搜档网
当前位置:搜档网 › 2020年高考数学复习利用正余弦定理破解解三角形问题专题突破

2020年高考数学复习利用正余弦定理破解解三角形问题专题突破

2020年高考数学复习利用正余弦定理破解解三角形问题专题突破
2020年高考数学复习利用正余弦定理破解解三角形问题专题突破

2020 年高考数学复习利用正余弦定理破解解三角形问题专题突破

考纲要求: 1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题

1

2.会利用三角形的面积公式解决几何计算问题S ab sin C .

2 基础知识回顾:

a b c

1. ===2R,其中R 是三角形外接圆的半径.

sin A sin B sin C

由正弦定理可以变形:(1) a∶b ∶c=sin A∶sin B∶sin C;(2) a=2 Rsin A,b=2Rsin B,c=2Rsin C.

2 .余弦定理:a2=b 2+c2-2 bccos A,b 2=a2+c2-2accos B,c2=a2+b2-2abcos C.

b 2+c2-a2a2+c2-b2a2+b 2-c2

变形:cos A =,cos B=,cos C=

2bc 2ac 2ab

4. 三角形常用的面积公式

1 1 1 1 abc

(1)S=a·h a(h a表示a边上的高).(2) S=absinC =acsinB =bcsinA =

2 2 2 2 4R

1

(3)S=2r(a+b+c)(r 为内切圆半径).应用举例:

类型一、利用正(余)弦定理解三角形

【例1】已知中,,点在边上,且.(1 )若,求;

(2 )求的周长的取值范围.

【答案】(1 );(2 ).

所以:

中,利用正弦定理得:

由于:

则:

,,

由于:,则:,

得到:,

所以的周长的范围是:.

【点睛】

本题考查了用正弦定理、余弦定理解三角形,尤其在求三角形周长时解题方法是利用正弦定理将边长转化为角的问题,然后利用辅助角公式进行化简,求出范围,一定要掌握解题方法。

【例2】已知在中,所对的边分别为,.

(1 )求的大小;

(2)若,求的值.

【答案】(1 )或(2)1

2 )∵

, ∴

又由余弦定理得 ,∴

时,则 时,则 ,

点睛】 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的 关系,从而达到解决问题的目的 .其基本步骤是: 第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向 . 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化 .

第三步:求结果 类型二、利用正(余)弦定理判断三角形形状

【例 3】 在 中, , .

(1 )求证: 是直角三角形;

(2 )若点 在 边上,且 ,求 .

答案】(1 )见解析;( 2 )

,∴

综上所述,当且仅当 ,此方程无解 .

时,可得

(2)设,则,,,

所以

在中,

由正弦定理得,所以

点睛】本题主要考查的知识点是运用正弦定理和余弦定理解三角形,注意角之间的表示,本题需要一定的计算

【例4】在中,角所对的边分别为,已知且

(1 )判断的形状;

2)若,求的面积

答案】(1 )见解析;(2 )

(2)由(1)知,,则,

因为,所以由余弦定理,得

解得,所以的面积.

【点睛】

本题运用正弦定理、余弦定理和三角形面积公式解三角形,注意在运算过程中作为隐含的条件成立并且加以运用。类型三、利用正(余)弦定理解决与三角形面积有关的问题

【例5】在中,角, , 的对边分别为.已知, .

(1)求角;

(2)若,求的面积.

点睛】 本题考查三角形的解法,正弦定理的应用,两角和与差的三角函数的应用,考查计算能力.

【例 6】 在 中,角 , , 的对边分别是 , , ,若 , , 成等差数列

(1 )求 ;

(2 )若 , ,求 的面积 .

2 )由( 1)得

同理得

所以 的面积

;(2)2.

答案】

又 ,∴ ,

方法、规律归纳

1. 三角形中常见的结论

(1) A + B + C =π. (2) 在△ABC 中,A >B ? a >b ? sinA >sinB ? cosA

(3) 任意两边之和大于第三边,任意两边之差小于第三边.

(4) 三角形内的诱导公式: sin (A +B )=sin C ; cos (A + B ) =- cos C ;

A +B

C A +B

C

tan (A +B )=- tan C ;sin

=cos ;cos

=sin .

2

2 2

2

(6) 在△ABC 中, A ,B ,C 成等差数列的充要条件是 B =60 ° .

(7) △ABC 为正三角形的充要条件是 A ,B ,C 成等差数列且 a ,b ,c 成等比数列. 2. 判定三角形形状的两种常用途径

(1) 通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.

(2) 利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.

实战演练 :

1 .在

中,角 所对的边分别为 ,且 .

(1 )求

而,

,得

(2 )若,求的面积的最大值.【答案】(1) ;(2) .

点睛】

在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一

决三角形问题时,注意角的限制范围.

1 )若 ,求 的面积;

2 )若 的面积为 ,求 , .

般采用到正弦定理, 出现边的二次式一般采用到余弦定理.应用正、余弦定理时,

注意公式变式的应用. 解

2. 在 中,角 , , 的对边分别为 , , ,

答案】

3 .已知中,角所对的边分别为且

(1 )求角的大小;

(2 )若,求面积的最大值。【答案】;(2)

解析】

分析】

1)利用正弦定理和三角恒等变换的方法化简

即得角 的大小 .(2) 先证明

再求 面积的最大值

详解】

1)

点睛】

(1) 本题主要考查正弦定理余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的掌握水

平和分析推理能力 .(2) 本题解题的关键是

4 .已知 中,内角 所对的边分别为 ,其中 , 1 )若 ,求 的值;

2 )若 边上的中线长为 ,求 的面积 .

详解】

(2)

答案】 Ⅱ)由 边上的中线长为 ,即可求解

(1)

(2)

(1 )依题意,,故,所以

所以,

因为,所以,故,

可得

2)记边上的中线为CD ,故

所以

结合(1)可知解得,

所以的面积

点睛】

本题考查了正余弦定理的灵活运用和计算能力,属于基础题.5 .在中,内角的对边分别为,且满足

1 )证明:成等差数列;

2 )已知的面积为,求的值.答案】(1 )见解析;(2 )

详解】

由三角形内角和定理有 由正弦定理有

成等差数列

点睛】 本题考查正弦定理、余弦定理及三角形的面积公式.解题中利用正弦定理和余弦定理进行边角关系的转化

是解题地基本方法. 当等式两边是关于边 或关于角 的齐次式时, 可以利用正弦定理进行边 角转化,如果有余弦定理中的式子则用余弦定理转化,化为单一关系式再进行变形求解.

6 .在 中,内角 所对的边分别为 ,已知 1 )求角 ;

2 )若 的周长为 8,外接圆半径为 ,求 的面积 .

【答案】 (1) ;(2) .

【详解】

( 1)由 ,

1)由题设

得 ,根据

由余弦定理

又由 (1) 得

代入得 ,

2)由

得,即,所以

即,因为,所以. 由正弦定理得,因为,所以,所以,得.

7 . 的内角 , , 的对边分别为 , , ,已知 1 )求 ;

2 )若 ,求 的面积和周长 .

也即得 .

得周长.

详解:(1)由正弦定理以及 又因为 ,所以 ,所以可得

由余弦定理得

点睛:本题考查正弦定理,三角形的面积公式,考查两角和的余弦公式和诱导公式,在解三角形中边角关 系常常用正弦定理进行相互转化,解题时可根据要求的结论确定选用什么公式,从而确定解题方法.如本 题求三角形面积,

利用( 1 )的结论可选用公式

,因此可先把 及 代入已知求出 ,再求面积.

8 .在 中,角 的对边分别是 ,且 .

(Ⅰ)求角 的大小;

(Ⅱ)若 ,求 面积的最大值.

;(2)

答案】(1 )

和 代入

得 ,所以 ,且 ,得

2)将

解析】分析:(1)把已知等式

用正弦定理转化为角的关系, 可求得 ,从而可得 ,

2 )把 及 代入已知可得 ,再由公式

求得面积,由余弦定理可求得 ,从而可得 ,

所以

,即

,所以 的周长为

【答案】(Ⅰ);(Ⅱ).

点睛:本题主要考查了正弦定理、余弦定理、三角形面积公式和基本不等式的应用,属于中档题。

9 .已知的内切圆面积为,角所对的边分别为,若. (1 )求角;

(2 )当的值最小时,求的面积.

【答案】(1) ;(2) .

2)

由题意可知的内切圆半径为1 ,如图,设圆为三角形的内切圆,为切点,可得,则,于是

化简得,所以或

又,所以,即当且仅当时,的最小值为6 ,

此时三角形的面积

点睛:本题主要考察了正余弦定理的灵活应用及三角形内切圆的性质,属于中档题.

10 .已知向量,,且函数

)求函数的最大值以及取最大值时的取值集合.

)在中,角,,的对边分别为,,,且,,,求的面积.答案】(1) 函数的最大值为,此时的取值集合为.(2)

∵ 为的内角,

)∵

由余弦定理得即又,,故,

得,

∴ 的面积

点睛:本题综合考查平面向量的数量积公式,三角函数的正余弦倍角公式,辅助角公式,及用余弦定理解三角形和三角形面积。解三角的关键是选择合适的正弦定理与余弦定理及面积公式。

11 .△ABC的内角,A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin

(1) 求cos B ;

(2) 若a+c=6,△ABC 的面积为2,求b.

【答案】(1)cos B=.(2) b =2.

点睛:以三角形载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考

查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心

12 .已知中,,为内一点,且.

(Ⅰ)当时,求的长;

(Ⅱ)若,令,求的值.

【答案】(Ⅰ ) ;(Ⅱ) .

解三角形高考大题-带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形, 90ACB =∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ)因为9060150BCD =+=∠, CB AC CD ==, 所以15CBE =∠. 所以6cos cos(4530)4 CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 12 4 ? = =. 12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。 (1)按下列要求写出函数关系式: ①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++-B A C D E B

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状 1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若 cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定 2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC (A )一定是锐角三角形. (B )一定是直角三角形. (C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 4、在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 6、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 7、在△ABC 中,若c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边, 且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状. 10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。 11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

2020年高考数学三角函数与解三角形大题精做

2020年高考数学三角函数与解三角形大题精做 例题一:在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(),2a c b =-m ,()cos ,cos C A =n ,且⊥m n . (1)求角A 的大小; (2)若5b c +=,ABC △a . 例题二:如图,在ABC △中,π 4A ∠=,4AB =,BC =点D 在AC 边上,且1cos 3 ADB ∠=-. (1)求BD 的长; (2)求BCD △的面积. 例题三: ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos 0a c B b A ++=.

(1)求B ; (2)若3b =,ABC △的周长为3+ABC △的面积. 例题四:已知函数()22 cos cos sin f x x x x x =+-. (1)求函数()y f x =的最小正周期以及单调递增区间; (2)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c ,若()1f C =,2c =,()sin sin 2sin 2C B A A +-=,求ABC △的面积.

例题一:【答案】(1)π3 A =;(2 )a = 【解析】(1)由⊥m n ,可得0?=m n ,即2cos cos cos b A a C c A =+, 即2sin cos sin cos sin cos B A A C C A =+,即()2sin cos sin B A A C =+, ∵()()sin sin πsin A C B B +=-=,∴2sin cos sin B A B =,即()sin 2cos 10B A -=, ∵0πB <<,∴sin 0B ≠,∴1cos 2 A = , ∵0πA <<,∴π3A =. (2 )由ABC S =△ 1sin 2 ABC S bc A ==△,∴4bc =, 又5b c +=,由余弦定理得()22222cos 313a b c bc A b c bc =+-=+-=, ∴a = 例题二:【答案】(1)3;(2 ) 【解析】(1)在ABD △中,∵1cos 3 ADB ∠=-, ∴sin 3ADB ∠=, 由正弦定理sin sin BD AB BAD ADB =∠∠, ∴4sin 3sin AB BAD BD ADB ∠===∠. (2)∵πADB CDB ∠+∠=, ∴()1cos cos πcos 3 CDB ADB ADB ∠=-∠=-∠=. ∴( )sin sin πsin CDB ADB ADB ∠=-∠=∠= ,sin CDB ∠= 在BCD △中,由余弦定理2222cos BC BD CD BD CD CDB =+-??∠, 得21179233 CD CD =+-??,解得4CD =或2CD =-(舍). ∴BCD △ 的面积11sin 3422S BD CD CDB =??∠=??=. 例题三:【答案】(1)2π3 B =;(2 )ABC S =△ 【解析】(1)∵()2cos cos 0a c B b A ++=, ∴()sin 2sin cos sin cos 0A C B B A ++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,

解三角形高考真题(一)

解三角形高考真题(一)

解三角形高考真题(一) 一.选择题(共9小题) 1.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=() A.B.C.D. 2.在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB (1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是() A.a=2b B.b=2a C.A=2B D.B=2A 3.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.3 4.在△ABC中,若AB=,BC=3,∠C=120°,则AC=() A.1 B.2 C.3 D.4 5.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A. B.C.D. 6.在△ABC中,B=,BC边上的高等于BC,则

14.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= .15.在△ABC中,∠A=,a=c,则= .16.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC= . 17.在△ABC中,AB=,∠A=75°,∠B=45°,则AC= . 18.设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b= .19.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m. 20.若锐角△ABC的面积为,且AB=5,AC=8,则BC等于. 21.在△ABC中,a=3,b=,∠A=,则∠

正余弦定理与解三角形整理(有答案)

正余弦定理考点梳理: 1. 直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三边之间的关系:a2+b2=c2。(勾股定理) A (2)锐角之间的关系:A+B=90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 C B 2. 2.斜三角形中各元素间的关系: a 如图6-29 ,在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。 (1)三角形内角和:A+B+C=_____ (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 3. 正弦定理: a b c 2R 。(R为外接圆半径)sin A sin B sin C a b c = ==2R的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C=a∶b∶c; (2) a b == sin A sin B c = sin C a+b+c =2R; sin A+sin B+sin C (3) a=2R sin_ A,b=2R sin_ B,c=2R sin_ C; a b c (4)sin A=,sin B=,sin C=. 2R 2R 2R 4. 三角形面积公式:S=1 2 ab sin C= 1 1 bc sin A=ca sin B. 2 2 5. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的两倍。 2 2 2 a b c 2bccos A 2 2 2 b a c 2accosB 2 2 2 c b a 2ba cosC 或 cos A cos B cos C 2 2 2 b c a 2bc 2 2 2 a c b 2ac 2 2 2 b a c 2ab 余弦定理的公式:. 6. (1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

高考解三角形大题(30道)69052

专题精选习题----解三角形 1.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,已知b a c B C A -= -2cos cos 2cos . (1)求A C sin sin 的值; (2)若2,41 cos ==b B ,求ABC ?的面积S . 2.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 2sin 1cos sin C C C -=+. (1)求C sin 的值; (2)若8)(422-+=+b a b a ,求边c 的值. 3.在ABC ?中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+π ,求A 的值; (2)若c b A 3,31 cos ==,求C sin 的值.

4.ABC ?中,D 为边BC 上的一点,5 3cos ,135sin ,33=∠==ADC B BD ,求AD . 5.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知41 cos ,2,1===C b a . (1)求ABC ?的周长; (2)求)cos(C A -的值. 6.在ABC ?中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241 b a c =. (1)当1,45 ==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.

7.在ABC ?中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值; (2)求C B sin sin +的最大值. 8.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 412cos -=C . (1)求C sin 的值; (2)当C A a sin sin 2,2==时,求c b ,的长. 9.在ABC ?中,角C B A ,,的对边分别是c b a ,,,且满足 3,5522cos =?=A . (1)求ABC ?的面积; (2)若6=+c b ,求a 的值.

利用正余弦定理解三角形资料

复习课: 解三角形 枣庄十八中 秦真 教学目标 重点:能够运用正弦定理余弦定理并结合三角形有关知识解决与三角形面积,形状有关的问题。 难点:如何选择适当的定理,公式,方法解决有关三角形的综合问题. 能力点:定理公式方法的适当选取,培养学生自主解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:在用正弦定理解三角形问题中会出现判断几解问题中易出现错误 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.正弦定理: 2sin sin sin a b c R A B C ===,其中R 是三角形外接圆半径. 2.余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+- ,2 2 2 2cos c a b ac C =+- , 222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 3.111 sin sin sin 222 ABC S ab C bc A ac B ?= == 4.在三角形中大边对大角,反之亦然. 5.射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+

6.三角形内角的诱导公式 (1)sin()sin A B C +=,cos()cos A B C +=-,tan tan()C A B =+,cos sin 22 c A B +=,sin cos 22 C A B +=,... 在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ·tanB ·tanC; 7.解三角形常见的四种类型 (1)已知两角A 、B 与一边a ,由A+B+C=180°及 sin sin sin a b c A B C == ,可求出角C ,再求,b c . (2)已知两边,b c 与其夹角A ,由2 2 2 2cos a b c bc A =+-,求出a ,再由余弦定理,求出角B 、C. (3)已知三边,,a b c ,由余弦定理可求出角A 、B 、C. (4)已知两边a 、b 及其中一边的对角A ,由正弦定理 sin sin a b A B = ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由 sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表: 8. 三、【范例导航】 题型(一):正、余弦定理 1正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以 计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角. 例1.在?ABC 中,已知a =c = ,45B =o ,求b 及A ;

高考文科数学真题大全解三角形高考题学生版

高考文科数学真题大全解 三角形高考题学生版 This manuscript was revised by the office on December 10, 2020.

8.(2012上海)在ABC ?中,若C B A 222sin sin sin <+,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.(2013天津理)在△ABC 中,∠ABC =π 4 ,AB =2,BC =3,则sin ∠BAC 等于( ) 10.(2013新标2文) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B = π6,c =π 4 ,则△ABC 的面积为( ) A .23+2 +1 C .23-2 -1 11、(2013新标1文) 已知锐角ABC ?的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9 (C )8 (D )5 12.(2013辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则∠B =( ) 13.(2013山东文)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 D .1 14.(2013陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则 △ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 15、(2016年新课标Ⅰ卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =, 2 cos 3 A = ,则b= (A )2 (B )3 (C )2 (D )3 16、(2016年新课标Ⅲ卷文)在ABC △中,π4B ,BC 边上的高等于1 3 BC ,则sin A (A )3 10 (B )1010 (C )55 (D )31010 17、(2016年高考山东卷文)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ,则A = (A ) 3π4(B )π3(C )π4(D )π6

如何正确理解正余弦定理解三角形

1.1 正弦定理和余弦定理教案(共两课时) 教学目标 根据教学大纲的要求,结合学生基础和知识结构,来确定如下教学目标: (一)知识目标 (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; (2) 会运用正弦定理与三角形内角和定理解三角形的两类基本问题。 (3) 掌握余弦定理的两种表示形式; (4) 掌握证明余弦定理的向量方法; (5) 会运用余弦定理解决两类基本的解三角形问题。 (二)能力目标 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。 (三)情感目标 (1) 培养学生在方程思想指导下处理解三角形问题的运算能力; (2) 培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、余弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 教学重点 正弦定理、余弦定理的探索和证明及其基本应用。 教学难点 (1) 正弦定理和余弦定理的证明过程。 (1) 已知两边和其中一边的对角解三角形时判断解的个数。 (2) 勾股定理在余弦定理的发现和证明过程中的作用。 教学方法 启发示探索法,课堂讨论法。 教学用具 粉笔,直尺,三角板,半圆,计算器。 、教学步骤 第一课时正弦定理 (一) 课题引入 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。 A

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? (图1.1-1) (二) 探索新知 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角 三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (让学生进行讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b = , b a 从而 sin sin a b A B = sin c C = A D B (图1.1-3) 让学生思考:是否可以用其它方法证明这一等式? 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 两边同除以abc 21 即得:A a sin =B b sin =C c sin 证明三:(外接圆法) 如图所示,∠A=∠D ∴ R CD D a A a 2sin sin === (R 为外接圆的半径) 同理 B b sin =2R ,C c sin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。

解三角形(历届高考题)

解三角形(历届高考题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

历届高考中的“解三角形”试题精选(自我测试) 1.(A 等于( ) (A )135° (B)90° (C)45° (D)30° 2.(2007重庆理)在ABC ?中,,75,45,300===C A AB 则BC =( ) A.33- B.2 C.2 D.33+ 3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、 c ,A =3 π ,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 4.(2008福建文)在中,角A,B,C 的对应边分别为a,b,c,若222a c b +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3 π 或23π 5.(2005春招上海)在△ABC 中,若 C c B b A a cos cos cos = =,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若 a 、 b 、 c 成等比数列,且2c a =,则cos B =( ) A . 14 B .3 4 C .4 D .3 7.(2005北京春招文、理)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2 3 ,那么b =( ) A .2 31+ B .31+ C .2 32+ D .32+ 二.填空题: (每小题5分,计30分) 9.(2007重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC = 。

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

三角函数与解三角形大题部分-高考数学解题方法训练

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2)

∴当时,,∴. 当时,,∴. 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知中,角所对的边分别是,且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

解三角形高考大题-带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E , 2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ) 因为 9060150BCD =+=∠,CB AC CD ==, 所以15CBE =∠. 所以6cos cos(4530)4 CBE =-=∠.?6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 12 4 ? = =.?12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP,设排污管道的总长为y km 。 (1)按下列要求写出函数关系式: ①设∠B AO=θ(rad ),将y 表示成θ的函数关系式; ②设O P=x (k m),将y 表示成x的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知P Q垂直平分A B,若∠BA O=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++- B A C D E B

相关主题