搜档网
当前位置:搜档网 › 高周波焊接熔损原因分析

高周波焊接熔损原因分析

高周波焊接熔损原因分析

高周波焊接熔损原因分析:耐热加工助剂耐温不够。改善对策:增加耐热加助剂的使用量,环氧大豆油由2phr调至3phr。环氧基对PVC具捕捉HCL及抗氧化之功能,故减少PVC因受热、光劣化所生成之分子间交联作用即大幅提高PVC的耐候性、耐热性

是不是过波峰焊时,缩胶。其原因:初步分析是绝缘层与导体之间附着力不够,导致高温PVC缩胶(内缩)

焊缝裂纹的原因

有时候我发现焊道会有裂纹,这是怎么产生的, 如何解决这问题? 裂纹焊缝中原子结合遭到破坏,形成新的界面而产生的缝隙称为裂纹。 A、.裂纹的分类 根据裂纹尺寸大小,分为三类:(1)宏观裂纹:肉眼可见的裂纹。(2)微观裂纹:在显微镜下才能发现。(3)超显微裂纹:在高倍数显微镜下才能发现,一般指晶间裂纹和晶内裂纹。 从产生温度上看,裂纹分为两类: (1)热裂纹:产生于Ac3线附近的裂纹。一般是焊接完毕即出现,又称结晶裂纹。这种二裂纹主要发生在晶界,裂纹面上有氧化色彩,失去金属光泽。 (2)冷裂纹:指在焊毕冷至马氏体转变温度M3点以下产生的裂纹,一般是在焊后一段时间(几小时,几天甚至更长)才出现,故又称延迟裂纹。 按裂纹产生的原因分,又可把裂纹分为: (1)再热裂纹:接头冷却后再加热至500~700℃时产生的裂纹。再热裂纹产生于沉淀强化的材料(如含Cr、Mo、V、Ti、Nb的金属)的焊接热影响区内的粗晶区,一般从熔合线向热影响区的粗晶区发展,呈晶间开裂特征。 (2)层状撕裂主要是由于钢材在轧制过程中,将硫化物(MnS)、硅酸盐类等杂质夹在其中,形成各向异性。在焊接应力或外拘束应力的使用下,金属沿轧制方向的杂物开裂。 (3)应力腐蚀裂纹:在应力和腐蚀介质共同作用下产生的裂纹。除残余应力或拘束应力的因素外,应力腐蚀裂纹主要与焊缝组织组成及形态有关。 B、.裂纹的危害裂纹,尤其是冷裂纹,带来的危害是灾难性的。世界上的压力容器事故除极少数是由于设计不合理,选材不当的原因引起的以外,绝大部分是由于裂纹引起的脆性破坏。 C、.热裂纹(结晶裂纹) (1)结晶裂纹的形成机理热裂纹发生于焊缝金属凝固末期,敏感温度区大致在固相线附近的高温区,最常见的热裂纹是结晶裂纹,其生成原因是在焊缝金属凝固过程中,结晶偏析使杂质生成的低熔点共晶物富集于晶界,形成所谓"液态薄膜",在特定的敏感温度区(又称脆性温度区)间,其强度极小,由于焊缝凝固收缩而受到拉应力,最终开裂形成裂纹。结晶裂纹最常见的情况是沿焊缝中心长度方向开裂,为纵向裂纹,有时也发生在焊缝内部两个柱状晶之间,为横向裂纹。弧坑裂纹是另一种形态的,常见的热裂纹。 3 焊接缺陷及对策 热裂纹都是沿晶界开裂,通常发生在杂质较多的碳钢、低合金钢、奥氏体不锈钢等材料气焊缝中 (2)影响结晶裂纹的因素 a合金元素和杂质的影响碳元素以及硫、磷等杂质元素的增加,会扩大敏感温度区,使结晶裂纹的产生机会增多。 b.冷却速度的影响冷却速度增大,一是使结晶偏析加重,二是使结晶温度区间增大,两者都会增加结晶裂纹的出现机会; c.结晶应力与拘束应力的影响在脆性温度区内,金属的强度极低,焊接应力又使这飞部分金属受拉,当拉应力达到一定程度时,就会出现结晶裂纹。

关于焊接熔池表面凝固速率测量的方法探究

关于焊接熔池表面凝固速率测量的方法探究 摘要:随着我国经济的迅速发展,我国的工业取得了巨大的发展与进步。而在工业生产与测量中,进行对于焊接熔池表面温度与凝固速率的测量计算是必不可少的。目前状况下,国内对于其的测算方法基本上都是数值模拟法。这一方法主要是通过分析测算出相应的值,然而,在实际的情况中,往往出现选择的数学模型与实际的过程不完全符合,有事甚至差距过大。这样一来,其准确性就会大打折扣。我们研究的课题是:焊接熔池表面凝固速率测量的新方法分析。为了完成我们的课题研究,我们组织设计了一项工艺,可以进行低糖钢的激光点焊,可以较为清晰的显示出液态的熔池回缩凝固的整个过程。凭借这一设计,我们开展对于焊接熔池表面温度与凝固速率的测量计算以及相应的分析。对于其表面温度的测量,主要运用的是红外辐射测温法。而对于熔池表面的速率测量,主要是先对信息进行相应的提取与采集,抓住其特征,进行对于凝固速率的推算。然后进一步的进行工艺实验,验证熔池表面凝固速率与直径之间的相应关系。 关键词:焊接熔池表面温度凝固速率红外测温法低碳钢 1、红外线测温法 由于传统的数值模拟法存在一定的弊端,这一方法主要是通过分析测算出相应的值,然而,在实际的情况中,往往出现选择的数学模型与实际的过程不完全符合,有事甚至差距过大。因此,在我们的课题研究中,所采用的方法是红外线测温法。 1.1红外测温原理 运用红外线进行温度的测量,是一种非接触测量方法,也就是说测温的对象不会接触到测温的元件,其主要是通过热辐射来进行对于温度的测量的。 要想正确而有效的使用红外测温仪,就必须先对红外测温仪进行一定程度上的了解。主要了解其工作的原理、相应的技术指标、进行工作时所需要的环境以及条件以及对其的操作以及维修。红外测温仪的构成其实并不复杂,它主要是由几大部分组成的,分别是光学系统、光电探测器、信号放大器以及信号的处理、显示输出。各个部分有着不同的分工,进行着不同的工作。光学系统的主要作用是进行对于相应的红外辐射能量的聚集,而红外测温仪的光学零件以及其放置的位置决定了其视场是否广泛。当光学系统进行了一定程度上的红外能量聚集时,就会发生相应的能量转换,主要是红外能量转换成了电信号。而这一信号,就是好温度值的来源,这一信号经过红外测温仪内部的放大器以及相应的信号处理电路的处理,并进行了算法运算以及校正后,就会转化成相应的温度值。而红外测温仪的使用环境也需要进行考虑,因为温度、污染等都有可能对其正常工作进行一定的干扰,这样就会影响到所测值的精确性。 当物体处于稳定在绝对零度以上的状态时,内部相应的带电粒子发生运动,这样一来,就会向外部发射出能量,而这种能量的发射是以波长各不相同的电磁波形式进行的。波长一共涉及了三个光区,分别是紫外光区、可见光区以及红外光区。然而,其大部分还是处于红外光区内。根据相关的研究表明,物体相应的红外辐射的波长分布与物体表面温度关系密切。根据这一信息,我们只需要对红外线能量进行捕捉测量,就可以准确地测算出物体的表面温度。 1.2对于材料发射率的标定 关于材料的发射率,它与多个因素存在着密切的联系,主要是与物体的表面

4.点焊规范参数对熔核尺寸及接头机械性能的影响(1)

点焊规范参数对熔核尺寸及接头机械性能的影响 一、实验目的 (一)研究规范参数对于熔核尺寸及接头强度的影响; (二)掌握选择点焊规范参数的一般原则和方法; (三)了解熔核的形成过程; 二、实验装置及实验材料 (一)交流点焊机(DN——200型)1台 (二)电焊电流测量仪(HDB——1型)1台 (三)拉力试验机(LJ——5000型)1台 (四)测量显微镜(15J型)4台 (五)砂轮切割机1台 (六)吹风机1台 (七)试片150×25×1.5mm,冷轧低碳钢140对 三、实验原理 电阻点焊是将准备焊接的工件放在两个电极之间,然后利用电极压紧工件,在点击压力的作用下通过焊接电流,利用工件自身电阻所产生的焦耳热来加热金属,并使焊接区中心部位的金属熔化,形成熔核。断电后,在电极压力的作用下,受热熔化的金属冷却结晶,形成焊点核心。在形成熔核的同时,熔核周围金属也被加热到高温,在点击压力作用下产生塑性变形及强烈的再结晶过程,并在结合面上形成共同晶粒。熔核周围这一环形塑性区称为塑性环;它也有助于点焊接头承受载荷。由此可知,电焊工艺过程是被焊金属受到热和机械力共同作用的过程,而施加焊接压力和通以焊接电流时形成点焊接头的基本条件。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 (一)焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IRt(J)(1) 式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2) 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。

焊接横向裂纹产生的原因及控制

焊接横向裂纹产生的原因及控制 焊接横向裂纹产生原因主要有以下几个方面: 1、应力作用。即钢管成型后的残余应力和焊接应力。 2、焊接工艺不合理。如焊缝成形系数过小、预热温度不够或未进行焊前预热、焊接线能量过大、焊接后热处理不当、保温时间太短等。 3、由于氢的存在。如焊剂烘干不够,预热温度不充分或未进行焊前预热、以及多层焊的层间温度不够。 4、冶金因素。焊接过程中有低熔点杂质进入,如铜及铜合金。铜的来源主要有焊丝表面所镀的用于防止焊丝锈蚀的铜,或者导电嘴、铜合金导电杆内壁被磨损产生的铜。这些铜屑从导电嘴内孔进入焊剂,在焊接过程中接触焊接熔池导致横向裂纹。 控制措施: 1、焊管成型。为了合理控制残余应力,不仅需要采用针对性的设备和工艺,还需要在钢管成型前进行必要的成型工艺评定,对成型的设备、材料、产品的规格、预弯的程度、成型的速度、成型的压力、参数等进行试验和评定,合格后方进行焊管成型。 2、焊前预热。要根据具体的材质、具体的工作环境确定预热及层间温度。 3、焊接工艺。 1)埋弧焊时,为了减少焊接热输入,不建议采用多丝焊,建议尽量采用单丝多道焊,焊道平行排列,且每条焊道的宽度控制在15min以内;层间温度控制在110-250℃。 2)严格控制焊道宽度 焊道越宽,产生横裂的可能性越大。焊接时,要尽量地采用窄焊道,多分道,减少焊道宽度,减少热输入。 4、焊接材料 1)焊丝。选择低强度的焊丝,这样可以适当降低焊缝的碳当量,提高焊缝的塑性,有助于减少焊接裂纹的产生。同时注意使用不镀铜的焊丝,防止铜或铜合金进入焊缝熔池。另外需要注意防潮和防生锈。 2)焊剂。焊剂在使用前必须按照焊剂厂家推荐的烘干工艺烘干,烘干后在烘箱内进行保温,不可烘干后就倒出来,防止受潮。及时对使用中的焊剂进行磁选,磁选后放进保温桶中储存,防止在空气中受潮。及时更换焊剂,防止流落到焊剂内的铜及铜合金交换污染。 3)焊后保温、缓冷。春秋两季,焊接好后可以在室温下直接暴露在空气中缓冷。春冬两季,焊接好以后可以在室温下用保温棉把焊缝两面覆盖,在空气中缓冷。 4) 消氢处理。具体做法:焊接完成后立即用陶瓷电热毯对焊缝及其附近区域加热至200℃,保温2h后关电缓冷。

焊接熔池结晶的一般规律

焊接熔池结晶的一般规律 焊接时,熔池金属的结晶与一般炼钢时钢锭的结晶一样,也是在过冷的液体金属中,首先形成晶核和晶核长大的结晶过程。生核热力学条件是过冷度而造成的自由能降低;生核的动力学条件是自由能降低的程度。 从金属学的结晶理论可知:金属的结晶过程必须是液态金属的温度降低到“理论结晶温度”以下才能进行。液态金属缓慢冷却时,当温度降到某一点便开始结晶,直到全部结晶成固态金属为止。在缓慢冷却条件下,结晶时由于放出“结晶潜热”,补偿了热的损失,所以在冷却曲线上便出现了一个水平台,平台对应的温度即为纯金属的“理论结晶温度”T。在实际生产中,总是具有一定的冷却速度,有时甚至很大,在这种情况下,纯金属的结晶过程在一定的温度过冷下才能进行。T1低于T0过冷度,冷却速度越大,则所测得的实际结晶温度越低,过冷度越大。 从图中还可以看出,液态金属座结晶开始到结晶完了是需要一定时间,这就体金属中产生一批晶核,然后这些晶核就吸附周围液体中的原子面成长,同时,还会有新的晶核不断从液体金属中产生,长大,直到全部液体都转变为固体,最后形成由许多外形不规则的晶粒所组成的多晶体。 结晶过程就是由晶核的产生和成长两个基本过程所组成。

1、 生核 熔池中晶核的生成分为:非自发晶核、自发晶核。 形成两种晶核都需要能量 1) 自发晶核 自发临界晶核所需的能量 23316Fr Er ?= πσб:新相与液相间的表面张力系数。 ΔFr :单位体积内液固两相自由能之 差。 2) 非自发形核 () 4cos cos 32316`323 θθπσ+-?=r F k E ? θ:非自发晶核的浸润角 见图3-3 θ=0℃ E K `=0 液相中早有悬浮的质点或现成表面。 它们本身就是晶核。 当θ=180°,E K `= E K 自发晶核θ=0 ~180°时,E K `/ E K =0~1说明非自发形核所需能量小于自发晶核。θ角的大小决定新相晶核与现成表面之间的表面张力。若新核与液相中厚有现成表面固体粒子的晶体结构越相似表面张力越小,θ越小,E K `越小。

焊接的六大缺陷,产生原因、危害

焊接的六大缺陷,产生原因、危害、预防措施都在这了 一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。C、凹坑

凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。 防治措施:选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。 F、其他表面缺陷 (1)成形不良指焊缝的外观几何尺寸不符合要求。有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。 (2)错边指两个工件在厚度方向上错开一定位置,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。 (3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落, 成形后焊缝背面突起,正面下塌。 (4)表面气孔及弧坑缩孔。 (5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。 二、气孔和夹渣

电阻焊点焊方法和工艺

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电

高周波和超声波不同点

高周波熔接与超声波焊接特点以及高周波和超声波不同之处发布时间:2014.10.10新闻来源本资料由杰达超声波设备科技整理发布浏览次数:123 接到很多客户的提问就是我们需要焊接某某塑胶材料的不知道是用 超声波焊接机还是高周波焊接机,今天杰达超声波就为你解答这个纠结的问题。 一,先我们要知道什么是超声波什么是高周波(高频波)? 1.超声波,是指人耳听觉范围之外的声波。正常人的听觉可以听到16 赫兹(Hz)-20千赫兹(KHZ)的声波,低于16赫兹的声波称被称之 为次声波或亚声波,超过20千赫兹的声波被称为超声波(超音波), 超声波焊接机也正是利用了超声波的这项技术。行业也有人称之为超音波塑焊机,超声波熔接机。 2.所说的高周波是指声波的频率大于100KHZ时,我们就称之为高周波,高周波熔接机正是利用的高周波的这项技术。行业也称之为高频熔接机,高周波熔断机等。 二,高周波熔接机和超声波塑焊机的工作原理 1.超声波塑焊机工作原理是由超声波发生器产生20KHz(或15KHz)的 高压、高频信号,通过超声波换能系统,把信号转换为高频机械振动,加于塑料工件之上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成有效的熔接。

2.高周波熔接机工作原理是介质材料在高频电磁的作用下使物料内部 分子间互相激烈碰撞产生高温最终达到焊接和熔接的目的。 三,超声波焊接和高周波熔接的特点 超声波塑焊机的特点: 1、不污染无公害,绿色环保。 2、无需整体加热,工件不易变形,机器功耗小。 3、焊接速度快,工件表面氧化脱碳较轻。 4、表面淬硬层可根据需要进行调整,易于控制。 5、塑料焊接设备加装在机械加工生产线上,易于实现机械化和自动化程度,方便管理,节约人力物力,大大提高生产效率。 6、淬硬层马氏体组织较细,硬度、强度、韧性都较高。 7、表面工件表层有较大压缩内应力,工件抗疲劳破断能力较高。 高周波熔接机的特点: 1. 电力输出强大,本机振荡器所产生的周率27.12MHZ或40.68MHZ,符合国际工业波段标准,各种控制装置特殊电子线路,可避免不当操作,且能最快时间熔接制品、提高产品产量。 2. 高灵敏火花保护装置,当火花产生时,可自动切断高周回路,使机件及物件损害降低,当电流过高时,自动切断高压保证振荡管及整流器。四,超声波焊接与高周波焊接适用材料 超声波塑焊机适用于:ABS,PS,PP,PET,PA,PC,压克力等工程塑胶等可塑性材料。

PVC手套热合机的工作原理

☆PVC手套热合机的工作原理: 利用高频机、高周波的原理,从机器上下极之间产生的高频变化的磁场,促使塑料件内部分子运动摩擦产生热量,然后借助机器压力和配套模具作用下达到熔接定型的效果。可用于各类PVC涂层布、夹网布、红泥布、塑料布以及PVC塑料膜的焊接热合焊接。 ☆PVC手套热合机的适用范围: 主用用于含有10%PVC以上的软硬塑料件,以及TPU、PU、EVA、PETG材料的热合焊接封口。 例如:PVC下水裤、 PVC包装袋,雨衣,充气玩具,各类凹凸型的花纹、字母、LOGO等压制,医疗用品(输液袋、尿袋、引流袋等),鞋服箱包压花,识别带,PVC线束、充气枕,卡套,胸卡,书皮、软膜天花、电热水袋等。 ☆PVC手套热合机的机器特性: (1)强力式机头,加工不同产品是压力可以随意调整。 (2)自动保护系统,可以在机器打火的时候保护模具。 (3)进口配件,机器的重要配件均适用日本、韩国、美国、台湾等国内知名厂家电子配件 (4)脚踏定位,加气动助力系统。生产过程中安全便捷。 (5)两个工作位机头,一左一右两个机头相互交叉操作。 ☆PVC手套热合机的技术参数: ☆PVC手套热合机的企业介绍: 无锡金电电子(原无锡美之电)专业生产高频机|高周波|热合机|塑料焊接机械设备|服装压花机|塑料封口机|塑料熔接机|塑料熔断机|高频热合机|高周波热合机|高周波焊接机|高频压花机|高频泡壳封口机 |高频熔断机|高周波熔断机|高频熔接机|塑料热合机|皮革热合机|皮革压花机设备|吸塑封口机|塑料焊接机|PVC热合机|高频塑料热合机|。客户分布江苏、上海、上海、山东、湖北、河南、辽宁、吉林、黑龙江、安徽、浙江、丹东、北京等地。 服务宗旨:免费试样、定期拜访、质量保证、一年保修、终身保养。 ╔═══════════════【咨询区】═══════════════╗ 无锡金电电子设备有限公司(原无锡市美之电高频电子设备厂) 主打产品: 高周波,高频机,热合机,焊接机,压花机,涂胶压花机 联系人【联系人【】王经理】 QQ:1922485597 电话:7 传真:7 邮箱地址: 网址:

电阻焊常用方法

电阻焊常用方法:点焊、缝焊、凸焊、对焊 一、点焊 点焊是将焊件装配成搭接接头,并压紧在两柱状电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊主要用于薄板焊接。 点焊的工艺过程: 1、预压,保证工件接触良好。 2、通电,使焊接处形成熔核及塑性环。 3、断电锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。 二、缝焊 缝焊的过程与点焊相似,只是以旋转的圆盘状滚轮电极代替柱状电极,将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。

缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。 三、对焊 对焊是使焊件沿整个接触面焊合的电阻焊方法。 四、凸焊 凸焊是点焊的一种变型形式;在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。 1、电阻对焊 电阻对焊是将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法, 电阻对焊主要用于截面简单、直径或边长小于20mm和强度要求不太高的焊件。

2、闪光对焊 闪光对焊是将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。 闪光焊的接头质量比电阻焊好,焊缝力学性能与母材相当,而且焊前不需要清理接头的预焊表面。闪光对焊常用于重要焊件的焊接。可焊同种金属,也可焊异种金属;可焊0.01mm 的金属丝,也可焊20000mm的金属棒和型材。 电阻焊接的品质是由以下4个要素决定的: 1.电流, 2.通电时间, 3.加压力, 4.电阻顶端直径

各种焊接裂纹成因特点及防止措施这条必须收藏了

各种焊接裂纹成因特点及防止措施,这条必须收藏了 焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。1.热裂纹是在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si骗高)和单相奥氏体钢、镍基合金以及某些铝合金焊逢中。这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短脆性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。(2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成

物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。这一种裂纹的防治措施与结晶裂纹基本上是一致的。特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。(3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。2.再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。防治再热裂纹从选材方面,可以选用细晶粒钢。在工艺方面,选用较小的线能量,选用较高的预热温度并配合以后热措施,选用低匹配的焊接材料,避免应力集中。3.冷裂纹主要发生在高、中碳钢、低、中合金钢的焊接热影响区,但有些金属,如某些超高强钢、钛及钛合金等有时冷裂纹也发生在焊缝中。一般情况下,钢种的淬硬倾向、焊接接头含氢量及分布,以及接头所承受的拘束应力状态是高强钢焊接时产生冷裂纹的三大主要因素。焊后形成的马氏体组织在氢元素的作用下,配合以拉应力,便形成了冷裂纹。他的形成一般是穿晶或沿晶的。冷裂纹一般分

某厂高周波机的危险源辨识及事故预防

· 2011届毕业论文 某厂高周波熔接机的危险源辨识 及事故预防 系部:安全与环境工程系 学生姓名: 指导教师:职称 专业:安全工程 班级:安本......班 完成时间:2011年5月

摘要 本论文主要对东莞雨佳雨衣制造有限公司高周波塑胶熔接机生产车间的高周波塑胶熔接机进行研究。高周波熔接机是一种高频设备,它通过电子管自激振荡器产生高频电磁场,使处于高频电磁场中上、下电极间的被加工塑胶件内部分子被极化而相互运动磨擦自身产生热量,在模具的压力下达到焊接和熔接的目的。工人在运用该机器进行生产过程中,由于各方面的因素,极易产生灼伤事故,造成工人的生理和心理伤害和公司的财产损失。本论文首先运用事故树分析法对高周波熔接机进行灼伤事故进行分析,辨识存在的危险源;然后运用LEC评价方法对作业条件进行危险性分析,确定其作业条件危险性等级;最后,参照事故树分析结果和危险性分析结论,从人—机—管理的角度提出高周波熔接机事故控制措施,以将生产过程中的人员伤害和财产损失降到最低。 关键词:高周波熔接机;危险源辨识;灼伤事故;事故树;LEC评价法

ABSTRACT This paper focuses on High Frequency Plastic Welding production machine of Dongguan Rainwear House Rainwear Co., Ltd. High Frequency Plastic Welding Machine workshops.High frequency welding machine is a high-frequency device that self-excited oscillator through the tube high frequency electromagnetic field, so that in the high-frequency electromagnetic fields in the upper and lower electrodes of the plastic parts to be machined within the molecule is pol- arized and mutually self-motion heat friction , in the mold under pressure to achieve welding and welding purposes. When the workers in the use of the machine manufacturing process, various factors can easily lead to burns accidents, resulting in physical and psychological harm workers and the company's property. First, the paper fault tree analysis of high frequency welding machine burns caused fault tree analysis of the cause of the accidents; Then, useusing the evaluation method of operating conditions LEC risk analysis conducted to determine their level of risk of operating conditions; Finally, from people - machine - management point of view put forward high frequency welding machine accident control measures that with the conclusion of risk analysis and fault tree analysis to production process of injuries and property losses to a minimum. Key words:High Frequency Plastic Welding production;hazard identification;burn accident;FTA; LEC evaluation method

钢结构焊接裂纹的原因及防治措施

钢结构焊接裂纹的原因 及防治措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

钢结构焊接裂纹的原因及防治措施本文基于焊接产生裂纹的理论知识,通过实践经验,对钢结构裂纹产生的内外在原因进行了深入分析。 焊接裂纹是钢结构在制造过程出现的危害最严重的缺陷,我公司主要承担为安阳钢铁备件制造、安装及系统检修,在钢结构的制造过程中,有时焊缝会出现焊接裂纹,给工程施工带来一定的影响,具体表现在:裂纹能引起严重的应力集中,降低焊接接头的承载能力,任其发展的话最终会导致焊接结构的破坏,降低工程质量,缩短结构寿命,严重时可能造成安全事故,间接延误工期并增加施工成本,影响公司的形象,所以说裂纹在钢结构的制造过程中一经发现必须彻底清除,进行修补,确保产品质量.以下对钢结构制造过程中裂纹产生的原因及其防治措施进行分析。 1.内在原因分析及相应的预防措施 一般焊接裂纹按其产生的温度和时间分为热裂纹、冷裂纹和再热裂纹。 1.1.热裂纹 热裂纹是指在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹,故又称为高温裂纹.其产生的原因是由于焊接熔池在结

晶过程中存在偏析现象,偏析出的物质多为低熔点共晶和杂质.它们在结 晶过程中以液态间层形式存在,凝固以后的强度也较低,当焊接应力足够 大时就会将液态间层或刚凝固不久的固态金属拉开形成裂纹.此外如果母材的晶界上也存在低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,在一定条件下,焊接应力足够大时也会被拉开形成所谓热影响区液化裂纹.总之,热裂纹的产生是冶 金因素和力学因素共同作用的结果.热裂纹特征是:多贯穿在焊缝表面,且断口被氧化成氧化色.它主要的表现形式:纵向裂纹、横向裂纹、根部裂纹、弧坑裂纹及热影响区裂纹.针对其产生的原因采取以下预防措施:a) 限制钢材和焊材中的硫、磷元素的质量分数.b)改善熔池金属的一次结晶,细化晶粒提高焊缝金属的抗裂性:广泛采用的方法是向焊缝金属中加入细化晶粒的元素.c)控制焊接工艺参数,适当提高焊缝成型系数:可采用多层多道焊法,避免中心线偏析,可防止中心线裂纹。 1.2.冷裂纹 冷裂纹是焊接接头冷却到较低温度时产生的焊接裂纹.它与热裂纹不同, 是在焊后较低温度下产生的,可以焊后立即出现,有时要经过一段时间才 能出现,这种拖后一段时间才能出现的裂纹也称为延迟裂纹.冷裂纹主要 发生在中碳钢、高碳钢、低合金钢或中合金钢中,产生的原因主要有三个因素:1)钢的淬硬倾向大;2)焊接接头受到的拘束应力;3)较多的扩散氢的存在和浓集.这三个条件同时存在时,就容易产生冷裂纹.在许多情况下,

焊接热裂纹产生机理影响因素及防治措施

焊接热裂纹产生机理影响因素及防治措施 一、结晶裂纹 1、产生机理 1)、产生部位:结晶裂纹大部分都沿焊缝树枝状结晶的交界处发生和发展的,常见沿焊缝中心长度方向开裂即纵向裂纹,有时焊缝内部颁在两树枝状晶体之间。 对于低碳钢、奥氏体不锈钢、铝合金、结晶裂纹主要发生在焊缝上。 某些高强钢,含杂质较多的钢种,除发生在焊缝之处,还出现在近缝区上。 2)、分析熔池各阶段产生结晶裂纹的倾向 焊缝金属结晶过程中,晶界是个薄弱地带,由金属结晶理论可知,先结晶的金属比较纯,后结晶的金属杂质多,并集富在晶界,并且熔点较低,这些低熔点共晶物被排挤在晶界,形成一种所谓《液态薄膜》,在焊接拉应力作用下,就可能在这薄弱地带开裂,产生结晶裂纹。 产生结晶裂纹原因:①液态薄膜②拉伸应力 液态薄膜—根本原因。拉伸应力—必要条件以碳钢焊接为例,分析研究一下,在熔池结晶过程中什么阶段产生结晶裂纹的倾向最大。 如图3-77 ①液固阶段:熔池开始结晶时,液相多,固相少,液态金

属在晶粒间处于自由流动状态,有拉应力存在时,拉开后有液体随之补充,不易产生裂纹。(1区) ②固液阶段:固相多,晶粒之间相互接触,液相少,(低熔点共晶)在拉应力作用时产生微少缝隙,液态填充少,产生裂纹,这一区也称为“脆性温度区”即图3-77上a、b 之间的温度范围? ③固相阶段:完全结晶完毕,成为整体固态金属,拉应力作用时,因无液态薄膜受力均匀,不易产生裂纹。 T b—称为脆性温度区,在比区间易产生结晶裂纹,杂质较少的金属, T b小产生裂纹的可能性也小,杂质多的金属T b 大,产生裂纹的倾向也大。 3)产生结晶裂纹的条件?图3-78 如图3-78纵座标表示温度,横坐标表示由拉伸应力所产生的变形(e)和金属的塑性(P),脆性温度区的范围用T b表示上限是固液温度开始下限固相线附近,或低于固相线一段温度。 在脆性温度区内焊缝的塑性用P表示,是温度的函数,=,当在某一瞬时温度时有一个最小的塑性值(P min)PΦ ) (T (出现液态薄膜时) 受拉伸应力所产生的变形用e表示,也是温度的函数? ①如果拉伸应力所产生的变形随温度T按曲线(1)变化,

(完整版)高周波塑焊熔接机作业指导书

修订日期/ 文件名称高周波塑胶熔接机操作规范修订状态A/0 页次/页数第1页共4页 1.目的 为了提高生产效率,规范员工操作,保证员工作业安全,以确保设备、设施处于完好状态,使产品质量长期稳定,特制订本规定。 2.范围 本规定适用于公司全体作业员。 3.职责 3.1技术部为本规定的归口管理部门。 3.2生产部各车间作业员负责设备的日常使用管理与维护保养。 4.工作流程和内容 4.1开机调机准备 4.1.1 清理工作台及机器上面的杂物。 4.1.2 打开开关电源总掣,机内冷却风扇运行,并吹出少量的风。 4.1.3将控制面板电源开关打开电源指示灯亮,电子管发光,表示预热,并要预热5分钟。4.1.4将高周开关打到关的位置,并将自动调整开关打到调查整的位置。 4.1.5将底模旋转到工作固定位置,并打开下降开关,看上模与下模是否对正,合模是否平衡,不正不平衡调整对正和平衡并按上升开关返回原位置。 4.1.6根据模具的不同调整不同模具的电极至适当的位置。 4.2调机工作。 4.2.1将高周开关打到“关”的位置,并将自动调整开关打到“调整”的位置。 4.2.2将上模具平整固定在上模架上。 4.2.3将下模具放在下模架上,点动下降开关慢慢下降,将下模与上模对正并固定好下模。4.2.4看上模下模是否平衡,不平衡调整上模和下模的平衡并按上升开关返回原位置。 4. 2. 5在下模具上用双面粘胶贴上PCB绝缘板,在PCB绝缘板上贴上高温绝缘胶布并检查上下合模的平衡。 4.2.5把产品放在下模上,调整电极至适当的位置。 4. 2. 6先调整开关调到“自动”位置,高周开关调到“开”的位置,手动旋转下模架至模架固定位 置,高周波自动工作。 4.2.7工作完后,先高周开关调到“关”的位置,调整开关到“调整”位置,手动旋转下模架取出产品,检查产品焊接是否良好,不良好重新调整上下模平衡至产品良好为止。 4. 2 .8 上下模调整好后,看产品的熔接情况,根据产品不同,适当调整延迟,熔接,成型,上升时间和 同步频率,直到产品焊接良好为止。 4.3操作步骤及说明 4.3.1面板功能说明 8熔接时间9成型时间10上升时间 11焊接电流显示

高周波操作保养说明

高周波使用说明及保养 机器示意图 HR- 5000A 单头高周波塑料熔接机 (1) 高周控制开关(9) 上升按钮 (2) 延时时间制(10) 下降按钮 (3) 高周时间制(11) 电压表 (4) 定型时间制(12) 工作电源开关 (5) 屏流表(13) 温控器 (6) 上升时间制(14) 接地回路器 (7) 自动控制开关(15) 转盘/推盘 (8) 计数器(16) 上模平衡调节螺杆 (17)发热板(上电极) -1-

一、简介 1、适用范围 各种聚乙烯(PVC)为主的塑料产品,如吹气玩具、手提袋、鞋类、商标、雨衣、文具、铭牌特殊双面吸塑包装等。 2、整机特点 (1)输出电力强大 本机振荡器所产生的周率27.12MHZ符合国际工业波段标准,各种控制装置特殊电子线路,可避免不当操作,且能最快时间熔接制品、提高产量。 (2)高感度火花防止装置 当火花产生时,可自动切断高周回路,使机件及物件损害降低,并当电流过高时。自动切断高压保护振荡管及整流器。 3、基本工作原理 本机属高频设备,由电子管自激振荡器产生高频电磁场,被加工塑料在上、下电极间的高频电磁场中,其内部分子被极化而相互运动磨擦自身产生热量,在模具的压力下达到熔接的目的。 二、功能说明(附第一页) 1、高周控制开关:用来控制高周波输出,在校模时必须关闭该开关,工作时再打开。 2、延时时间制:用来调节机器上模下压工作件时间长短,调至适当时间以保上模同工件接触平整, 以防止因模具未接触到工件而释放高周,从而影响熔接效果。 3、熔接时间制:根据工件大小所需要的熔接时间进行调节设置。工作一段时间后,可适当减少 熔接时间。 4、定型时间制:该时间制是在高周熔接完后,模停留在工作件上的定型时间,一般调节在0.5-1.0秒 之间即可。 5、屏流表:显示高周输出时的爬升电流。若爬升指标超出该表极限,必须关闭高周开关,将高周调小, 以保正常工作。 6、上升时间制:调节该时间制,可以改变模具上升的高度。 7、自动控制开关:校模时断开此键,通过上升按钮、下降按钮上升或下降将模具调好后,即打开该键 即可自动工作。 8、计数器:每工作一次会自动计数一次,可累计或清零重计。 9、上升按钮:持续或断续按此键可控制发热板(模具)上升。 10、下降按钮:持续或断续按此键可控制发热板(模具)下降。 11、电压表:显示当前工件电压。 12、工作电源开关:启动或停止主机工作,开机后10分钟再工作。 13、温控器:调节发热温度高低,一般设置在110℃左右。 14、接地回路器:工作时必须保证铜片圈接地(接触转盘或推盘)。 15、转盘(推盘):工作台面,用于放置下模。 -2-

热裂纹和冷裂纹产生的原因

热裂纹和冷裂纹产生的原因 一、热裂纹的特征 热裂纹常发生在焊缝区,在焊缝结晶过程中产生的叫结晶裂纹,也有发生在热影响区中,在加热到过热温度时,晶间低熔点杂质发生熔化,产生裂纹,叫液化裂纹。 特征:沿晶界开裂(故又称晶间裂纹),断口表面有氧化色。 (2)热裂纹产生原因: ①晶间存在液态间层 焊缝:存在低熔点杂质偏析} 形成液态间层 热影响区:过热区晶界存在低熔点杂质 ②存在焊接拉应力 (3)热裂纹的防止措施: ①限制钢材和焊材的低熔点杂质,如S、P含量。 ②控制焊接规范,适当提高焊缝成形系数(即焊道的宽度与计算厚度之比)枣焊缝成形系数太小,易形成中心线偏析,易产生热裂纹。 ③调整焊缝化学成分,避免低熔点共晶物;缩小结晶温度范围,改善焊缝组织,细化焊缝晶粒,提高塑性,减少偏析。 ④减少焊接拉应力 ⑤操作上填满弧坑

二、冷裂纹的形态和特征 焊缝区和热影响区都可能产生冷裂纹,常见冷裂纹形态有三种 冷裂纹形态{ 焊道下裂纹:在焊道下的热影响区内形成的焊接冷裂纹,常平行于熔合线发展 焊指裂纹:沿应力集中的焊址处形成的冷裂纹,在热影响内扩展 焊根裂纹:沿应力集中的焊缝根部所形成的冷裂纹,向焊缝或热影响发展 a-焊道下裂纹;b-焊趾裂纹;c-焊根裂纹 特征:无分支、穿晶开裂、断口表面无氧化色。 最主要、最常见的冷裂纹为延迟裂纹(即在焊后延迟一段时间才发生的裂纹------- 因为氢是最活跃的诱发因素,而氢在金属中扩散、聚集和诱发裂纹需要一定的时间)。(2)延迟裂纹的产生原因 ①焊接接头存在淬硬组织,性能脆化。 ②扩散氢含量较高,使接头性能脆化,并聚集在焊接缺陷处形成大量氢分子,造成非常大的局部压力。(氢是诱发延迟裂纹的最活跃因素,故有人将延迟裂纹又称氢致裂纹) ③存在较大的焊接拉应力 (3)防止延迟裂纹的措施 ①选用碱性焊条,减少焊缝金属中氢含量、提高焊缝金属塑性 ②减少氢来源枣焊材要烘干,接头要清洁(无油、无锈、无水) ③避免产生淬硬组织枣焊前预热、焊后缓冷(可以降低焊后冷却速度) ④降低焊接应力枣采用合理的工艺规范,焊后热处理等 ⑤焊后立即进行消氢处理(即加热到250℃,保温2~6左右,使焊缝金属中的扩散氢逸出金属表面)。

相关主题