搜档网
当前位置:搜档网 › [推荐学习]2018届高考数学大一轮复习第八章解析几何第七节抛物线教师用书理

[推荐学习]2018届高考数学大一轮复习第八章解析几何第七节抛物线教师用书理

[推荐学习]2018届高考数学大一轮复习第八章解析几何第七节抛物线教师用书理
[推荐学习]2018届高考数学大一轮复习第八章解析几何第七节抛物线教师用书理

第七节抛物线

☆☆☆2017考纲考题考情☆☆☆

1.抛物线的概念

平面内与一个定点F和一条定直线l(F?l)的距离相等的点的轨迹叫做抛物线,点F叫做

抛物线的焦点,直线

l叫做抛物线的准线。

2.抛物线的标准方程与几何性质

00

微点提醒

抛物线焦点弦的4个常用结论

设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 2

4,y 1y 2=-p 2。

(2)弦长|AB |=x 1+x 2+p =2p

sin 2α(α为弦AB 的倾斜角)。 (3)以弦AB 为直径的圆与准线相切。 (4)过焦点垂直于对称轴的弦长等于2p 。

小|题|快|练

一 、走进教材

1.(选修2-1P 67练习T 3(1)改编)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________。

【解析】 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则

|AB |=2,由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6。

【答案】 6

2.(选修2-1P 72练习T 1(1)改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点

P (-2,-4),则该抛物线的标准方程为

____________________________________________________________。

【解析】 很明显点P 在第三象限,所以抛物线的焦点可能在x 轴负半轴上或y 轴负半轴上。

当焦点在x 轴负半轴上时,设方程为y 2

=-2px (p >0),把点P (-2,-4)的坐标代入得(-4)2

=-2p ×(-2),

解得p =4,此时抛物线的标准方程为y 2=-8x ; 当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),

把点P (-2,-4)的坐标代入得(-2)2

=-2p ×(-4),解得p =1

2,此时抛物线的标准方

程为x 2

=-y 。

综上可知,抛物线的标准方程为y 2=-8x 或x 2=-y 。 【答案】 y 2=-8x 或x 2=-y 二、双基查验

1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则抛物线焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1)

D .(0,1)

【解析】 因为抛物线的准线方程为x =-p

2=-1,

∴p

2=1,∴焦点坐标为(1,0)。故选B 。 【答案】 B

2.抛物线y =14x 2

的准线方程是( ) A .y =-1 B .y =-2 C .x =-1

D .x =-2

【解析】 抛物线y =1

4x 2的标准方程为x 2=4y ,所以其准线方程为y =-1。故选A 。 【答案】 A

3.设F 为抛物线C :y 2

=4x 的焦点,曲线y =k

x (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )

A.12 B .1 C.32

D .2

【解析】 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛

物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k

x (k >0)得k =2。故选D 。

【答案】 D 4.若抛物线

y =ax 2的准线方程是y =2,则a 的值是

___________________________________________________________。

【解析】 抛物线y =ax 2

可化为x 2

=1

a y ,

∴-1

4a =2, ∴a =-1

8。 【答案】 -1

8

5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为________。

【解析】 ∵A (-2,3)在抛物线y 2

=2px 的准线上,

∴-p

2=-2,∴p =4,∴y 2

=8x ,设直线AB 的方程为x =m (y -3)-2,① 将①与y

2

=8x 联立,即?

????

x =m y --2,

y 2=8x ,

得y 2

-8my +24m +16=0,②

则Δ=(-8m )2

-4(24m +16)=0,即2m 2

-3m -2=0,解得m =2或m =-1

2(舍去),

将m =2代入①②解得????

?

x =8,y =8,

即B (8,8),又F (2,0),∴k BF =8-08-2=43。 【答案】 4

3

求|PA |+|PF |的最小值,并求出取最小值时点P 的坐标。

【解析】 将x =3代入抛物线方程y 2

=2x ,得y =±6。

∵6>2,∴A 在抛物线内部,如图。

设抛物线上点P 到准线l :x =-1

2的距离为d ,由定义知|PA |+|PF |=|PA |+d ,当PA ⊥l 时,|PA |+d 最小,最小值为7

2,即|PA |+|PF |的最小值为7

2,此时P 点纵坐标为2,代入y 2

=2x ,得x =2,∴点P 的坐标为(2,2)。

【答案】 最小值7

2,P (2,2)

【母题变式】 将本典例中点A 的坐标改为(3,4),求|PA |+|PF |的最小值。

【解析】 当P ,A ,F 共线时,|PA |+|PF |最小,|PA |+|PF |≥|AF |=? ??

??3-122+42=254+16=892。 【答案】

892

反思归纳 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关。由于抛物线的定义在运用上

有较大的灵活性,因此此类问题也有一定的难度。“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径。

【拓展变式】 (2016·广东茂名二模)若动圆的圆心在抛物线y =1

12x 2上,且与直线y +3=0相切,则此圆恒过定点( )

A .(0,2)

B .(0,-3)

C .(0,3)

D .(0,6)

【解析】 直线y +3=0是抛物线x 2=12y 的准线,由抛物线的定义知抛物线上的点到直线y =-3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3)。故选C 。

【答案】 C

是( )

A .y 2

=x B .x 2=-8y C .y 2

=-8x 或x 2

=y D .y 2=x 或x 2=-8y

(2)已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心, |FA |为半径的圆交准线于B ,C 两点,△FBC 为正三角形,且△ABC 的面积是128

3,则抛物线的方程为__________________。

【解析】 (1)(待定系数法)设抛物线为y 2=mx ,代入点P (4,-2),解得m =1,则抛物线方程为y 2=x ;设抛物线为x 2=ny ,代入点P (4,-2),解得n =-8,则抛物线方程为x 2=-8y 。故选D 。

(2)(定义法)如图,依题意得|DF |=p ,|DF ||BF |=cos30°,因此|BF |=2p 3,|AF |=|BF |=2p

3。

由抛物线的定义知,点A 到准线的距离也为2p

3,又△ABC 的面积为1283,因此有12×2p 3×2p 3=128

3,p =8,该抛物线方程为y 2

=16x 。

【答案】 (1)D (2)y 2=16x

反思归纳 1.求抛物线的标准方程的方法 1先定位:根据焦点或准线的位置。 2再定形:即根据条件求p 。 2.抛物线性质的应用技巧 1

利用抛物线方程确定及应用其焦点、准线时,关键是将抛

物线方程化成标准方程。

2要结合图形分析,灵活运用平面图形的性质以形助数。

【变式训练】 (2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点。已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )

A .2

B .4

C .6

D .8

【解析】 由题意,不妨设抛物线方程为y 2

=2px (p >0),由|AB |=42,|DE |=25,可取A ? ????4p ,22,D ? ????

-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2

+8=p 2

4+5,得p =4。

故选B 。

【答案】 B

【典例3】 已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),

B (x 2,y 2)(x 1

(1)求该抛物线的方程;

(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →

,求λ的值。

【解析】 (1)由题意得直线AB 的方程为y =22·? ????x -p 2,与y 2=2px 联立,消去y 有

4x 2

-5px +p 2

=0,所以x 1+x 2=5p

4。

由抛物线定义得|AB |=x 1+x 2+p =5p

4+p =9,所以p =4,从而该抛物线的方程为y 2=8x 。 (2)由(1)得4x 2-5px +p 2=0,即x 2-5x +4=0,则x 1=1,x 2=4,于是y 1=-22,y 2

=42,从而A (1,-22),B (4,42)。设C (x 3,y 3),则OC →

=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22)。

又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2

=4λ+1,解得λ=0

或λ=2。

【答案】 (1)y 2

=8x (2)λ=0或λ=2

反思归纳 解决焦点弦问题的关键是“设而不求”方法的应用,解题时,设出直线与抛物线两交点的坐标,根据抛物线的方程正确表示出焦点弦长,再利用已知条件求解。

【变式训练】 设抛物线y 2

=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴。证明:直线AC 经过原点O 。

【证明】 设直线AB 的方程为x =my +p

2,代入y 2=2px , 得y 2

-2pmy -p 2

=0。

由根与系数的关系,得y A y B =-p 2,

即y B =-p 2

y A 。

∵BC ∥x 轴,且C 在准线x =-p

2上,

∴C ? ????-p 2,y B 。

则k OC =y B -p 2

=2p y A =y A

x A =k OA 。

∴直线AC 经过原点O 。

=0,抛物线C :y 2

=2px (p >0)。

(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;

(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q 。

①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围。

【解析】 (1)抛物线C :y 2

=2px (p >0)的焦点为? ????

p 2,0,

由点? ????

p 2,0在直线l :x -y -2=0上,得p 2-0-2=0,即p =4。

所以抛物线C 的方程为y 2

=8x 。

(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0)。

因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ ,于是直线PQ 的斜率为-1,则可设其方程为y =-x +b 。

①证明:由?

????

y 2

=2px ,y =-x +b 消去x 得y 2

+2py -2pb =0。(*)

因为P 和Q 是抛物线C 上的相异两点, 所以y 1≠y 2,

从而Δ=(2p )2

-4×(-2pb )>0,化简得p +2b >0。 方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而

y 0=y 1+y 2

2=-p 。

因为M (x 0,y 0)在直线l 上,所以x 0=2-p 。 因此,线段PQ 的中点坐标为(2-p ,-p )。

②因为M (2-p ,-p )在直线y =-x +b 上,所以-p =-(2-p )+b ,即b =2-2p 。 由①知p +2b >0,于是p +2(2-2p )>0, 所以p <43。

因此,p 的取值范围是? ????

0,43。

【答案】 (1)y 2

=8x (2)①见解析 ②? ????

0,43

反思归纳 1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;

2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ;若不过焦点,则必须用弦长公式。

【变式训练】 已知过点A (-4,0)的动直线l 与抛物线G :x 2

=2py (p >0)相交于B ,C 两点。当直线l 的斜率是1

2时,AC →=4AB →

(1)求抛物线G 的方程;

(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围。

【解析】 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =1

2(x +4),即x =2y -4,

联立?

????

x 2

=2py ,x =2y -4消去x ,得2y 2-(8+p )y +8=0,

y 1+y 2=8+p

2,y 1y 2=4, 由AC →=4AB →

,∴y 2=4y 1,

由韦达定理及p >0可得y 1=1,y 2=4,p =2, ∴抛物线G 的方程为x 2=4y 。

(2)由题意知直线l 的斜率存在,且不为零, 设l :y =k (x +4),BC 中点坐标为(x 0,y 0),

由?????

x 2

=4y ,y =k x +

得x 2-4kx -16k =0,

由Δ>0得k <-4或k >0,

∴x 0=

x B +x C

2

=2k ,y 0=k (x 0+4)=2k 2+4k ,

BC 中垂线方程为y -2k 2

-4k =-1

k (x -2k ), ∴b =2(k +1)2,∴b >2。 故b 的取值范围为(2,+∞)。 【答案】 (1)x 2

=4y (2)(2,+∞)

1.若抛物线y =A .1 B.12 C .2

D.14

解析 因为抛物线的标准方程为x 2

=1a y ,所以其焦点坐标为? ????0,14a ,则有14a =1,a =14。

故选D 。

答案 D

2.已知点P (a ,b )是抛物线x 2

=20y 上一点,焦点为F ,|PF |=25,则|ab |=( ) A .100 B .200 C .360

D .400

解析 根据抛物线的定义,准线方程为y =-5,|PF |=b +5=25,∴b =20。又点P (a ,

b )是抛物线x 2=20y 上一点,∴a 2=20×20,∴

a =±20,∴|a

b |=400。

故选D 。

答案 D

3.已知抛物线y 2

=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2

x 1x 2

的值一定等于( )

A .-4

B .4

C .p 2

D .-p 2

解析 ①若焦点弦AB ⊥x 轴,

则x 1=x 2=p 2,所以x 1x 2=p 2

4;

∴y 1=p ,y 2=-p ,∴y 1y 2=-p 2

,∴y 1y 2

x 1x 2=-4。

②若焦点弦AB 不垂直于x 轴,

可设AB 的直线方程为y =k ? ????

x -p 2,

联立y 2

=2px 得k 2x 2

-(k 2

p +2p )x +p 2k 2

4=0,

则x 1x 2=p 2

4。

所以y 1y 2=-p 2

。故y 1y 2

x 1x 2=-4。故选A 。

答案 A

4.(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________。

解析 由于抛物线y 2

=4x 的焦点为F (1,0),准线为x =-1,设点M 的坐标为(x 0,y 0),则x 0+1=10,所以x 0=9。故M 到y 轴的距离是9。

答案 9

5.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线

x 23-y 2

3=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________。 解析 如图,在正三角形ABF 中,|DF |=p ,|BD |=3

3p ,∴B 点坐标为? ????3

3

p ,-p 2。又点B 在双曲线上,故13p 2

3-p 2

43=1,解得p =6。

答案 6

直线AB 过抛物线y 2

=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,

y 2)两点,如图。

(1)y 1y 2=-p 2

,x 1x 2=p 2

4。

(2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p 。

(3)1

|AF |+1

|BF |为定值2p 。

(4)弦长AB =2p

sin 2α(α为AB 的倾斜角)。 (5)以AB 为直径的圆与准线相切。

(6)焦点F 对A ,B 在准线上射影的张角为90°。

【典例】 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )

A .

y 2=9x B

.y 2=6x

C .y 2=3x

D

.y 2=3x

【解析】 设直线方程为y =k ? ????x -p 2,A (x 1,y 1),B (x 2,y 2),把y =k ? ????x -p 2代入抛物线

方程,得k 2? ????x -p 22

=2px ,整理得k 2x 2-(pk 2+2p )x +k 2p 2

4=0,则x 1x

2

p 2

4,因为|BC |=2|BF |,

所以点B 到准线的距离d =23p ,即x 2+p 2=23p ,解得x 2=p 6,所以x 1=32p ,|AF |=x 1+p

2=2p =3,解得p =3

2,所以抛物线的方程是y 2

=3x 。故选C 。

【答案】 C

【变式训练】 设F 为抛物线C :y 2

=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,

B 两点,则|AB |等于( )

A.303 B .6 C .12

D .7 3

【解析】 焦点F 的坐标为? ????

34,0,

解法一:直线AB 的斜率为3

3, 所以直线AB 的方程为y =33? ????

x -34, 即y =33x -3

4,代入y 2

=3x , 得13x 2

-72x +316=0。

设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=21

2, 所以|AB |=x 1+x 2+p =212+3

2=12,故选C 。 解法二:由抛物线焦点弦的性质可得 |AB |=2p sin 2θ=3sin 2

30°=12。故选C 。 【答案】 C

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

备战2021届高考数学二轮复习热点难点突破专题15 数形结合思想(解析版)

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用 【例1】若方程x2-4x+3+m=0在x∈(0,3)时有唯一实根,求实数m的取值范围. 【解析】利用数形结合的方法,直接观察得出结果.

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

专题九 解析几何第二十七讲 抛物线

2 1 专题九 解析几何 第二十七讲 抛物线 2019 年 x 2 1.(2019 全国 II 文 9)若抛物线 y 2=2px (p >0)的焦点是椭圆 + y = 1的一个焦点,则 3 p p p = A .2 B .3 C .4 D .8 2.(2019 浙江 21)如图,已知点 F (1,0) 为抛物线 y 2 = 2 px ( p > 0) 的焦点,过点 F 的直线交抛物线于 A 、B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 右侧.记△AFG ,△CQG 的面积为 S 1 , S 2 . (1)求 p 的值及抛物线的准线方程; S (2)求 1 的最小值及此时点 G 的坐标. S 2 3.(2019 全国 III 文 21)已知曲线 C :y = x 2 ,D 为直线 y = - 上的动点,过 D 作 C 的两条切 2 线,切点分别为 A ,B . (1)证明:直线 AB 过定点: 5 (2)若以 E (0, 2 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求该圆的方程. 1.解析(1)设 D ? t , - 1 ? , A (x , y ),则 x 2 = 2 y . 2 ? 1 1 1 1 ? ? 2

2 5 y 2 1 由于 y' = x ,所以切线DA 的斜率为 x 1 ,故 1 + 1 2 = x ,整理得2 tx 1 - 2 y 1 +1=0. 设 B (x 2 , y 2 ) ,同理可得2tx 2 - 2 y 2 +1=0 . 故直线AB 的方程为2tx - 2 y +1 = 0 . 1 所以直线AB 过定点(0, ) . 2 x 1 - t (2)由(1)得直线AB 的方程为 y = tx + 1 . 2 ? y = tx + 1 ?? 由? 2 ? y = x ?? 2 2 ,可得 x 2 - 2tx -1 = 0 . 于是 x + x = 2t , y + y = t (x + x )+1 = 2t 2 +1 . 1 2 1 2 1 2 设M 为线段AB 的中点,则 M ? t , t 2 + 1 ? . 2 ? ? ? 由于 EM ⊥ AB ,而 EM = ( t , t 2 - 2) , AB 与向量(1, t ) 平行,所以t + ( t 2 - 2) t = 0 .解得 t =0或t = ±1. 当t =0时, | EM | =2,所求圆的方程为 x 2 + ? y - ? 5 ?2 ? ? ? = 4 ; 5 ?2 当t = ±1时, | EM |= ,所求圆的方程为 x 2 + y - ? ? ? = 2 . 2010-2018 年 一、选择题 1.(2017 新课标Ⅱ)过抛物线C :y 2 = 4x 的焦点 F ,且斜率为 的直线交C 于点 M ( M 在 x 轴上方), l 为C 的准线,点 N 在l 上且 MN ⊥ l ,则 M 到直线 NF 的距离为 A . B . 2 C . 2 D . 3 3 2 3 3 2

2016高考数学二轮复习微专题强化练习题:27转化与化归思想、数形结合思想

第一部分 二 27 一、选择题 1.已知f (x )=2x ,则函数y =f (|x -1|)的图象为( ) [答案] D [解析] 法一:f (|x -1|)=2|x - 1|. 当x =0时,y =2.可排除A 、C . 当x =-1时,y =4.可排除B . 法二:y =2x →y =2|x |→y =2|x - 1|,经过图象的对称、平移可得到所求. [方法点拨] 1.函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求: ①会画各种简单函数的图象; ②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. 2.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. 3.利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ),

y =f (x ) ――→01,纵坐标伸长到原来的A 倍 y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称 y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x ) ――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). 2.(文)(2014·哈三中二模)对实数a 和b ,定义运算“*”:a *b =????? a ,a - b ≤1 b ,a -b >1 ,设函数f (x ) =(x 2+1)*(x +2),若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(2,4]∪(5,+∞) B .(1,2]∪(4,5] C .(-∞,1)∪(4,5] D .[1,2] [答案] B [解析] 由a *b 的定义知,当x 2+1-(x +2)=x 2-x -1≤1时,即-1≤x ≤2时,f (x )=x 2+1;当x <-1或x >2时,f (x )=x +2,∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴方 程f (x )-c =0恰有两不同实根,即y =c 与y =? ???? x 2 +1 (-1≤x ≤2), x +2 (x <-1或x >2),的图象恰有两个交点, 数形结合易得1

第九篇解析几何第7讲抛物线

第7讲抛物线 【2013年高考会这样考】 1.考查抛物线定义、标准方程. 2.考查抛物线的焦点弦问题. 3.与向量知识交汇考查抛物线的定义、方程、性质等. 【复习指导】 熟练掌握抛物线的定义及四种不同的标准形式,会根据抛物线的标准方程研究得出几何性质及会由几何性质确定抛物线的标准方程;掌握代数知识,平面几何知识在解析几何中的作用. 基础梳理 1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 其数学表达式:|MF|=d(其中d为点M到准线的距离). 2.抛物线的标准方程与几何性质 标准方程y2=2px (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0) p的几何意义:焦点F到准线l的距离 图形 顶点O(0,0) 对称y=0x=0 轴 焦点F ? ? ? ? ? p 2 ,0F ? ? ? ? ? - p 2 ,0F ? ? ? ? ? 0, p 2F? ? ? ? ? 0,- p 2离心 率 e=1 准线 方程 x=- p 2x= p 2y=- p 2y= p 2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口 方向 向右向左向上向下焦半 径 |PF|= x + p 2 |PF|= -x0+ p 2 |PF|= y + p 2 |PF|= -y0+ p 2 一个结论 焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F ? ? ? ? ? p 2 ,0的距离|PF|=x0+ p 2 . 两种方法 (1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0). 双基自测

高三数学复习专题数形结合

专题讲座: 数形结合 一、填空题 例1曲线241x y -+=(22≤≤-x )与直线()24-=-x k y 有两个交点时,实数k 的取值范围是 【答案】:53,124?? ?? ? 【提示】曲线为圆的一部分,直线恒过定点M (2,4),由图可得有两 个交点时k 的范围。 例2已知平面向量,(0,)αβααβ≠≠满足1,β=且αβα-与的夹角为120? ,则α的 取值范围是 【答案】:23 03 α<≤ 【提示】作出草图,由1 sin sin 60 B α ? = ,故α=23sin 3B 又0120B ? ? << 0sin 1B ∴<≤,23 03 α∴<≤ 例3已知向量(2, 0)OB =,(2, 2)OC =, (2cos , 2sin ),CA αα=则OA 与OB 夹角的范围为 【答案】:]12 5,12[ π π 【提示】因2(cos ,sin ),CA αα=说明点A 的轨迹是以(2, 2)C 为圆心,2为半径的圆,如图,则OA 与OB 夹角最大是 5,4612πππ+=最小是4612 πππ -= 例4若对一切R θ∈,复数(cos )(2sin )z a a i θθ=++-的模不超过2,则实数a 的取值范围为 【答案】:55,55?? -???? 【提示】复数的模2 2 (cos )(2sin )2z a a θθ=++-≤,可以借助单位圆上一点(cos ,sin )θθ-和直线2y x =的一点(,2)a a 的距离来理解。 x x y M

例5若11 ||2 x a x -+≥对一切0x >恒成立,则a 的取值范围是 【答案】:(,2]-∞ 【提示】分别考虑函数1y x a =-和211 2 y x =- +的图像 例6 已知抛物线()y g x =经过点(0,0)O 、(,0)A m 与点(1,1)P m m ++, 其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值,则n m b a ,,,的大小关系为 【答案】b n a m <<< 【提示】由题可设()(),(0)g x kx x m k =->, 则()()()f x kx x m x n =--,作出三次函数图象即可。 例7若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 【答案】:0k <或4k = 【提示】:研究函数1y kx =(10y >)和函数2 2(1),(1)y x x =+>-的图像 例8已知函数2 1 ()(2) 1ax bx c x f x f x x ?++≥-=?--<-? ,其图象在点(1,(1)f )处的切线方程为 21y x =+,则它在点(3,(3))f --处的切线方程为 【答案】:230x y ++= 【提示】:由()(2)f x f x =--可得()f x 关于直线1x =-对称,画出示意图(略),(1,(1)f )和(3,(3))f --为关于直线1x =-的对称点,斜率互为相反数,可以快速求解。 例9直线1y =与曲线2 y x x a =-+有四个交点,则a 的取值范围是__________ 【答案】:514a << 【提示】研究22,0 ,0 x x a x y x x a x ?-+≥?=?++

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

高三数学第二轮《数形结合》公开课教(学)案

华侨中学高三数学(理科)第二轮复习专题:数形结合思想教学地点:一中集美分校高三(4)班 授课教师:华侨中学王磊 2016.03.24 【思想方法概述】 数形结合的思想在每年的高考中都有所体现,它常用来研究方程根的情况,讨论函数的值域(最值)及求变量的取值围等.对这类容的选择题、填空题,数形结合特别有效.从2015年的高考题来看,数形结合的重点是研究“以形助数”.预测2016年高考中,仍然会沿用以往的命题思路,借助各种函数的图象和方程的曲线为载体,考查数形结合的思想方法,在考题形式上,不但有小题,还会有解答题,在考查的数量上,会有多个小题考查数形结合的思想方法.复习中应提高用数形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定图形间的位置关系. 以形助数(数题形解)借助形的生动性和直观性来阐述数形之间的关系, 把形转化为数,即以形作为手段,数作为目的的解 决数学问题的数学思想. 数形结合思想通过“以 形助数,以数辅形”,使 复杂问题简单化,抽象问 题具体化,能够变抽象思 维为形象思维,有助于把 握数学问题的本质,它是 数学的规律性与灵活性 的有机结合.[来源:学&科&网Z&X&X&K][来源:学_科_网] 以数辅形(形题数解)[来源:][来 源:https://www.sodocs.net/doc/1b9796535.html,][来源:Z*xx*https://www.sodocs.net/doc/1b9796535.html,][来源:][来源:https://www.sodocs.net/doc/1b9796535.html,]借助于数的精确性和规性及严密性来阐明形的某些属性,即以数作为手段,形作为目的的解决问题的数学思想.[来源:https://www.sodocs.net/doc/1b9796535.html,] 以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值围,特别是运用函数图象时应设法选择动直线与定二次曲线.3.数形结合思想在高考试题中主要有以下六个常考点

高考数学考点专题:解析几何:抛物线

抛物线 【考点梳理】 1.抛物线的概念 平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 2.抛物线的标准方程与几何性质 【教材改编】

1.(选修2-1 P 67练习T 2(4)改编)抛物线280x y +=的焦点坐标为( ) A .()0,2- B .()0,2 C .10,32? ?- ?? ? D .10,32?? ??? [答案] C [解析] 由280x y +=,得21 8 x y =-. 128p =,116 p =, ∴焦点为10,32? ?- ?? ?,故选C. 2.(选修2-1 P 73A 组T 2(1)改编)以1x =为准线的抛物线的标准方程为( ) A .22y x = B .22y x =- C .24y x = D .24y x =- [答案] D [解析] 由准线1x =知,抛物线方程为:22y px =-(0p >)且12 p =,2p =, ∴方程为24y x =-,故选D. 3.(选修2-1P 73A 组T 3改编)M 是抛物线22y px =(0p >)位于第一象限的点, F 是抛物线的焦点,若5 F 2 p M = ,则直线F M 的斜率为( ) A .43 B .53 C .54 D .52 [答案] A [解析] 设()00,x y M ,由5 F 2 p M = ,得 05 22 p x p + =,∴02x p =.

∴220024y px p ==,取正根得02y p =. 即M 的坐标为()2,2p p ,又F 的坐标为,02p ?? ??? , ∴F 204 322 p k p p M -= =- ,故选A. 4.(选修2-1 P 74A 组T 8改编)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽为( ) A .2 3 m B .2 6 m C .4 2 m D .4 3 m [答案] B [解析] 建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0),则A (2,-2),将其坐标代入x 2=-2py ,得p = 1. ∴x 2=-2y . 当水面下降1 m ,得D (x 0,-3)(x 0>0),将其坐标代入x 2=-2y ,得x 20=6,∴x 0= 6.∴水面宽|CD |=2 6 m .故选B. 5.(选修2-1 P 69例4改编)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B. 2

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

相关主题