关切快速随机的搜索能力。 二、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。 三、搜索使用评价函数启发,过程简单。 四、使用概率机制进行迭代,具有随机性。 五、具有可扩展性,容易与其他算法结合。 遗传算法的缺点: 一、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码, 二、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。 三、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。 4 KNN算法(K-Nearest Neighbour) 的优缺点

支持向量机算法介绍

支持向量机算法介绍 众所周知,统计模式识别、线性或非线性回归以及人工神经网络等方法是数据挖掘的有效工具,已随着计算机硬件和软件技术的发展得到了广泛的应用。 但多年来我们也受制于一个难题:传统的模式识别或人工神经网络方法都要求有较多的训练样本,而许多实际课题中已知样本较少。对于小样本集,训练结果最好的模型不一定是预报能力最好的模型。因此,如何从小样本集出发,得到预报(推广)能力较好的模型,遂成为模式识别研究领域内的一个难点,即所谓“小样本难题”。支持向量机(support vector machine ,简称SVM )算法已得到国际数据挖掘学术界的重视,并在语音识别、文字识别、药物设计、组合化学、时间序列预测等研究领域得到成功应用。 1、线性可分情形 SVM 算法是从线性可分情况下的最优分类面(Optimal Hyperplane )提出的。所谓最优分类面就是要求分类面不但能将两类样本点无错误地分开,而且要使两类的分类空隙最大。 设线性可分样本集为),(i i y x ,d R x n i ∈=,,,1 ,}1,1{-+∈y ,d 维空间中线性判别函数的一般形式为 ()b x w x g T +=, 分类面方程是 0=+b x w T , 我们将判别函数进行归一化,使两类所有样本都满足()1≥x g ,此时离分类面最近的 样本的 ()1=x g ,而要求分类面对所有样本都能正确分类,就是要求它满足 n i b x w y i T i ,,2,1,01)( =≥-+。 (4)

式(4)中使等号成立的那些样本叫做支持向量(Support Vectors )。两类样本的分类空隙(Margin )的间隔大小: Margin =w /2(5) 因此,最优分类面问题可以表示成如下的约束优化问题,即在条件(4)的约束下,求函数 ())(2 1221w w w w T == φ(6) 的最小值。为此,可以定义如下的Lagrange 函数: ]1)([21),,(1 -+-=∑=b x w y a w w a b w L i T i n i i T (7) 其中,0≥i a 为Lagrange 系数,我们的问题是对w 和b 求Lagrange 函数的最小值。把式(7)分别对w 、b 、i a 求偏微分并令它们等于0,得: i i n i i x y a w w L ∑==?=??10 001 =?=??∑=i n i i y a b L 0]1)([0=-+?=??b x w y a a L i T i i i 以上三式加上原约束条件可以把原问题转化为如下凸二次规划的对偶问题: () ???? ? ???? ==≥∑∑∑∑====-0,,1,0.m a x 1111 21i n i i i j T i j i j n i n j i n i i y a n i a t s x x y y a a a (8) 这是一个不等式约束下二次函数机制问题,存在唯一最优解。若*i a 为最优解,则 ∑== n i i i i x y a w 1* * (9) *i a 不为零的样本即为支持向量,因此,最优分类面的权系数向量是支持向量的线性组合。

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

相关主题