搜档网
当前位置:搜档网 › 克莱因瓶及莫比乌斯带的参数方程【2改】

克莱因瓶及莫比乌斯带的参数方程【2改】

克莱因瓶及莫比乌斯带的参数方程【2改】

克莱因瓶的参数方程

()()()()()()()()()()()()()()()()()()()()46243572,cos *15

3cos 30sin 90cos sin 60cos sin 5cos cos sin 1,sin *15

3cos 3cos cos 48cos cos 60sin 5cos cos sin 5cos cos sin 80cos cos sin 80cos cos sin 2,35cos sin sin 15

x u v u v u u u u u u v u y u v u v u v u v u u v u u v u u v u u v u z u v u u v u =-

-+-+=-

-+--+--+=

+∈[][]0,,0,2v ππ∈

莫比乌斯带参数方程

()()()()(),1cos cos 22,1cos sin 22,sin 22

02,11

v u x u v u v u y u v u v u z u v u v π??=+ ??

???=+ ???

=-≤≤≤≤

直线参数方程t的几何意义44095

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

张欣---神奇的莫比乌斯环教案

神奇的莫比乌斯环(数学游戏课) 活动目标: 1、在动手操作中学会制作莫比乌斯环。 2、通过操作、思考发现并验证莫比乌斯环的特点。 3、在游戏中感受数学的无穷魅力,拓展数学视野,进一步激发学生学习数学的兴趣和学习数学的热情。 活动重难点: 制作莫比乌斯环、认识莫比乌斯环的特点 活动准备: 长方形纸条,剪刀,胶棒、水彩笔、莫比乌斯环若干 活动过程: 一、创设情境,引出学习需求、激发兴趣 喜欢听故事吗? (课件)古时候有一个小偷偷了一个农民的东西,被送到县衙,县官发现小偷是自己的儿子。就在一张纸条的正面写了:小偷应当放掉;在纸的反面写了:农民应当关押。县官将纸条交给执法官让他去办。执法官不想冤枉农民,又不敢擅自修改县官的命令。怎么办呢?他想到了一个好主意。他没有更改字条上的任何一个字,而是用这个长方形的纸条做了一个纸环,接着大声念道--------“应当关押小偷应当放掉农民”小偷最终受到了惩罚。 你知道这是怎么回事儿吗? 二、经历探究的过程,认识“莫比乌斯环”特点 (一)猜想---实践---得到结论 1.纸条 (1)同学们桌子上就有这样的纸条,我们来观察一下,几条边?几个面?

(2)现在我们一起用红笔在它的上面这样画一条线留下一个痕迹,要想在另一面也画一条线留个痕迹,必须先做个什么动作?对,我们得翻一下才能做到。这一面我们用绿色画线留痕迹。 2.普通纸环 用这样的纸条可以做成不同的纸环,我们一起来看看。 (1)拿出这样的纸环,认识吗?它有几条边?几个面呢? (2)执法官做的是不是这样的纸环呢? 3.莫比乌斯环 (1)制作中提出假想 用纸条还可以做成这样的纸环呢,想不想做一个?老师带着做。你发现了什么?你有什么想法?光猜想不行,我们要实践验证验证。 (2)实践中得出特点 2人一起验证。小组的同学展示。 猜猜它有几条边? 2人一起验证。小组的同学展示。 (3)判断 执法官做的是不是这样的一个纸环呢? (二)了解“莫比乌斯环”的由来 (课件)德国人莫比乌斯--------------------他感到非常惊讶! 如果你是他,你会继续做些什么呢?莫比乌斯带着好奇进行了继续的研究,发现了这种纸环的更多奥秘。人们为了表彰他就用他的名字为这种纸环命名了。 三、了解莫比乌斯环的应用 1.猜测

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

椭圆的参数方程中参数的几何意义

椭圆: 椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。 椭圆是圆锥曲线的一种,即圆锥与平面的截线。 椭圆的周长等于特定的正弦曲线在一个周期内的长度。 椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点 相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。

参数方程的意义

4.4.1 参数方程的意义 学习目标:弄清曲线参数方程的意义;能选取适当的参数,求简单曲线的参数方程 学习重点:曲线参数方程的概念及其求法 学习难点:曲线参数方程的概念及其求法 学习过程: 活动一:创设情景 探究:一架救援飞机在离灾区地面500m 高处以100m /s 的速度作水平直线飞行. 为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢? 分析:即求飞行员在离救援点的水平距离多远时,开始投放物资? 活动二:参数方程的概念 一般地,在平面直角坐标系中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数???==)()(t g y t f x ;反过来,对于t 的每个允许值,由函数式???==) ()(t g y t f x 所确定的点 ),(y x P 都在曲线C 上,那么方程? ??==)()(t g y t f x 叫做曲线C 的参数方程,变量t 是参变数, 简称参数. 注:1.关于参数几点说明: 参数是联系变数x ,y 的桥梁, (1)参数方程中参数可以是有物理意义, 几何意义, 也可以没有明显意义 (2)同一曲线选取参数不同, 曲线参数方程形式也不一样 (3)在实际问题中要确定参数的取值范围 2.参数方程的意义 参数方程是曲线上的点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与普通方程同等地描述、了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点P 的横坐标和纵坐标. 活动三:求曲线的参数方程 例1已知曲线C 的参数方程是???+==1 232t y t x (t 为参数). (1)判断点)1,0(1M ,)4,5(2M 与曲线C 的位置关系; (2)已知点),6(3a M 在曲线C 上,求a 的值.

神奇的莫比乌斯带

神奇的莫比乌斯带 一.教学目标 1. 引导学生在对比探究中认识“莫比乌斯带”,并会制作“莫比乌斯带”。 2. 组织学生动手操作,验证交流,体验“猜想—验证—探究”的数学思想方法。 3. 让学生经历猜想与现实的冲突,感受“莫比乌斯带”的神奇变化,培养探究精神。 二.教学准备 剪刀,水彩笔,长方形纸条 三.教学过程 1.魔术引入 出示图片——刘谦——用纸条将两个环形针连到一起。 活动一:认识“莫比乌斯带”。 一、制作圆形纸带。 1.观察:一张普通长方形纸片,它有几条边?几个面? 2.思考:你能把它变成两条边,两个面吗? 3.操作:学生动手,取长方形纸条,制作成圆形纸圈。 4.验证:用手摸一摸,感受两条边,两个面。 5.再思考:你能把它的边和面变更少一些,把它变成一条边,一个面吗? 二、制作“莫比乌斯带”。 1.操作:学生动手,尝试制作“一条边,一个面”的纸圈。 2.介绍做法,强调:一头不变,另一头扭转180度,两头粘贴。 3.验证: ⑴质疑:这个纸圈真的只有一条边,一个面吗?怎么验证“一条边,一个面”? ⑵教师指导验证方法,学生动手验证。 ⑶交流验证结果:真的只有一条边,一个面。 ⑷动态展示,加深认识。 ⑸感受:用手摸一摸它的面,感受一下,只有一条边,一个面。 4.小结: ⑴介绍:这个“怪圈”是德国数学家莫比乌斯在1858年研究时发现的,所以人们把它叫做“莫比乌斯带”。 ⑵出示课题:“莫比乌斯带”。

活动二:研究“莫比乌斯带”。 一、剪“莫比乌斯带”(二分之一) 1.猜一猜:如果沿着“莫比乌斯带”的中间剪下去,剪的结果会怎样? ①一分为二成两个圈。②断开成两段。 2.剪一剪:学生动手,沿着“莫比乌斯带”中间剪。验证猜测。 3.交流:沿着纸带中间剪下去,会变成一个两倍长的圈。 4.揭密:为什么没有一分为二变成两个圈?而是变成一个两倍长的圈? 5.质疑:这个大圈还是“莫比乌斯带”吗?学生动手验证。 二、剪“莫比乌斯带”(三分之一) 1.猜一猜:如果我们沿着三等分线剪,剪的结果又会是怎样呢? ①变成一个大圈。②两个套在一起的圈。 2.剪一剪:取长方形纸片,再做一个“莫比乌斯带”,学生动手,验证猜测。 3.交流:发现变成一个大圈套着一个小圈。 4.揭密:和你的猜测一样吗?为什么会变成一个大圈套着一个小圈? 活动三:介绍“莫比乌斯带”在生活中的应用。 1.交流“莫比乌斯带”的理念在生活中的应用。 2.延伸:后来科学家们通过对莫比乌斯带的深入研究,就慢慢形成了一门新的学说——拓扑几何学。 活动四:自由剪“莫比乌斯带”。 如果不是旋转180度,而是更多的度数,或者沿四分之一,五分之一的宽度剪开“莫比乌斯带”,又会有什么新的发现呢?大家不妨同桌先猜猜,再动手试试,最后验证你们的猜测! 活动五:课堂小结。 这节课你学到了什么?有什么感受?上了这节课对你今后的学习有什么帮助? 四.板书设计 神奇的莫比乌斯带 4条边,2个面二分之一一个大圈 2条边,2个面三分之一一个大圈,一个小圈 1条边,1个面四分之一…

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

直线的参数方程的几何意义

课 题 直线的参数方程的几何意义 教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析 与直线的参数方程有关的典型例题 教 学 过 程 知识要点概述 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为?? ?+=+=α α sin cos 00t y y t x x (t 为参数), 其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量, 的几何意义是直线上点到M 的距离.此时,若t>0,则 的方向向上;若t<0,则 的方向向下;若t=0,则点与点M 重合. 由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。

精编例题讲练 一、求直线上点的坐标 例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。 分析:考虑t 的实际意义,可用直线的参数方程? ?? ? ?x = x 0 +at ,y = y 0 +bt (t 是参数)。 解:由题意知则直线PQ 的方程是? ????x = 1 ? 3 t , y = 2 + 4 t ,其中时间t 是参数,将t =3s 代入得Q (?8,12)。 例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。 解:由条件,设直线AA ' 的参数方程为 ? ?? ??x = ?1 ? 2 13 t , y = ?2 + 313 t (t 是参数), ∵A 到直线l 的距离d = 5 13 , ∴ t = AA ' = 10 13 , 代入直线的参数方程得A ' (? 3313,413 )。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。 二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点 (1,5),倾斜角为 , 1)求直线和直线的交点到点的距离; 2)求直线和圆 的两个交点到点 的距离的和与积. 解:直线的参数方程为( t 为参数)

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

神奇的莫比乌斯带_教案教学设计

神奇的莫比乌斯带 这学期有幸承担学校人文讲坛的任务,原来任四年级数学老师的时候,搜集了许多有关“莫比乌斯带”的资料,趁着这个阴雨不断的十一长假重新作了整理和修缮。不过很可惜很多图片都没有办法上转。 讲稿: 神奇的莫比乌斯带 同学们一定听过这样一个讲不完的故事:从前有座山,山上有座庙,庙里有个和尚在讲故事,讲的什么?…… 我们在记录这个故事的时候,可以像我这样用“……”来表示故事讲不完,再可爱一点儿,同学们认识了循环小数,在循环节的首尾各点一点儿表示无限循环下去,我们可以效仿这样来表示:?从前有座山,山上有座庙,庙里有个和尚在讲故事,讲的什么??但如果我把四句话分别写在一张纸条的正反两面,我们还有办法让这个故事讲不完吗?答案是可以! 我们只要将纸条做一个翻转,然后再粘贴,就能够实现故事无限循环下去。那么大家所看到的这个纸圈在数学的历史上历经多年终于被德国的天文学家莫比乌斯发现了,公元1858年,莫比乌斯把这条带子介绍给大家,于是这个纸圈便被命名为——莫比乌斯带。今天中午,我就跟大家一起来看看这条带子的与众不同。 一、莫比乌斯带的发现 首先让我们一起来重温莫比乌斯带的发现。 数学上流传着这样一个故事:有人曾提出,先用一张长方形

的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢? 对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。 莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将两端粘在一起,这样就做成了只有一个面的纸圈儿。 圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。莫比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。”麦比乌斯带就这样被发现了。

直线的参数方程(t的几何意义)复习教案

二轮复习:选修4-4 直线的标准参数方程t 的几何意义应用 一.考纲要求: 参数方程 1. 了解参数方程,了解参数的意义; 2. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程。 二. 一轮知识课前回顾(请同学们独立默写完成) 1. 过点,倾斜角为的直线标准参数方程为____________________ 其中t 的意义如下: 设,则是直线方向上的单位向量, 若M 为直线上任一点,则, ,即直线上动点M 到定点的距离,等于直线标准参数方程中参数t 的__________ 即 ?? ?+=+=)(为参数t Bt n y At m x 为直线标准参数方程的条件为:①=+22B A __________ ②______>0 2.直线的非标准参数处理方案 ①转为________方程解决问题. ②转为标准参数方程: 如: 将直线:(为参数)的方程化为标准参数方程____________________ 3.已知过点M 0(x 0,y 0)的直线的参数方程为:(为参数),点M 、N 为直线l 上相异两点,点M 、N 所对应的参数分别为、, 请根据下列图象判断、的符号以及用、表示下列线段长度: (2) (3) 请用、表示线段长度: 4.若点Q 是线段MN 的中点,则点Q 对应的参数t=_________ ()000,y x M αl ()ααsin ,cos =e l ______=l e t M M =0_________=()000,y x M l ???? ?= 方向向下 ,若方向向上 若M M M M 000______,||l 222x t y t =+??=-? t l ???+=+=α α sin cos 00t y y t x x t 1t 2t 1t 2t 1t 2t ()11t 2t

拓扑学1:克莱因瓶

克莱因瓶 在数学领域中,克莱因瓶(Klein bottle)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。在拓扑学中,克莱因瓶(Klein Bottle)是一个不可定向的拓扑空间。克莱因瓶最初由德国几何学大家菲立克斯·克莱因(Felix Klein) 提出。在1882年,著名数学家菲立克斯·克莱因 (Felix Klein) 发现了后来以他的名字命名的著名“瓶子”。克莱因瓶的结构可表述为:一个瓶子底部有一个洞,现在延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接。和我们平时用来喝水的杯子不一样,这个物体没有“边”,它的表面不会终结。它和球面不同,一只苍蝇可以从瓶子的内部直接飞到外部而不用穿过表面(即它没有内外之分)。 命名来源 “克莱因瓶”这个名字的翻译其实是有些错误的,因为最初用德语命名时候名字中“Kleinsche Fl?che”是“克莱因平面”的意思。因为翻译问题写成了Flasche,这个词才是瓶子的意思。不过不要紧,“瓶子”这个词用起来也非常合适。 在1882年,著名数学家菲利克斯·克莱因(Felix Klein)发现了后来以他的名字命名的著名“瓶子”。这是一个像球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就像是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面(即环面)。 描述 克莱因瓶是一个不可定向的二维紧流形,而球面或轮胎面是可定向的二维紧流形。如果观察克莱因瓶,有一点似乎令人困惑--克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。 我们可以把克莱因瓶放在四维空间中理解:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面。如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,把它表现得似乎是自己和自己相交一样。克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不

神奇的“莫比乌斯带”1

神奇的“莫比乌斯带” 案例背景:小学数学第七册P77数学游戏“神奇的莫比乌斯带” 案例描述: 一、提出要求,导入新课 师:同学们,老师给你们准备一些纸条,可能你感到很好奇,它们就是这节课我们要研究的对象。你可别看它简单,其中藏着不少数学奥秘呢!课前,老师有一个小小的要求:希望大家能够大胆地猜想,带着问题参与到课堂上来,做一个学习上的有心人,好吗? 二、认识“莫比乌斯带”特点 师出示长方形纸条,让学生说说其二个面四条边的特点。 师:你能将它变成二个面二条边吗? 学生们思考片刻,一生欣喜地举手,他给大家演示:做成了一个普通的纸圈,教师引导学生观察这个纸圈有几条边几个面,并给大家指出来。 师:假如纸圈里面有一只小蚂蚁,它不想经过边缘,也不打洞轻松地爬到外面,怎么办? 生:那得把这个纸圈变成一个面! 师:这个想法很好!怎么样把它变成一个面呢? 师:让我们一起来动动手研究一下吧! 生:可以将它的一端扭一下再和另一端粘起来。 师:很好!具体怎么做呢? 学生拿一纸条向大家演示,其他学生恍然大悟。 师(握住他的手激动地):祝贺你!你知道吗?你发现了数学上著名的莫比乌斯带,它本来是有德国数学家莫比乌斯在146年前发明的,所以取名为莫比乌斯带。.如果你早出生146年,这个神奇的纸圈就不叫莫比乌斯带了,而叫—— 学生用1号纸条制作一个莫比乌斯带,同桌互相帮忙,教师适当引导。 师:用水彩笔沿着纸条中线一直画下去,看有什么发现。 生1:我发现画到最后又和原来的起点回合了。 生2:我发现一笔画完后每个面都被画上了,说明了莫比乌斯带只有一个面。 三、认识“莫比乌斯带”的性质 1、沿1∕2线剪 师:同学们的发现非常有价值!莫比乌斯带诞生以后引起了很多人的关

微积分双语常用词汇

MATHEMATICAL TERMS (Part 1) calculus 微积分 definition 定义 theorem 定理 lemma 引理 corollary 推论 prove 证明 proof 证明 show 证明 solution 解 formula 公式 if and only if ( iff ) 当且仅当? x∈X for all x∈X ?x∈X there exists an x∈X such that 使得 given 已知 set 集合 finite set 有限集 infinite set 无限集 interval 区间 open interval 开区间 closed interval 闭区间neighborhood 邻域 number 数 natural number 自然数 integer 整数 odd number 奇数 even number 偶数 real number 实数 rational number 有理数 irrational number 无理数positive number 正数 negative number 负数

mapping 映射 function 函数 monotone function 单调函数 increasing function 增函数 decreasing function 减函数 bounded function 有界函数 odd function 奇函数 even function 偶函数 periodic function 周期函数 composite function 复合函数 inverse function 反函数 domain 定义域 range 值域 variable 变量 independent variable 自变量 dependent variable 因变量 sequence 数列 convergent sequence 收敛数列 divergent sequence 发散数列 bounded sequence 有界数列 decreasing sequence 递减数列 increasing sequence 递增数列 limit 极限 one-sided limit 单侧极限 left-hand limit 左极限 right-hand limit 右极限 The Squeeze Theorem 夹挤定理 infinity 无穷大 infinitesimal 无穷小 equivalent infinitesimal 等价无穷小infinitesimal of higher order 高阶无穷小order of infinitesimal 无穷小的阶infinitesimals of the same order 同阶无穷小

克莱因瓶

克莱因瓶* 在数学中克莱因瓶是一个确定的非定向曲面,即表面(二 维流形),没有明显的“内部”和“外部”之分。其他相关的非定向曲面包括莫比乌斯带(M?biu s strip)和实射影平面。而莫比乌斯带是一个有边界的二维曲面,而克莱因瓶没有边界。(相比之下,球体是一个没有边界的定向曲面。)1882年,德国数学家菲利克斯·克莱因(Felix Klein)首次提出克莱因瓶(Klein bottle)的概念。原名为Kleinsche Fl?che(克莱因表面);不过,这是Kleinsche Flasche(克莱因瓶)不正确的表达。 克莱因瓶的构造 如图所示,从一个正方形出发,粘合颜色相同的边,并使得箭头方向也匹配。更严格的说,克莱因瓶是单位正方形[0,1] × [0,1]按如下方式定义等价关系 (0,y) ~(1,y) ,0 ≤y≤ 1 和 (x,0) ~ (1-x,1) ,0 ≤x≤ 1得到的商空间。 这个正方形是克莱因瓶的基本多边形。 红色箭头的一边相粘合的(左,右两侧)形成一个圆柱。为了让另外两条边按箭头匹配方式粘合,必须要从圆柱的一段穿过去。请注意,这将导致一个圆形的交线。这是克莱因瓶到3维空间的一个嵌入。 *本文档由华南师范大学拓扑网页制作组根据维基百科Klein bottle翻译, 遵守GNU自由文档许可证.

如果空间从3维增加到4维,则前面的构造可以避免相交。这个构造帮助我们直观理解克莱因瓶的许多特性。例如,克莱因瓶没有边界和它是非定向的。 克莱因瓶的常见物理模型都是类似构建起来的。英国科学博物馆展出的一系列人工吹制的克莱因玻璃瓶,还包括对这个拓扑主题的许多变化。自从1995年,艾伦班尼特为博物馆制作了这些克莱因瓶。杜鹃的蛋的作者克利福德斯托尔,制造了一些克莱因瓶, 并通过互联网Acme Klein Bottle销售。 克莱因瓶的性质 克莱因瓶可以按如下方式看作是纤维从:设全空间E为单位正方形,而底空间B是单位区间X,投射:E B π→,(,) x y x π=。因为单位区间X的两个端点视为是重合的,该底空间B实际上是圆环1S,所以克莱因瓶可以看作是一个圆上的"扭转"一个1S纤维丛。 和莫比乌斯带一样,克莱因瓶是非定向的。但是与之不同的是,克莱因瓶是一个闭合的曲面,也就是说它没有边界。莫比乌斯带可以嵌入到三维的欧几里德空间,而克莱因瓶不能, 但它能嵌入到四维空间。 克莱因瓶是可以通过把两个莫比乌斯带粘在一起构造,正如下面的佚名打油诗所述:一个名叫克莱因的数学家 认为莫比乌斯带了不起. 他说:“如果你用胶水 仿真的人工吹制的 克莱因玻璃瓶

直线参数方程t的几何意义

利用直线参数方程t 的几何意义 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方; x l

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中的几何意义几点分析与解析 一. 知识点概述: ★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为 为参数,t t y y t x x ?? ?+=+=α α sin cos 00 ★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则 |MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ?=?; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ?-+= -=-=,即. ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为: ??? ??? ?+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或??? ??? ?++=+++=+=++=+++=+=) (22)()(2)(22) ()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中 中点M 的相应参数为t ,而22 1t t t +=,所以中点坐标也为:? ??+=+=t p y y t p x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点, 则中点M 的相应参数:2 2 1t t t += =0 (因为???+=+=t p y y t p x x 200 100,而21p p ,均不为0,所以t=0) 体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。 实际上由新课程标准人教A 版数学选修课本中坐标系与参数方程的内容我们知道,平面内过定点),(000y x p 、倾斜角为α的直线l 的参数方程的标准形式为?? ?+=+=α α sin cos 00t y y t x x (t 为参数),其中t 表示直线l 上以定点0p 为起点,任 意一点P (x ,y )为终点的有向线段P P 0的数量,当P 点在0p 上方时t 为正,当P 点在0p 下方时t 为负。 体会二:教学中必须要强调参数T 的几何意义及两个结论的引导应用示范。 实际上在教学中我们知道,由直线参数方程的推导过程及向量模的几何意义等知识,很容易得参数t 具有如下的

最新北师大版六年级数学下册《神奇的莫比乌斯带》教案胡志民

《神奇的莫比乌斯带》教学设计 店集小学胡志民 教学内容北师大版六年级数学下册 《神奇的莫比乌斯带》 上课班级六年级 主备教师胡志民上课时间2017.04.19星期三 教学目标 知识与能力让学生在生动有趣的活动中观察、发现莫比乌斯带的特点,体会莫比乌斯带的神奇。 过程与方法通过活动培养学生动手操作能力,观察能力和逻辑抽象思维能力。 情感态度与 价值观 让学生感受数学的无穷魅力,拓展数学视野,进一步激发学生学习数学的热情。 教学重点学会制作莫比乌斯带 教学难点探索发现莫比乌斯带的神奇之处。 教具准备多媒体课件、长方形纸条、剪刀、双面胶等 教法运用引导观察法、操作法 学法指导实践操作法、观察发现法、合作交流法 基本环节教师授课过程(教师活动)学生学习过程(学生活动)教学意图导 入 新 课 (检查预习)一故事导入 据说有一个小偷偷了一位很老实农民的 东西,并被当场捕获,将小偷送到县衙,县 官发现小偷正是自己的儿子。于是在一张纸 条的正面写上:小偷应当放掉。而在纸的反 面写了:农民应当关押。县官将纸条交给执 事官由他去办理。聪明的执事官将纸条扭了 个弯,用手指将两端捏在一起。然后向大家 宣布:根据县太爷的命令放掉农民,关押小 偷。县官听了大怒,责问执事官。执事官将 纸条捏在手上给县官看,从“应当”二字读 起,确实没错。仔细观看字迹,也没有涂改, 县官不知其中奥秘,只好自认倒霉。 县官知道执事官在纸条上做了手脚,怀 恨在心,伺机报复。一日,又拿了一张纸条, 要执事官一笔将正反两面涂黑,否则就要将 其拘役。执事官不慌不忙地把纸条扭了一 下,粘住两端,提笔在纸环上一划,又拆开 两端,只见纸条正反面均涂上黑色。县官的 毒计又落空了。 课件出示教材第54页的纸环,其内侧有一 点面包屑,外面有一只蚂蚁。师:如果不让 蚂蚁爬过纸环的边缘,它能吃掉面包屑吗? 这节课我们就一起来学习“神奇的纸环” 学生在浓厚的兴趣下展 开讨论 引起学生 的 学习兴 趣, 激发学生 探 究新知的 欲 望

直线参数方程t的几何意义

利用直线参数方程t 的几何意义 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; x

相关主题