搜档网
当前位置:搜档网 › 中考数学二轮复习专题练习(下)相似和全等中的动点问题新人教版

中考数学二轮复习专题练习(下)相似和全等中的动点问题新人教版

中考数学二轮复习专题练习(下)相似和全等中的动点问题新人教版
中考数学二轮复习专题练习(下)相似和全等中的动点问题新人教版

相似和全等中的动点问题

1.如图,等边三角形ABC 的边长为6,点E ,F 分别在AC ,BC 边上,AE CF =,连结AF ,BE 相交

于点P . (1)求证:AF

BE =,并求APB ∠的度数;

(2)若2AE =,求·AP AF 的值;

(3)当点E 从点A 运动到点C 时,求点P 经过的路径长.

解析:

(1)∵ABC V 是等边三角形,∴AB AC =,60BAC C ∠=∠=?

又AE CF =,∴ABE CAF V V ≌

∴AF

BE =,ABE CAF ∠=∠

∴60APE ABE BAF CAF BAF BAC ∠=∠+∠=∠+∠=∠=?

∴180********APB APE ∠=?-∠=?-?=? (2)∵60APE ∠=?,∴APE C ∠=∠

又PAE

CAF ∠=∠,∴APE ACF V V ∽

AP AE

AC AF

=

,∴··6212AP AF AC AE ==?=

(3)

∵120APB ∠=?,∴点P 的运动路径是一段圆弧,该圆弧所对的圆心角为120? 设圆心为O ,连接OA 、OB ,作OH

AB ⊥于

则132AH AB =

=,1

602

AOH AOB ∠=∠=?

∴sin60AH

OA ==?

∴当点E 从点A 运动到点C 时,点P 经过的路径长为

:

1201803

π??

=

?

2.已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使顶点B 落在CD 边上的P 点处. (1)如图1,已知折痕与边BC 交于点O ,连结AP 、OP 、OA . ①求证:OCP PDA V V ∽;

②若OCP V 与PDA V 的面积比为1:4,求边AB 的长; (2)若图1中的点P 恰好是CD 边的中点,求OAB ∠的度数;

(3)如图2,在(1)的条件下,擦去折痕OA 、线段OP ,连结BP .动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN PM =,连结MN 交PB 于点F ,作ME BP ⊥于点E .试问当点M 、N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.

解析:

(1)①∵四边形ABCD 是矩形,∴90C D ∠=∠=?

∴90APD DAP ∠+∠=?

∵AOP V 是由ABO V 沿AO 折叠,∴90APO B ∠=∠=? ∴90APD CPO ∠+∠=?

∴DAP CPO ∠=∠,∴OCP PDA V V ∽ ②∵OCP PDA V V ∽,OCP V 与

PDA V 的面积比为1:4

21

()4

OCP PDA S CP S AD ==V V ,∴

12CP AD =

∵8AD =,∴4CP = 设AB x =

即AP x =,则4DP x =-

在Rt PDA V 中,2

22AP AD DP =+

∴()

2

2

284x

x =+-,∴10x =

即边AB 的长为10

(2)∵折叠后AOB V 与AOP V 重合,∴AP AB =,OAB OAP ∠=∠

∵AB CD =,∴AP CD =

∵P 是CD 的中点,∴1

2

DP AP =

∵90D ∠=?,∴30PAD ∠=?

又OAB OAP ∠=∠,9060OAB OAP PAD ∠+∠=?-∠=? ∴30OAB ∠=? (3)线段EF 的长度不变

作MH

BN P 交PB 于点H

∵AP AB =,∴APB ABP ∠=∠

∴MHP ABP ∠=∠,MHF NBF ∠=∠

∴MHP APB ∠=∠,∴MP MH = ∵MP BN =,∴BN

MH =

∵NFB MFH ∠=∠,∴NBF MHF V V ≌ ∴FH

FB =

∵EF EH FH =+,∴12

EF EP FB PB =+=

由(1)得:10AB =,8AD =,∴6DP =

∴4PC =,∴PB =EF =

3.如图1,P 为正方形ABCD 的边CD 上任意一点,BE AP ⊥于E ,F 为AP 上一点,AE EF =,

连接BF 、CF . (1)求证:BF

BC =;

(2)如图2,CBF ∠的平分线交AP 延长线于点Q ,连接DQ ,则:______BQ DQ AQ +=;

(3)若正方形的边长为2.

①当点P 移动时,点Q 到CD 的最大距离为__________; ②当点P 为CD 的三等分点时,求CF 的长.

解析:(1)∵BE AF ⊥

,AE EF =,

∴90,,AEB BEF AE EF BE BE ∠=∠=?==

∴ABE BEF V V ≌ ∴AB BF = ∵AB BC = ∴BF BC =

(2)

连接BD 交AP 于G ,作DH AQ ⊥于H

∵BE AF ⊥

,AB BF =,BE BE =

∴ABE FBE V V ≌,∴1EBF ∠=∠ ∵23∠=∠,12390EBF ∠+∠+∠+∠=?

∴245EBF

∠+∠=?,即45EBQ ∠=?

∴BQ =

,45BQG ADG ∠=?=∠

又AGD BGQ ∠=∠,∴AGD BGQ V V ∽

∴AG DG

BG QG

=,又AGB DGQ ∠=∠ ∴ABG DQG V V ∽,∴45DQG

ABG ∠=∠=?

∴DQ =

∵1590∠+∠=?,4590∠+∠=? ∴14∠=∠

又90AEB DHA ∠=∠=?,AB AD =

∴ABE DAH V V ≌,∴AE DH =

∴DQ =

∴)BQ DQ AE EQ +=+=+=

即BQ DQ +=

(3)①1-

提示:取BD 的中点O ,连接OQ

∵45BQE DQE ∠=∠=?,∴90BQD ∠=?

∴122

OQ BD AB =

== ∴当点P 移动时,点Q 的路径是以O 为圆心,以

为半径的一段圆弧

易知当点Q 是?CD

的中点时,点Q 到CD 的距离最大 最大距离为

1-

作FM

CD ⊥于M ,BN CF ⊥于N ∵BF

BC =,∴1

2

CN CF =

若12

33

DP DC ==

,则3

AP ==

易证ABE PAD V V ∽,∴

AE DP

AB AP

= ∴

23

22AE

=

,∴5

AE =

∴25

AF

AE ==

,3515

PF AP AF =-=

-=

由PFM PAD V V ∽得:

FM PF

AD PA

= 即

23

FM

=

,∴45

FM =

易证BCN CFM V V ∽,∴BC CN

CF FM

=

12

245

CF CF

=

,∴5

CF =

若1233

PC

DC ==

,同理可求13

CF =

∴当点P 为CD 的三等分点时,CF

的长为

5

13

4.在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动. (1)如图①,当点E 自D 向C ,点F 自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 和DF 的数量关系和位置关系,并说明理由;

(2)如图②,当E ,F 分别移动到边DC ,CB 的延长线上时,连接AE 和DF ,(1)中的结论还成立吗?(请你直接回答“成立”或“不成立”,不须证明)

(3)如图③,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE 和DF ,(1)中的结论还成立吗?请说明理由;

(4)如图④,当E ,F 分别在边DC ,CB 上移动时,连接AE 和DF 交于点P .由于点E ,F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若2AD =,试求出线段CP 的最小值.

解析:

(1)AE DF =,AE DF ⊥

理由:∵四边形ABCD 是正方形,∴AD DC =,90ADC C ∠=∠=?

∵DE

CF =,∴ADE DCF V V ≌.

∴AE DF =,DAE CDF ∠=∠ ∵90CDF

ADF ∠+∠=?,∴90DAE ADF ∠+∠=?

∴AE DF ⊥ (2)成立 (3)成立

理由: ∵四边形ABCD 是正方形,∴AD DC =,90ADE DCF ∠=∠=?

∵DE

CF =,∴ADE DCF V V ≌.

∴AE DF =,DAE CDF ∠=∠ 延长FD 交AE 于点G ,则90CDF ADG ∠+∠=?

∴90ADG DAE ∠+∠=? ∴AE DF ⊥ (4)草图如图

由于点P 在运动中保持90APD ∠=? ∴点P 的路径是一段以AD 为直径的弧

设AD 的中点为O ,连接OC 交弧于点P ,此时CP 的长度最小

在Rt ODC V 中,OC

===

∴1CP OC OP =-=-

5.如图1,矩形ABCD 中,4AB =,3AD =,把矩形沿直线AC 折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .

(1)求证:DEC EDA V V ≌; (2)求DF 的值;

(3)如图2,若P 为线段EC 上一动点,过点P 作AEC V 的内接矩形,使其定点Q 落在线段AE 上,定点M 、

N 落在线段AC 上,当线段PE 的长为何值时,矩形PQMN 的面积最大?并求出其最大值.

解析:(1)证明:由矩形的性质可知ADC CEA V V ≌, ∴AD CE =,DC

EA =,ACD CAE ∠=∠,

在ADE V 与CED V 中

AD CE DE ED DC EA =??

=??=?

∴DEC EDA SSS V V ≌(); (2)解:如图1,∵ACD CAE ∠=∠, ∴AF CF

=,

设DF

x =,则4AF CF x ==﹣,

在Rt ADF V 中,2

22AD DF AF +=,

即2

223

(4)x x +=-,

解得;78

x =,

即78

DF =

. (3)解:如图2,由矩形PQMN 的性质得PQ CA ∥

PE PQ

CE CA

=

又∵3CE =

,5AC

==

设03()PE

x x =<<,则35x PQ =,即5

3

PQ x =

过E 作EG AC ⊥

于G ,则PN EG P ,

CP PN

CE EG

=

又∵在Rt AEC V 中,EG AC

AE CE ?=?,解得125

EG =

3123

5

x PN

-=,即4

(3)5

PN x =-

设矩形PQMN 的面积为S

则22443

4()3(03)332

S

PQ PN x x x x =?=-+=--+<<

所以当32x =,即3

2

PE =时,矩形PQMN 的面积最大,最大面积为3.

6.如图,在梯形ABCD 中,AD

BC P ,5AB DC ==,6AD =,12BC =,点P 从点A 出发,以每

秒1个单位的速度沿AD 边向点D 运动,同时点Q 从点C 出发,以每秒3个单位的速度沿CB 边向点B 运动,

当其中一点到达终点时运动停止,设运动时间为t 秒.

(1)当t 为何值时,四边形PQCD 是平行四边形;

(2)PQ 是否能平分对角线BD ?若能,求出相应的t 的值;若不能,请说明理由; (3)若PQD V 是等腰三角形,求t 的值.

解析:(1)若四边形PQCD 是平行四边形,则PD CQ =

∴63t t -=,∴32

t =

(2)

能,当3t

=时,PQ 平分对角线BD

假设PQ 平分对角线BD ,设PQ 与BD 的交点为O ,则OB OD = ∵AD

BC P ,∴PDO QBO ∠=∠

又∵POD QOB ∠=∠,∴POD QOB V V

≌ ∴PD QB =,即6123t t -=-

∴3t

=

∴当3t

=时,PQ 平分对角线BD

(3)过D 作DH

BC ⊥于H

∵梯形ABCD 中,5AB DC ==,6AD =,12BC =

∴3CH

=,4DH =

若PQ DQ =:

过Q 作QM AD ⊥于M ,62

t

DM PM -==

∵QM

AD ⊥,DH BC ⊥,∴QM DH P

又∵AD BC P ,∴四边形MQHD 为矩形

∴HQ

DM =,即6332

t

t

--=

∴127t =

∵04t ≤≤,

1274<,∴12

7

t =符合题意 若PQ

PD =:

过P 作PN

BC ⊥于N ,则4PN =,6PQ t =-,123394QN t t t =---=-

在Rt PNQ V 中,2

22PN QN PQ +=,∴222()(4946)t t +-=-

整理得:2

1560610t t -+=

∵260

41561(60600)61?=-??=-<

∴方程无解 若PD DQ =

过D 作DR BC ⊥于R ,则4DR =,3RC =

假设点Q 在点R 的右侧,则01t ≤< 此时45DQ ≤<,56PD ≤<,∴PD DQ ≠

∴点Q 在点R 的左侧,∴33QR t =-

在Rt DQR V 中,2

22

QR DR DQ +=

∴222334(

)(6)t t -+=-

整理得:2

86110t t --=

解得:38t =-(舍去)或38

t =+

∵04t

≤≤,

348+,∴38

t =

+符合题意

综上所述,若PQD V 是等腰三角形,则127

t =

或38t =+

7.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3)a >.动点M ,N 同时从B 点出发,

分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P ,Q .当点N 到达终点C

时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t

=秒,则PM =________厘米;

(2)若5a =厘米,求时间t ,使PNB PAD V V ∽,并求出它们的相似比;

(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;

(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.

解析: (1)3

4

当1t

=时,1BM =,1BN =,413AM =-=

∵PM

BN P ,∴AMP ABN V V ∽

PM AM

BN AB

=,即

3

14

PM = ∴3

4

PM

= (2)

当D 、P 、B 三点在同一直线上时,有PNB PAD V V ∽,∴

AD AP

BN PN

=

∵PM BN P ,∴

AM AP

BM PN

=

∴AD AM BN BM

=,即35t t t

-=

解得10t =(舍去),22t =

∴2t

=,使PNB PAD V V ∽,相似比为2:3

(3)∵AMP ABN V V ∽,∴

PM AM

BN AB

=

即PM a t t a -=

,∴t a t M a

P =-()

∴3t a Q t a

P =-

-()

当梯形PMBN 与梯形PQDA 的面积相等时,有 22

PM BN BM PQ AD DQ

=

++()() 即

3 322

t a t t a t t t a t a a ---=-++()()

[

][]() 解得66

t a

a =

+ ∵3t ≤,∴

636

a

a +≤,∴6a ≤,又由已知3a > ∴36a ≤< (4)

∵36a ≤<时,梯形PMBN 与梯形PQDA 的面积相等

∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则PQ CN PM BN +=+

∴33t a t t a t a t a t -

+-=+--()(),∴3t a t a

t -=-()

把66

t a a =+代入,整理得2

12a =

∴a =-舍去)

或a =

∴a =

所以,存在这样的矩形,

当a =时,

在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等

8.如图,在直角梯形ABCD 中,AD BC P ,90C ∠=?,16BC =,12DC =,21AD =.动点P 从

点D 出发,沿射线DA 的方向以每秒2个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t (秒).

(1)设BPQ V ·的面积为S ,求S 与t 之间的函数关系式;

(2)当t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?

(3)当线段PQ 与线段AB 相交于点O ,且2AO OB =时,求BQP ∠的正切值; (4)存在时刻t ,使得PQ BD ⊥

,求出t 的值;

解析:(1)

如图1,过点P 作PM

BC ⊥,垂足为M ,则四边形PDCM 为矩形,∴12PM DC ==

∵16BQ t =-,∴

()116129662

S t t =?-?=- (2)∵2CM

DP t ==,CQ t =,∴MQ t =

以B 、P 、Q 三点为顶点的三角形是等腰三角形,有三种情况:

①若PQ BQ =

在Rt PMQ V 中,2

22PQ MQ PM =+,∴22212PQ t =+

由2

2PQ

BQ =得:222(1216)t t +=-

解得72

t =

②若BP BQ =

在Rt PMB V 中,2

22

BP BM PM

=+,∴2

221621()2BP

t =-+

由2

2BP

BQ =得:2221621216()()t t -+=-

整理得:2

3321440t t -+=

∵2

324314416216212169166()(4108)0?=--??=???-??=-<

∴方程2

3321440t t -+=无解,∴BP BQ ≠

③若PB

PQ =

由2

2PB

PQ =得:222216211(2)2t t -+=+

整理得:2

3642560t t -+=

解得1

16

3

t =,216t =(不合题意,舍去) 综上所述:当7

2t

=

秒或163

t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形 (3)

如图2,由OAP OBQ V

V ∽,得1

2

AP AO BQ OB ==

∵221AP t =-,16BQ t =-,∴222116()t t -=-

∴585

t =

过点Q 作QE

AD ⊥,垂足为E

∵2PD t =,ED QC t ==,∴PE t =

∴1230

29

tan BQP tan QPE

QE PE t ==∠=∠=

(4)假设存在时刻t ,使得PQ BD ⊥

·

如图3,过点Q 作QE

AD ⊥,垂足为E

∵90PQE QPE ∠+∠=?,90DBC BQP ∠+∠=?,QPE BQP ∠=∠ ∴PQE

DBC ∠=∠,又∵90PEQ DCB ∠=∠=?

∴QPE BDC V

V ∽,∴PE DC

EQ BC

= 即

12

1216

t =,∴9t = 所以,当9t =秒时,PQ BD ⊥

9.题干:如图,已知在Rt ABC V 中,AB BC =,90ABC ∠=?,BO AC ⊥于点O ,点P ,D 分别在AO

和BC 上,PB PD =,PB PD =于点E . (1)求证:BPO PDE V V ≌;

(2)若BP 平分ABO ∠,其余条件不变,求证:AP CD =;

(3)若点P 是一个动点,当点P 运动到OC 的中点 P '时,满足题中条件的点D 也随之在直线BC 上运动到点D ',请直接写出 CD '与 AP '的数量关系.

解析: (1)

证明:∵PB PD =,∴

PBD PDB ∠=∠

∵AB BC =,90ABC ∠=?,∴45C ∠=?

∵BO AC ⊥

于点O ,∴45OBC ∠=? ∴45OBC

C ∠=∠=?

∵PBO PBD OBC DPE PDB C ∠=∠-∠∠=∠-∠, ∴PBO DPE ∠=∠ 又∵BO AC ⊥

,DE AC ⊥,∴90BOP PED ∠=∠=?

∵PB PD =,∴BPO PDE V V ≌ (2)由(1)可得PBO DPE ∠=∠

∵BP 平分ABO ∠,∴ABP PBO ∠=∠ ∴ABP DPE ∠=∠

又∵A C ∠=∠,PB PD =,∴ABP CPD V V ≌ ∴AP CD =

(3) CD '与 AP '的数量关系是2

:3

CD AP ''=

解析过程如下:

过点P '作P F BC '⊥于点F

设P F

x '=,则P F x '=,4AB BC x ==,P C '=

∴AP '=,3BF FD x ='=

∴2CD x '=

∴3

CD AP ''=

10.如图,在梯形ABCD 中,AD

BC P ,3AD =,5DC =,AB =,45B ∠=?.动点M 从B 点

出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.

(1)求BC 的长. (2)当MN

AB P 时,求t 的值.

(3)试探究:t 为何值时,MNC V 为等腰三角形. 解析:

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

中考数学第二轮复习专题个专题

2018年中考数学第二轮专题复习 专题一选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2017年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.

三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 根据表中一次函数的自变量x与函数y的对应值,可得p的值为() A.1 B.-1 C.3 D.-3 对应训练 1.若y=(a+1)x a2-2是反比例函数,则a的取值为() A.1 B.-l C.±l D.任意实数 考点二:筛选法(也叫排除法、淘汰法) 分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

2019年中考数学二轮复习专题_1

2019年中考数学二轮复习专题 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 教育网小编为大家整理关于中考数学二轮复习专题-因式分解,希望考生在各科复习中,做好安排,冲刺中考。 中考数学二轮复习专题-因式分解 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式. 确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的. 提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形

式,这种分解因式的方法叫做提公因式法. 提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式. 如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的,在提出“-”号时,多项式的各项都要变号. 因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式. 运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法. 平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2= 具备什么特征的两项式能用平方差公式分解因式 ①系数能平方,

②字母指数要成双, ③两项符号相反. 用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么. 完全平方公式:两个数的平方和,加上这两个数的积的2倍,等于这两个数的和的平方.字母表达式:a2±2ab+b2=2 完全平方公式的特点: ①它是一个三项式. ②其中有两项是某两数的平方和. ③第三项是这两数积的正二倍或负二倍. ④具备以上三方面的特点以后,就等于这两数和的平方. 立方和与立方差公式:两个数的立方和等于这两个数的和乘以它们的平方和与它们积的差. 利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式. 具备什么条件的多项式可以用分组

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学最新经典动点问题-十大题型

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发, 同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出 与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 3 64 y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48 5 S = P O P Q 、、 M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2019中考数学第二轮复习专题(10个专题)

中考数学第二轮专题复习 专题一选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2013年各地命题设置上,选择题数目稳定在8~14题,这说明选择题有它不可替代重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. A.1 B.-1 C.3 D.-3 思路分析:设一次函数的解析式为y=kx+b(k≠0),再把x=-2,y=3;x=1时,y=0代入即可得出kb 的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值. 解:一次函数的解析式为y=kx+b(k≠0), ∵x=-2时y=3;x=1时y=0, ∴ 23 k b k b -+= ? ? += ? , 解得 1 1 k b =- ? ? = ? , ∴一次函数的解析式为y=-x+1, ∴当x=0时,y=1,即p=1. 故选A. 点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式. 对应训练 1.(2013?安顺)若y=(a+1)x a2-2是反比例函数,则a的取值为() A.1 B.-l C.±l D.任意实数 1.A

2018中考数学动点问题专题复习(含答案)

2018中考数学动点问题专题复习 1.如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°. (1)求ED 、EC 的长; (2)若BP =2,求CQ 的长; (3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长. 图1 备用图 解:(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10. 在Rt △CDE 中,CD =5,所以 315tan 544ED CD C =?∠=? =,25 4EC =. (2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是 △ABC 的两条中位线,DM =4,DN =3. 由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN . 因此△PDM ∽△QDN . 所以43PM DM QN DN ==.所以34QN PM =,43PM QN =. 图2 图3 图4 ①如图3,当BP =2,P 在BM 上时,PM =1. 此时 3344QN PM = =.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5. 此时 31544QN PM = =.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中, 3 tan 4QD DN QPD PD DM ∠= == . 在Rt △ABC 中, 3tan 4BA C CA ∠= = .所以∠QPD =∠C . 由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ . 当△PDF 是等腰三角形时,△CDQ 也是等腰三角形. ①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时 4433PM QN ==.所以45 333BP BM PM =-=-= . ②如图6,当QC =QD 时,由 cos CH C CQ = ,可得5425 258CQ =÷= . 所以QN =CN -CQ = 257488- = (如图2所示). 此时 4736PM QN ==.所以725 366BP BM PM =+=+= . ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示). 图5 图6 2.如图1,抛物线y =ax2+bx +c 经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标; (3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

中考数学二轮复习专题

中考数学二轮专题复习之一:配方法与换元法 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 【范例讲析】: 例1: 填空题: 1).将二次三项式x 2+2x -2进行配方,其结果为 。 2).方程x 2+y 2+4x -2y+5=0的解是 。 3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。 例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。 例3.解方程:422740x x --= 【闯关夺冠】 1.已知13x x +=.则221x x +的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2 –2ab+b 2 –c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2- b 1的值。 4. 解方程: 211( )65()11 x x +=--

中考数学专题复习之二:待定系数法 对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】: 【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点. (1)求这个函数的解析式. (2)求函数与直线y=-x+1的交点坐标. 【例2】一次函数的图象经过反比例函数x y 8- =的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。 (1)求这个一次函数的解析式; (2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。 【闯关夺冠】 1.已知:反比例函数和一次函数图象的一个交点为(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定这两个函数的解析式。 2、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A 、B 两点,与y 轴交于C 点,点A 、C 的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学难点之动点问题

动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊 角 或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单 介 绍 ,解题方 法、关键给以点拨。 一 、 三 角 形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴 分别交于 A B 、两点,动点P Q 、同时从 出发,同时到达 A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点 Q 的运动时间为t 秒,OPQ △的面积为S , 求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出 以 点 O P Q 、、为顶点的平行四边形的第四个顶点 M 的坐标. 解:1、A (8,0) B (0,6) 2、当0<t <3时,S =t 2 当3<t <8时,S =3/8(8-t )t 提示:第(2)问按点 P 到拐点 B 所有时间分 段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q , 探 究 第 四 点 构 成 平行四边形 时

图B 图 B 图 按已知线段身份不同分类-----①O P为 边、O Q为边,②O P为边、O Q为对角 线,③O P为对角线、O Q为边。然后画 出各类的图形,根据图形性质求顶点坐 标。 2、(2009年衡阳市) 如图,A B是⊙O的直径,弦B C=2c m, ∠A B C=60o. (1)求⊙O的直径; (2)若D是A B延长线上一点,连结C D,当B D长为多少时,C D与⊙O相切; (3)若动点E以2c m/s的速度从A点出发沿着A B方向运动,同时动点F以1c m/s的速度从B点出发沿B C方向运动,设运动时间为 )2 )( (<

中考数学压轴题专题训练

2018中考数学压轴专题一、动点与面积问题 例1 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-1, 0),B (4, 0)两点,与y 轴交于点C (0, 2).点M (m , n )是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M 作x 轴的平行线交y 轴于点Q ,交抛物线于另一点E ,直线BM 交y 轴于点F . (1)求抛物线的解析式,并写出其顶点坐标; (2)当S △MFQ ∶S △MEB =1∶3时,求点M 的坐标. 例2如图,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 例3如图,已知二次函数的图象过点O (0,0)、A (4,0)、B (43 2,3 -),M 是OA 的中点. (1)求此二次函数的解析式; (2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求点P 的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连结CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由. 例4如图,直线l 经过点A (1,0),且与双曲线m y x = (x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平 行线分别交曲线m y x =(x >0)和m y x =-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式; (2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

相关主题