搜档网
当前位置:搜档网 › 近世代数9

近世代数9

近世代数9
近世代数9

题 号 一 二 三 四 五 六 是否缺考

题 分 15

20

15

10

20

20

得 分

《近世代数》试卷

一、填空题(每空2分,共20分)

1、设G =)(a 是15阶循环群,则G 的子群的个数为_________.

2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____.

3、4次对称群4S 的阶是___,在4S 中,(134)(12)=_______,(1324)1

=_______,元素(1234)的阶

是______.

4、在剩余类环18Z 中,[11]+[8]=_______,[5][6]=_______.

5、整数环Z 上的一元多项式环][x Z 中的理想_______不是一个主理想.

6、_______是整数环Z 的一个商域.

二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分)

1、( )一个阶是13的群只有两个子群。

2、( )交换群的子群是不变子群。

3、( )全体整数的集合对于普通减法构成一个群。

4、( )无零因子环的特征不可能是2007。

5、( )群G 的指数是2的子群一定是不变子群。

6、( )模15的剩余类环15Z 是域。

7、( )在一个环中,若左消去律成立,则右消去律成立。

得分 评卷人 复查人

得分 评卷人 复查人

8、( )除环的中心是域。 9、( )欧氏环一定是主理想整环。 10、( )无零因子环的同态象无零因子。

三、解答题(第1题15分,第2,3题各10分,共35分)

1、设)}13(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是

3S 的不变子群?为什么?

得分 评卷人 复查人

Z的所有理想。

2、求模18的剩余类环

18

3、在整数环Z中,求由2007和5生成的理想(2007,5)。

四、证明题(第1,2题各10分,第3题5分,共25分)

1、设~是整数环Z 上的模5同余关系,试证明:~是Z 上的一个等价关系并写出这个等价关系所决定的等价类。

2、设,1R 2R 都是环,f 是环1R 到2R 的满同态映射,B 是2R 的理想,试证明:

})(,|{1B a f R a a A ∈∈=是1R 的理想。

得分 评卷人 复查人

3、证明:非零整环R只有有限个理想当且仅当R是域。

近世代数第四章 环与域题解讲解

第四章环与域 §1 环的定义 一、主要内容 1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环. 2.环中元素的运算规则和环的非空子集S作成子环的充要条件: 二、释疑解难 1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即 就是说,在环的定义里要留意两个代数运算的顺序. 2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).

1. 2.

3. 4. 5.

6. 7. 8.证明:循环环必是交换环,并且其子环也是循环环. §4.2 环的零因子和特征 一、主要内容 1.环的左、右零因子和特征的定义与例子. 2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数. 这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶. 3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然. 但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素??? ? ??0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵 ),(00Q y x y x ∈???? ? ??

近世代数 第17讲

第17 讲 §交换律、单位元、零因子、整环. (Commutatine Law,unity,divisor of zero and integral domain) 讲本讲教学目的和要求:由环的定义,环{}?+,,R是在某集合R上定义了两种代数运算,而这二个运算是通过分配律建立了彼此的联系.很明显,环中的这两种运算立法机关的要求是很不平衡的.特别是环中的乘法只要求满足半群—乘法封闭和结合律.所以为环在乘法方面留下了很大的余地,一旦某些乘法方面再满期点头其它一些条件,则变成了一些特殊的类型的环.本节主要介绍交换环有单位元的环,没有零因子的环和整环,扩大环论的知识面.在学习方面要求掌握: 1、交换环仅是对乘法而言,可交换的一种环.由此可得到什么新结果. 2、有单位元的环(习惯上称心内幺元)具有的一些重要性质. 3、零因子的概念以及没有零因子与满足消去律的等价性. 4、什么是整环,什么是除环和域,它们之间的差别和联系. 本讲的重点和难点:零因子是一个新的概念,要真正了解并掌握它不是件易事.而”没有零因子”与”有消去律”之间的等价性的证明是难点. 一.交换环

设},;{?+R 为环,已知R 关于加法”+”而言,已可以交换,至于对于乘法”·”,R 也有满足交换律的可能(比如数环,多项式环等),所以我们有 定义1.如果环},;{?+R 关于乘法满足交换律:R b a ∈?, 都有ba ab =,那么称此环是交换环. 例1.易知,在§1中所介绍的所有数环,一元多项式][x F ,和剩余类环m Z 都分别是变换环.但n 价矩阵环)(F M n 不是变换环. 例2.设环},;{?+R 的加法群是循环群,那么环F 必是变换环. 证明: };{+R 是循环群,即}|{)(R n na a R ∈== ∴,,,ma y na x R y x ==?∈? ∴))((ma na xy = 22][)]([nma ma n ma a n ===, 而 ))((na ma yx = 222][)]([nma mna na m na a m ==== ∴yx xy =. 明示1.在第二章中已知:每个阶5≤的群必是交换群.而一旦环R 中元素个数3≤,那么R 必是变换环. 交换环的性质:设R 是交换环.R b a ∈?,.那么 (1)n n n b a ab N n =∈?)(, (2) R 中满足:222 2)(b ab a b a +±=±,))((22b a b a b a -+=- ))(()(2233b ab a b a b a +±=± (3) R 中满足二项式公式: n n n n n n n n n n b ab C b a C b a C a b a +++++=+----1122211)( 二. 无零因子环

近世代数9

题 号 一 二 三 四 五 六 是否缺考 题 分 15 20 15 10 20 20 得 分 《近世代数》试卷 一、填空题(每空2分,共20分) 1、设G =)(a 是15阶循环群,则G 的子群的个数为_________. 2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____. 3、4次对称群4S 的阶是___,在4S 中,(134)(12)=_______,(1324)1 =_______,元素(1234)的阶 是______. 4、在剩余类环18Z 中,[11]+[8]=_______,[5][6]=_______. 5、整数环Z 上的一元多项式环][x Z 中的理想_______不是一个主理想. 6、_______是整数环Z 的一个商域. 二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分) 1、( )一个阶是13的群只有两个子群。 2、( )交换群的子群是不变子群。 3、( )全体整数的集合对于普通减法构成一个群。 4、( )无零因子环的特征不可能是2007。 5、( )群G 的指数是2的子群一定是不变子群。 6、( )模15的剩余类环15Z 是域。 7、( )在一个环中,若左消去律成立,则右消去律成立。 得分 评卷人 复查人 得分 评卷人 复查人

8、( )除环的中心是域。 9、( )欧氏环一定是主理想整环。 10、( )无零因子环的同态象无零因子。 三、解答题(第1题15分,第2,3题各10分,共35分) 1、设)}13(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是 3S 的不变子群?为什么? 得分 评卷人 复查人

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

近世代数复习

一、选择题(每题2分,共16分) 1.若(),G a ord a n ==,()则下列说法正确的是 2.假定φ是A 与()A A A =Φ间的一一映射,A a ∈,则)]([1a φφ-和)]([1a -φφ分别为 3.若G 是群,,()18,a G ord a ∈=则8()ord a = 4.指出下列那些运算是二元运算 5.设12,,,n A A A 和D 都是非空集合,而f 是12n A A A ???到D 的一个映射,那么 6.设是正整数集合N +上的二元运算,其中max(,)a b a b =,那么在Z 中 7.在群G 中,G b a ∈,,则方程b ax =和b ya =分别有唯一解为 8.设H 是群G 的子群,且G 有左陪集分类{,,,}H aH bH cH .如果[:]6G H =,那么G = 9.设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 10.设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的 11.设Z 15是以15为模的剩余类加群,那么,Z 15的子群共有( )个。 12、G 是12阶的有限群,H 是G 的子群,则H 的阶可能是 13、下面的集合与运算构成群的是 14、关于整环的叙述,下列正确的是 15、关于理想的叙述,下列不正确的是 16.整数环Z 中,可逆元的个数是 17. 设M 2(R)=????????? ??d c b a a,b,c,d ∈R ,R 为实数域??? 按矩阵的加法和乘法构成R 上的二阶方阵环,那么这个方阵环是 18. 设Z 是整数集,σ(a)=?????+为奇数时当为偶数时 当a ,2 1a a ,2a ,Z a ∈,则σ是R 的 19、设A={所有实数x},A 的代数运算是普通乘法,则以下映射作成A 到A 的一个子集 的 同态满射的是( ). 20、设 是正整数集Z 上的二元运算,其中{}max ,a b a b =(即取a 与b 中的最大者),那么 在Z 中( ) 21.设3S ={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则3S 中与元(1 2 3)不能交换的元的个数是( ) 22、设(),G 为群,其中G 是实数集,而乘法:a b a b k =++,这里k 为G 中固定的常数。那么群(),G 中的单位元e 和元x 的逆元分别是( ) 23、设H 是有限群G 的子群,且G 有左陪集分类{},,,H aH bH cH 。如果H =6,那么G 的阶G = 16.整数环Z 中,可逆元的个数是( ). 24、设12:f R R →是环同态满射,()f a b =,那么下列错误的结论为( )

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数之我见

一对课程的看法: 1作用与意义 近世代数的理论和方法不仅在数学理论本身中占有及其重要的地位,而且在其他学科中也有着广泛的应用,如理论物理、计算机科学等。其研究的方法和观点,对这些学科产生了越来越大的影响。 本课程旨在使学生对近世代数的基础理论和基本的思想、方法有一个初步的了解,为学生进一步的学习打下必要的基础。要求学生能熟练掌握群、环、域的基本理论,包括其定义和基本的性质,并对模的概念有所理解。要求学生对数学中的公理化思想有初步认识。 2.本课程的主要内容 本课程讲授四类典型的代数系统:集合与运算、群、环和域。其内容包括: 群的各种定义,循环群,n阶对称群,变换群,子群与陪集,Lagrange定理,不变子群的定义及其性质,群同态和同构基本定理,能够计算群元素的阶; 环、域、理想、唯一分解环的定义,环中的可逆元,零因子、素元的定义,判别唯一分解环的方法。 3.教学重点与难点 重点:群、正规子群、环、理想、同态基本原理。 难点:商群、商环。 二、对教法的看法: “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法:

近世代数的发展历史

近世代数的发展历史 代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科.简单地说,代数学是研究代数结构的,而近世代数--抽象代数是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性. 19世纪中叶以后,各种形形色色的几何学象雨后春笋般涌现出来,需要进行总结分类,而这时群论又是一个热门话题,其影响渗透到数学的各个领域,使数学家们感到,全部数学不过是群论的某个方面,而不是什么别的东西.在这种情况下,出现了克莱因的“爱尔兰纲领”. 克莱因(1849-1925)是德国数学家.他在自己和李关于群论方面研究工作的基础上,着手寻找刻划各种几何特征,其基本观点是每种几何都由变换群所刻划,并且每种几何所要做的实际就是研究变换群下的不变量.或者,一个几何的子几何是在原来变换群的子群下的一族不变量,在此定义下相当于给定变换群的几个的所有定理仍然是子群几何中的定理.克莱因用变换群的观点对几何学进行分类,在这种观点下,几何学被看作是研究图形(某种元素的集合)对某种变换群的不变性之数学分支,克莱因这种研究几何的方法,完全避开直观图形而诉诸代数结果,确实是一项伟大的转折.当克莱因发表这种见解时,遭到其老师普吕克的反对,斥其大胆妄为.克莱因因此离开哥廷根大学,而到爱尔兰根大学,按照惯例他向大学的哲学教授会和评议会作了专业就职演说.这个演说通常称为“爱尔兰根纲领”,在讲演中克莱因阐述了自己的观点,对后世几何有深远的影响. 对五次和五次以上方程寻求根号群的长期失败,最终引导到19世纪20年代群论的诞生.其创立者是法国青年数学家伽罗华.群论的出现使代数学从古典代数方程论为中心转变为以研究各种代数结果的性质为中心,向着代数数论、超复数系、线性代数、环论、域论等方面发展. 伽罗华,1829年3月第一篇数学论文在《纯粹与应用数学年鉴》上发表,同时开始研究高次方程根号解问题,他提出制定一个已知方程解是否可用根式表示的判别原则.伽罗华为研究方程论而发展起来的方法很可能比他在方程论中的发现更引人注目.他的研究导师了群论理论的诞生. 伽罗华在爱情纠纷引起的一场荒谬战斗中丧了命.在进行决斗前夕,伽罗华曾写信给其朋友,写道:“我请求我的爱国朋友不要责备我不是为自己的祖国而献出生命.……苍天做证,我曾用尽办法试图拒绝这场战斗,只是出于迫不得已才接受了挑战.”“别了,我为公共福利已经献出了自己的大部分生命.”伽罗华在信中还请求朋友将自己的研究成果向德国数学家高斯和雅可比求教,“但不谈论定理正确与否;而是就这些定理的重要性发表他们自己的见解.此后我希望某些人将会发现清理这种一团混乱的状况是有益的.” 伽罗华实质上创立了群的研究,他是最先(1832年)在严格定义下用“群”(group)这个字的. 阿贝尔,在克里斯蒂大学当学生时,他认为他已经发现了如何用代数方法解一般五次方程,但不久自己纠正了这种想法,1824年发表了小册子谈及此事,阿贝尔在其早年论文中证明了用根式解一般五次方程的不可能性,于是这个曾困绕从邦别利到韦达等数学家的难题最终被解决了,在抽象代数中,交换群现在被称为阿贝尔群. 戴德金是德国数学家,就学与哥廷根大学,是高斯和狄利克雷学生.他的成就主要在代数理论方面,他研究了任意域、环、群、结构及模等问题.特别是引入环的概念,并给理论子环下了一般性的定义.代数数域中的戴德金函数,实数论中的戴德金分割,与韦伯合著的代数函数理论,自然数理论都是其著名的贡献. 庞加莱在一个研究领域中从未停留很长时间,并且喜欢敏捷地从一个领域跳到另一个领域,他论述微分方程的博士论文涉及存在定理.这一著作引导他去发展自守函数理论,尤其是所谓Zeta-Fuchsian函数:庞加莱证明,他能用来解带有代数系数的二阶线性

近世代数讲义(电子教案)

《近世代数》课程教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数1

第一章 §1.1集合 §1.2映射与变换 教学内容:集合,子集,集合相等的概念 集合关系及运算的定义和性质 映射,单射,满射,双射,逆映射的定义及例子 变换,置换等的定义及例子 映射的象及逆象的定义,映射的乘法 教学重点:集合的关系及运算,映射变换的定义,映射的乘法在很多课程中都学过有关集合的知识,一些基本的概念和结论不再重复,这里,只复习一下不太熟悉的知识,并在符号上做一个统一的规定。 1、用Z表示整集合,Z*表示非零整数集,用ψ表示有理数集,ψ*表示非零有理数数集等。 Z+ ,ψ+…R,C… 2、AB表示A是B的子集,A=B或AB AB表示A是B的真子集,即B中有不存在A的元素 AB表示A不是B的子集 AB表示A不是B的真子集 A=BAB且BA 3、如果集合A含有无穷多个元素,则记为=,如果A含有n个元素,则记为=n。(A的阶),有+=+ 4、称集合A-B={aaA, aB}为集合A与B的差集。易知有A-B=A 5、集合A有很多子集,将A的所有子集放在一起(包括空集)也组成一个集合,称为A的幂集,记作P(A)。=(=n) 映射是函数的推广,函数的定义中要求有两个数集,而映射中,是一般的集合 6、定义:设A,B是两个集合,如果有一个法则,他对于A中每个元素,在B中都有一个唯一确定的元素y与它对应,则称为从A到B的映射。这种关系常表示为 :AB 或:xy 或y=(x) xy 且称y为x在之下的像,称x为y在之下的原像或逆像。 由定义可知,映射必须满足三个条件: ①A中每个元素都有像,②A中元素的像是唯一的,③A中元素的像在B里。 例:P6例1-6

例1.不是映射,不满足①例2.不是映射,不满足②例3.不是映射,不满足③ 例4.是映射,不单不满例4.是映射,不单,满例6.是映射, 单不满 7、映射是函数概念的推广,是对应法则,A是定义域,B包含值域,根据B是否与值域相等,可将映射区分为是否是满射。A中不同元 素的像可能相同,也可能不同,据此可区分映射是否为单射。 定义:设为A到B的一个映射,如果B中每个元素在A中都有逆 像,则称为A到B的一个满射。如果A 中不同的元素在B中的像也不同,则称是从A到B的一个单射。如果既是满射又是单射,则称是从A到B的一个双射,或一一映射。 例:P7,例 4-8 例7,双射,例8,满射,不单。 8、设有映射:AB,A,B.用()表示中所有元素在之下的像的全体组成的集合,称为在之下的像,()B。用()表示中所有元素在之下的逆像全体组成的集合,称为在之下的逆像,()A。 易知:是满射(A)=B. 9、设:AB是双射,(思考,为什么?),则:BA 也是一个映射,且为双射(为什么?), xy=(x) yx 称为的逆映射。 注意:双射才有逆映射。 定理:设A,B是两个有限集合,且=,是A到B的一个映射,则是单射是满射是双射 证明:略。 10、设б与都是A到B的映射,如果xA,都有б(x)=(x),则称б与相等,记作б= 11、设:AB б:C 则AC x(x) y(y), x(x)((x)) 是一个A到C的映射,记为,即:AC 并称为与的合成或乘积。 x((x)) 12、集合A 到自身的映射,叫做集合A的一个变换,类似可定义单变换,满变换,双射变换(一一变换)等。 将集合A每个元素映为自身的变换,称为A的恒等变换,:AB 它是一个一一变换。 xx,

近世代数 第11讲

第11 讲 §8 子群(Subgroups) 本讲教学目的和要求:对于群这个新的教对象,应该如何入手,从哪几个方面去研究它,这一直是我们所关心的问题。概括些说,对群的研究,可分为互相联系的两个方面:群的结构和群的表示。与集合比较,群就是多了一个运送(正是这个运算才给群带来了生命力),所以群论研究的初步可以仿照集合论去讨论,只是关系群的一切讨论都要围绕这个运送展开,子群是非常重要的概念,了解子群是了解群的结构的一个重要渠道,本讲中要求: 1、能判断子群的构成和掌握彼此等价的判断条件 2、有限群的判断定理 3、子群(集)的乘积和生成子群的概念 4、循环群的子群所具有的特性 本讲的重点和难点:为了更好的学习下一讲内容,本讲中增添了部分内容(也都是群论中最基本的内容)。循环群的子群的性质;子群之积的性质,…都是本讲中的要点和难点,通过这方面的训练可使我们对子群有一个更深入的了解。生成子群的概念在本教材中谈的很少,本讲中也作了适当地加强。结合高等代数中生成子空间的理论,会使我们有一种温故而知新的感觉。此外,本讲中还引入了中心,中心化子,正规化子等概念,以便拓宽知识量。

一、 子群的定义及判定条件 定义1、设G 是一个群,而φ≠?H G H ,,如果H 关于G 中的运算本身也能作成群,则称H 是G 的一个子群记为 例 1 设G 为任意一个群,那么由G 的单位元组成子集}{e ,自然有G e ≤}{,另外G 本身也有G G ≤,所以G 一般有两个子群,统称它们为的G 平凡子群。如果G 除了平凡子群外还有其他子群,那就称为G 的真子群,记为G H <。 例2 Z 是整数加群,而一切偶数构成的集合为Z 2,其中: },4,2,0,2,4,{2 --=Z ,那么关于整数的加法有Z Z ≤2 明示1:任取一个整数m ,那么}|{Z n n m mZ ∈??=为一切m 的倍数构成的集合,可知Z mZ ≤. 例3 设}0|||)({≠∈=A R M A L n 表示一切可逆n 阶方阵组成的集合,用 矩阵通常的乘法可知: ? L 中方阵对乘法封闭(任二个n 阶可逆阵之积仍可逆) ? L 中方阵满足乘法结合律 ?单位元为E ?A L A ?∈.的逆元为A A —1-的逆阵 所以L 是个群。 若????? ???????= k k k kE 令为L 中的n 阶数乘阵,那么}0,|{≠∈?=k R k kE K 是L 的非空子集,且必有L K ≤。 例4 设)}132(),123(),23(),13(),12(),1{(3=S 为三次对称群,令)} 12(),1{(=H

近世代数

1.1集合 1、B 包含于A ,但B 不是A 的真子集,这个情况什么时候能出现? 解 由题设及真子集定义得,A 的每一个元都属于B ,因此A 属于B ,B 属于A ,得A=B 。所以上述情形在A=B 的情况下出现。 2、假设A 包含于B,A ∩B=? A ∪B=? 解 (i )由于A 包含于B ,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的公共元,因而由交集的定义得 A 包 含于A ∩B ,但显然有A ∩B 包含于A ,所以A ∩B=A (ii )由并集的定义,A ∪B 的每一个元都属于A 和B 之一,但A 包含于B ,所以A ∪B 的每一元都属于B :A ∪B 包含于B 。 另一方面B 包含于A ∪B ,所以A ∪B=B 。 1.2映射 1、A={1,2,……,100}。找一个AxA 到A 的映射。 解 用(a ,b )表示AxA 的任意元素,a 和b 都属于A 。按照定义做一个满足要求的映射即可,例如 Ф: (a ,b )→a 就 是这样的一个,因为Ф替AxA 的任何元素(a ,b )规定了一个唯一的象a ,而a ∈A 。 2、习题1的映射下是不是每一个元都是AxA 的一个元的象? 解 映射Ф之下,A 的每一个元素都是AxA 的一个元的象,因为(a ,b )中的a 可以是A 的任一元素。 1.3 代数运算 1、A={所有不等于零的偶数}。找一个集合D ,使得普通乘法是AxA 到D 的代数运算。是不是找得到一个这样的D ? 解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数。所以取 D={所有不等于零的有理数}, 普通除法就是一个AxA 到D 的代数运算。 2、A={a,b,c}. 规定A 的两个不同的代数运算。 解 (i )用运算表给出A 的一个代数运算: o 按照这个表,通过o ,对于A 的人和两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A 。所以o 是A 的一个代数运算。 这个代数运算也可以用一下方式来加以描述o : (x ,y )→a=x o y 对一切x ,y ∈A (ii)同理o : (x ,y )→x=x o y 对一切x ,y ∈A 也是A 的一个代数运算。(列表亦可) 1.4 结合律 1、A={所有不等于零的实数}。O 是普通除法: a o b=a / b 这个代数运算适不适合结合律? 解 这个代数运算o 不适合结合律。例如,当 a = 4, b = c = 2 时 ( a o b )o c = (4o2)o2 =4/2 o2=2/2=1 a o(b o c) = 4o(2o2) =4 o(2/2)=4/1=4 所以 当a ,b 和c 取上述值时 ( a o b )o c ≠ a o(b o c)。 2、A={所有实数}。代数运算o :(a ,b)→a+2b= a o b 适不适合结合律? 解 略 3、A={a,b,c}. 由表 给出的代数运算适不适合结合律? 解 所给代数运算o 适合结合律。为得出结论,需对元素a ,b ,c 的27(=33)种排列(元素允许重复出现)加以验证。

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数第3讲

第 3 讲 §7—9 一一映射,同态及同构(2课时) (Bijection Homomorphism and Osomorphism ) 本讲教学目的和要求:通过了解双射,同态及同构的理论,为后继课程中学习群同态,群同构(群第一、二同构定理)环同态,环同构理论做准备。具体要求: 1、在第一讲的基础上,对各类映射再做深入的研究。 2、充分了解双射(一一映射)的特性以及由此引导出的逆映射。 3、两个代数系统的同态的概念,尤其是同态的满射所具有的性质。 4、掌握同构映射的实质,为以后教学内容奠定基础, 本讲的重点和难点:本讲的重点在于对同态映射定义的了解;由同态满射引导的一系列性质及同构映射本质的掌握。而对双射及自身的逆映射之间的关系学生不易把握,需要认真对待。 本讲的教法和教具:在多媒体教室使用投影仪。在教学活动中安排时间让学生展开讨论。 本讲思考题及作业:本讲思考题将随教学内容而适当地展开。作业布置在本讲结束之后。 一、一一映射 在第1讲中,已对各类映射作了系列性的介绍,这里只对重要的

一一映射作重点的讨论。 定义1、设?是集合A 到A 的映射,且?既是单的又是满的,则称?是一个一一映射(双射)。 例1:},4,2,0,2,4,{2},2,1,0,1,2,{: --=→--=Z Z ?, 其中Z n n n ∈?=,2)(?,可知?显然是一个双射。 注意:Z 与偶数集Z 2之间存在双射,这表明:Z 与它的一个真子集Z 2一样“大”。 思考题:从例1中得知:一个无限集与其的某个真子集一样“大”。这是否可作为无限集都有的特性?即我们是否有如下的结论:A 为无限集的充要条件是A 与其某个真子集之间存在双射。 定理1:设?是A 到A 的一个双射,那么由?可诱导出(可确定出)A 到A 的一个双射1-?(通常称1-?是?的逆映射) 证明:由于?是A 到A 的双射,那么就A 中任一个元素a ,它在A 中都有逆象a ,并且这个逆象a 是唯一的。利用?的这一特点,则可确定由A 到A 的映射1-?: a a A a A A =∈?→--)(,,:11??,如果a a =)(?,由上述说明,易知1-?是映射。 1-?是满射:A a ∈?,因?是映射a a A a =∈??)(,?使,再由1-?的定义知a a =-)(1?,这恰说明,a 是a 在1-?下的逆象。由a 的任意性,知1-?是满射。 1-?是单射:2121,,a a A a a ≠∈?若由?是满射21a a 及?的逆象分别是 22111121)(,)(,a a a a a a ==--??即及,又?是单射21a a ≠?,

近世代数第9讲

置换群(pormutation group) 本讲的教学目的和要求:置换群是一种特殊的变换群。换句话说,置换群就是有限集上的变换群。由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。这一讲主要要求: 1、弄清置换与双射的等同关系。 2、掌握置换—轮换—对换之间的联系和置换的奇偶性。 3、置换的分解以及将轮换表成对换之积的基本方法要把握。 4、对称群与交错群的结构以及有限群的cayley定理需要理解。 本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。 注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。所以,一般研究抽象群用的还是直接的方法。并且也不能一下子把所有群都不得找出来。因为问题太复杂了。人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。对每个群类进行研究以设法回答上述三个问题。可惜,人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解

决。 变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。 一. 置换群的基本概念 定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A 是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。 有限集合A 的若干个置换若作成群,就叫做置换群。 含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。通常记为n S . 明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。 现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。 即π: 1a α2a ,2a α3a , 3a α1a ,利用本教材中特定的表示方法有:21a a =π ,32a a =π,13a a =π . 由于映射中只关心元素之间的对称关系.而不在乎元素 的具体内容.故可证{}3 , 2 , 1  =A .故此. π:1α2,2α3,3α1.稍做修改: π:2 1↓ 32↓ 1 3 ↓ ? π=??? ? ??132321 .用π=??? ? ??132321 来描述A

近世代数 第21讲

第21 讲 §6. 多项式环 (Rings of polynomials ) 本讲的教学目的和要求:在高等代数中,已经建立了数域F上的多项式环的一般理论,但是在处理某些问题时常会遇到诸如整系数多项式,矩阵系数多项式(譬如 —矩阵)等环上的多项式,它们与数域的多项式相比,有很多本质上的差异故此,有必要讨论环上多项式环的一般理论,这正是本讲的目的.为此对学习本讲,提出如下要求: 1、明确代数元和超越元的概念以及什么是R上的关于超越元的多项式歪.(本教材称超越元为半定元—与高等代数中的称呼一致) 2、超越元(半定元)的存在性定理和多项式环存在性定理的证明需要弄懂. 3、对多元多项式的本质上的理论问题需要清楚. 本讲的重点和难点: 本讲是高等代数中多项式环(定义在数域上)的推广,是本章中众多类型中的“另类”.由于环的“型”不同,故研究的方法也不同,这是难点之一。如何清醒地认识到不能直接用“高代”的理理论直接套用,是关键。而本讲的重点“存在性定理”的证明。

一、多项式环的定义。 设 R 是一个含有单位元 1R 的可变换环 。 又设R 是0R 的子环且R R ∈0 1,现考察0R 中含R 及 任取定元素0R ∈α的最小子环: []()? ?????∈==∑是非负整数n R a a a f R i i i ,αα 显然每个()0100 R a a a a f n n n i i i ∈+++==∑=αααα . 定义 1. 如上形式的()αf 每个元素都叫做R 上关于α的一个多项 式,而每个i a 都叫做该多项式()αf 的系数. 下面我们希望能将[]αR 做成一个环.事实上([]αR 是0R 的一个 子环) ()()∑∑====?n j j j m i i i b g a f 0 ,α ααα, 定义规则如下:(当n m ) ()()()∑=+=+n j j j j b a g f 0 ααα, 必定假设 021====++n m m a a a . ()(),0 00∑∑∑+====? ??? ????? ??=?m n k k k n j j j m i i i C b a g f ααααα其中

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算和整数 3.1.1 集合 集合是指一些对象的总体,这些对象称为集合的元或元素。“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不是集合A 的元”。 设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 是B 的子集,记作B A ?。若B A ?且A B ?,即A 和B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ?。 不含任何元素的集合叫空集,空集是任何一个集合的子集。 集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。例如: $ {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ; 非零整数集合{}{} ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{} ,3,2,1=+ Z ; 有理数集合Q ,实数集合R ,复数集合C 等。 —

相关主题