搜档网
当前位置:搜档网 › 煤炭液化技术

煤炭液化技术

煤炭液化技术
煤炭液化技术

煤炭液化技术

第一版概述

众所周知,呈固体状态的煤使用和运输起来都很麻烦。直接烧固体煤,不仅热效率低,浪费大,还会放出二氧化硫、氧化氮等多种有害气体,对环境的污染相当严重。

早在半个多世纪前,煤就可以变成汽油了。德国在1927年就建立了世界上第一个煤炭液化厂,年生产能力达到10万吨,到1944年,年产量高达423万吨,占德国当年汽

油总消费量的90%。1935年,英国也建成了一座煤炭液化厂,年产量达15万吨。此外,美国、日本、俄罗斯等国也相续成功地完成了日处理150~600吨煤的大型工业试验。只

是因为20世纪中后期,国际石油价格一直低廉,各国才放慢了煤变油研究开发的速度。不过当时用的工艺比较复杂,成本太高。现在科学家们已经研究出了比较简单的煤变油

方法,这样在石油价格提高之后,煤变油在经济上也是合算的。

第二版定义

为了预防或减少煤燃料对环境和人体健康带来的危害,近二三十年来,世界各国大力开展了对煤变油技术的研究,其中主要包括对煤的液化和汽化技术。

煤变油是指将煤转化加工,生产出汽油、柴油、液化石油气等液体燃料的煤液化技术,所谓煤的液化技术,就是在加温、加压的状态下,对煤直接或间接地加氢,使它成为流体化的技术。煤的液化技术中又可分为煤的直接液化技术和煤的间接液化技术。

我国从1993年成为石油净进口国,到2000年进口石油已占全国原油加工量的36%。据预测,我国原油需求2010年为2.96亿吨,2015年为3.6亿吨。我国已探明石油可采储量约62亿吨,其中已累计采出34.6亿吨。按2000年自采原油1.6亿吨计算,还可开采17年。中国是石油资源匮乏而煤炭资源丰富的国家,化石能源总量(约46万亿吨标准煤)中,95.6%为煤炭,3.2%为石油,1.2%为天然气。因此,如果加快煤变油技术的商业化,那么对摆脱大规模进口石油,保证我国21世纪的经济发展和能源安全都有重大意义。

第三版世界煤炭液化技术应用背景

直接液化

煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万t/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。

70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa

降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。

但据权威机构预测,如果石油价格能够稳定在25美元/桶以上,煤炭直接液化在经济上就具有竞争力。美国能源部所作的研究表明,煤炭直接液化厂通过与现有工厂建在一起,可节约投资,降低液化油成本,使生产的液体燃料的价格可以达到相当于石油19~23美元/桶。此外,煤炭直接液化的研究和发展仍有潜力,还可进一步降低生产成本。

煤炭间接液化

1923年,德国化学家首先开发出了煤炭间接液化技术。40年代初,为了满足战争的需要,德国曾建成9个间接液化厂。二战以后,同样由于廉价石油和天然气的开发,上述工厂相继关闭和改作它用。之后,随着铁系化合物类催化剂的研制成功、新型反应器的开发和应用,煤间接液化技术不断进步,但由于煤炭间接液化工艺复杂,初期投资大,成本高,因此除南非之外,其它国家对煤炭间接液化的兴趣相对于直接液化来说逐渐淡弱。

煤炭间接液化技术主要有三种,即的南非的萨索尔(Sasol)费托合成法、美国的莫比尔法(Mobil)和正在开发的直接合成法。目前,煤间接液化技术在国外已实现商业化生产,全世界共有3家商业生产厂正在运行,它们分别是南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。新西兰煤炭间接液化厂采用的是Mobil液化工艺,但只进行间接液化的第一步反应,即利用天然气或煤气化合成气生产甲醇,而没有进一步以甲醇为原料生产燃料油和其它化工产品,生产能力1.25万桶/天。马来西亚煤炭间接液化厂所采用的液化工艺和南非萨索尔公司相似,但不同的是它以天然气为原料来生产优质柴油和煤油,生产能力为50万t/年。因此,从严格意义上说,南非萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。

南非萨索尔公司成立于50年代初,1955年公司建成第一座由煤生产燃料油的Sasol-1厂。70年代石油危机后,1980年和1982年又相继建成Sasol-2厂和Sasol-3厂。3个煤炭间接液化厂年加工原煤约4600万t,产品总量达768万t,主要生产汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛等113种产品,其中油品占60%,化工产品占40%。该公司生产的汽油和柴油可满足南非28%的需求量,其煤炭间接液化技术处于世界领先地位。

第四版煤的直接液化技术

煤的直接液化技术是将固体煤在高温高压下与氢反应,将其降解和加氢从而转化为

液体油类的工艺,又称加氢液化。一般情况下,一吨无水无灰煤能转化成半吨以上的液

化油。煤直接液化油可生产洁净优质汽油、柴油和航空燃料。

其工艺主要有Exxon供氢溶剂法(EDS)、氢-煤法等。EDS法是煤浆在循环的供氢溶

剂中与氢混合,溶剂首先通过催化器,拾取氢原子,然后通过液化反应器,释放出氢原子,使煤分解;氢-煤法是采用沸腾床反应器,直接加氢将煤转化成液体燃料。

20世纪80年代开发出的煤-油共炼工艺,提高了煤液化的经济性。煤-油共炼是煤与渣油混合成油煤浆,再炼制成液体燃料。由于渣油中含有煤转化过程所需的大部分或全部的氢,从而可以大幅度降低成本。

该工艺是把煤先磨成粉,再和自身产生的液化重油(循环溶剂)配成煤浆,在高温(450℃)和高压(20~30MPa)下直接加氢,将煤转化成汽油、柴油等石油产品,1t无水无灰煤可产500~600kg油,加上制氢用煤,约3~4t原煤产1t成品油。

第五版煤的间接液化技术

煤的间接液化技术是先将煤气化,然后合成燃料油和化工原料和产品。目前,间接液化已在许多国家实现了工业生产,主要分两种生产工艺,一是费托(Fischer-Tropsch)工艺,将原料气直接合成油;二是摩比尔(Mobil)工艺,由原料气合成甲醇,再由甲醇转化成汽油的。

煤间接液化工艺先把煤全部气化成合成气(氢气和一氧化碳),然后再在催化剂存在下合成为汽油。约5~7t煤产1t油。

间接液化工艺特点:

1. 适用煤种比直接液化广泛;

2. 可以在现有化肥厂已有气化炉的基础上实现合成汽油;

3. 反应压力为3MPa,低于直接液化,反应温度为550℃,高于直接液化;

4. 油收率低于直接液化,需5-7t煤出1t油,所以产品油成本比直接液化高出较多。

煤炭间接液化一直未得到普遍发展的主要原因是原料气成本太高,其煤气化装置投资约占总投资的40%,且运营费用高,而原料气合成油装置的投资仅占投资的20%~30%。现在可以采用地下气化煤气作为原料气,中国矿大煤炭地下气化工程研究中心的试验结果表明,地下气化与地面气化相比,基建投资减少53%~66%;生产成本也大大降低。

煤炭间接液化的大规模商化业生产是在南非实现的。南非萨索尔(Sasol)公司采用鲁奇气化炉和F-T合成反应器,年产合成液化燃料1000万吨。该公司累计投资70亿美元,现早已收回了全部设备投资,1999年的税前利润达6.11亿美元。

第六版我国煤炭液化技术前景

“煤变油”对煤种有特殊要求,而依兰的长焰煤被认定最为适合。据黑龙江省煤田地

质局测算,依兰煤田的煤炭储量达7.9亿吨,其中可开采的高级储量为4.2亿吨,能够满足煤炭直接液化工厂100年使用。依兰煤炭直接液化项目始于1995年,由中国煤炭科学研究总院、哈尔滨燃气化工总公司与日本有关方面合作进行开发研究。经过5年的努力,这个项目已获得国家计委肯定,并被列入国家“十五”计划。

依兰“煤变油”项目可有效解决黑龙江省煤炭行业面临的结构调整和就业问题,可以为大庆油田将来的可持续发展提供一条新的途径和思路,还可以缓解黑龙江能源结构与消费构成之间的矛盾。另外,“煤变油”属于非常先进的洁净煤技术,对环境保护的效果也非常显著。

据悉,依兰煤炭直接液化项目总投资为80.5亿元,将主要依靠引进外资。目前,有关方面正在积极开展外联引资工作。

尽管煤炭是一种高污染的能源品种,但从能源安全的角度看,至少到21世纪中叶以前,煤炭作为我国基础能源的地位不会动摇。

随着我国洁净煤技术日臻成熟及其产业化程度的提高,煤炭仍将是保证我国能源供应安全的支柱产业,但在技术运用上将迎来一个大发展机遇期。国家未来将推广洁净煤技术,重点发展大型、先进的煤炭洗选加工技术、煤炭液化技术、大型煤气化技术、水煤浆制备和应用一体化技术、大型循环流化床技术、整体煤气化联合循环发电(工GCC)技术、高效低污染燃煤发电技术等。

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

煤的焦化、液化、气化

一、煤的焦化 一、煤的焦化 (一)煤炭焦化的定义 煤炭焦化又称煤炭高温干馏。以煤为原料,在隔绝空气条件下,加热到950℃左右,经高温干馏生产焦炭,同时获得煤气、煤焦油并回收其它化工产品的一种煤转化工艺。产品用途:煤经焦化后的产品有焦炭、煤焦油、煤气和化学产品3类。 (二)烟煤炼焦技术 煤料在焦炉过程中主要受到来自两侧炉墙的高温作用,从炉墙到炭化室中心方向,煤料逐层经过干燥、脱水、脱除吸附气体、热分解、胶质体的产生和固化、半焦形成和收缩等阶段。最终形成焦炭。实际生产过程中,各阶段之间互相交错、难以截然分开。 1、开燥脱吸阶段:120℃以前放出外在水分和内在水分,200℃以前析出吸附于煤孔隙中的气体。 2、热解开始阶段:这一阶段的起始温度随煤变质程度而异,一般在200-300℃发生,主要产生化合水和CO2、CO和CH4等气态产物,并有微量焦油析出。 3、胶质体产生和固化阶段:大部分黏结性烟煤在350-450℃大量析出焦油和气体。几乎全部焦油在这一温度下产生,释放的气体以CH4及其同系物为主,别有少量不饱和烃CnHm和H2、CO、CO2等。这些液体、气体和残余的煤粒一起形成胶质体状态。进一步加热,胶质体热解更加激烈,析出大量挥发物,黏结性烟煤煤熔融、相互黏结,固化为半焦。 4、半焦收缩和焦炭形成:500℃左右黏结性烟煤经胶质体状态,散状煤粒熔融、相互黏结而形成斗焦。温度继续升高,700℃之前,半焦内释放出的挥发物以H2和CH4为主,并使半焦收缩产生裂纹,称为半焦收缩阶段。700-950℃半焦进一步热分解,析出少量以H2为主要成分的气体,半焦进一步收缩,使其变紧变硬,裂纹增大,最终形成焦炭。 二、煤的气化 (一)煤炭气化的定义 煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。气化过程发生的反应包括煤的热解、气化和燃烧反应。煤的热解是指煤从固相变为气、固、液三相产物的过程。煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的气相反应。 (二)气化的分类: 目前煤的气化方法已达60多种,其分类方法也是多种多样的,: 1、按入炉煤粒度划分的有粉煤(100-200目)气化,小粒度煤(0-10mm)气化、块煤(6-100mm)气化。 2、按煤在炉内状况划分界线的有固定床(或称移动床)气化、流化床(或称沸腾床)气化、气流床气化、熔渣床(或称熔盐床)气化。 3、按气化介质划分的有空气、空气-蒸汽、富氧空气-蒸汽、蒸汽和氢气等。 4、按煤气用途划分的有燃料煤气、城市煤气、高热值煤气、还原气等。 5、按煤气热值划分的有低热值气(1000-1500KCAL/m3)和高热值煤气(4000KCAL/m3)以上。 6、按排灰方式划分,有固态排渣、液态排渣、灰团聚排渣气化。 7、按操作方式划分,有常压气化和加压气化。 以下主要介绍按煤炭气化工艺可按压力、气化剂、气化过程供热方式等分类,常用的是按气化炉内煤料与气化剂的接触方式区分,主要有: 1、固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。 对煤的要求:对煤种有一定要求,煤的黏结性不能太强,要求使用块煤 2、流化床气化:它是以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。 对煤的要求:对原料煤性质有一定要求,一般要求使用化学反应性好的年轻褐煤、长焰煤和不黏煤,不适用于有黏结性的煤,灰熔融性软化温度(ST)要求较高。

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR 工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/ d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。 第二部分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中型分子,这些分子中包含较多的极性官能团,它们以各种物理力为主,或相互缔合,或与第一部分大分子中的极性基团相缔合,成为三维网络结构的一部分。

四种煤气化技术及其应用

四种煤气化技术及其应用 李琼玖,钟贻烈,廖宗富,漆长席,周述志,赵月兴 (成都益盛环境工程科技公司,四川成都610012) 摘要:介绍了4种煤气化工艺技术,包括壳牌工艺、德士古水煤浆气化工艺、恩德工艺、灰熔聚流化床气化工艺,对其技术特点、工艺流程、主要设备及应用实例进行了详细阐述,并对4种工艺进行了对比。 关键词:煤气化;壳牌工艺;德士古;恩德工艺;灰熔聚工艺;煤气炉 中图分类号:TQ546文献标识码:A文章编号:1003-3467(2008)03-0004-04 Four Coal Gasification Technologi es and Their Applicati on L I Q iong-ji u,ZHONG Y i-lie,LIAO Zong-fu, QI Chang-xi,ZHOU Shu-zhi,ZHAO Yue-xing (Chengdu Y i s heng Envir on m ent Eng i n eering Techo logy C o.Ltd,Chengdu610012,China) Abst ract:Four coal gasificati o n technologies,inc l u d i n g Shell techno logy,Texaco coa l-w ater sl u rry gasif-i cati o n,Enticknap pr ocess,ash agg l o m erati o n fl u i d ized bed gasification technology are intr oduced,and the technical features,technolog ical process,m ai n equipm ent and app lication exa m p le o f the four techno l o g i e s are descri b ed in detai.l K ey w ords:coal gasification;She ll techno logy;Texaco;Enticknap process;ash agglo m erati o n tech-nology;gas stove 1壳牌粉煤气化制取甲醇合成气 1.1壳牌工艺技术的特点 壳牌煤气化过程(SCGP工艺)是在高温加压下进行的,是目前世界上最为先进的第FG代煤气化工艺之一。按进料方式,壳牌煤气化属气流床气化,煤粉、氧气及蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。一般认为,由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2、CO等)以发生燃烧反应为主;在氧气消耗殆尽之后发生碳的各种转化反应,过程进入到气化反应阶段,最终形成以CO、H2为主要成分的煤气离开气化炉。 壳牌粉煤气化的技术特点:1干煤粉进料,加压氮气输送,连续性好,气化操作稳定。气化温度高,煤种适应性广,从无烟煤、烟煤、褐煤到石油焦均可气化,对煤的活性几乎没有要求,对煤的灰熔点范围比其它气化工艺更宽。对于高灰分、高水分、含硫量高的煤种同样适应。o气化温度约1400~1700e,碳转化率高达99%以上,产品气体相对洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)高达90%以上。?氧耗低,与水煤浆气化相比,氧气消耗低,因而与之配套的空分装置投资可减少。?单炉生产能力大,目前已投入运转的单炉气化压力为3MPa,日处理煤量已达2000t。?气化炉采用水冷壁结构,无耐火砖衬里,维护量少,气化炉内无转动部件,运转周期长,无需备炉。?热效率高,煤中约83%的热能转化在合成气中,约15%的热能被回收为高压或中压蒸汽,总的热效率为98%左右。?气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,对环境几乎没有影响。气化污水中含氰化合物少,容易处理,必要时可做到零排放,对环境保护十分有利。à壳牌公司专利气化烧嘴可根据需要选择,气化压力2.5~4.0M Pa,设计保证寿命为8000h,荷兰De m ko lec电厂使用的烧嘴在近4年 收稿日期:2007-10-13 作者简介:李琼玖(1930-),男,教授级高级工程师、研究员,长期从事化工设计、建设、生产工程技术工作,主编5合成氨与碳一化学6、5醇醚燃料与化工产品链工程技术6专著,发表论文百余篇,电话:(028)86782889。

煤炭液化论文

煤液化多联产技术概述 摘要:简单介绍了直接液化、煤间接液化、多联产等技术以及多联产技术在煤的两种液化中的应用与生产模式,并简单介绍了我国煤液化多联产技术的发展状况。关键词:煤直接液化、煤间接液化、多联产、生产模式 General introduction of co-production system for coal liquefaction Abstract:Give a simple introduction to direct coal liquefaction and indirect coal liquefaction, and multi-combinative production, and the application of the technology of multi-combinative production in coal liquefaction and its types of produce,and its development in China. Key word:direct coal liquefaction; indirect coal liquefaction; multi-combinative production; types of produce. 据有关资料统计,2010年,中国消耗煤炭总量33亿t,消耗石油4.2亿t,其 中本国生产石油1.81亿t,从国外进口2.39亿t,即54%的石油依赖进口,进口量已超过国内总需求的一半,预计到2020年,石油的对外依存度有可能接近70%,如此大规模的石油进口,增加了我国对国外资源的依赖程度,国际市场的波动和变化将直接影响到国内经济乃至政治的安全与稳定。 而煤炭是我国最丰富的能源资源。全国累计探明的储量超过1000 Gt,经济 开采储量114.5 Gt,位列美国、俄罗斯之后。煤通过液化技术可以制油,其工 艺包括直接液化技术和间接液化技术,是解决我国石油资源短缺的一条重要途径。但是我国是能源消耗大国,如果只是简单的把煤炭转化为石油,能源利用率是很低的。鉴于此,在本论文中,作者简单介绍了煤的液化及多联产技术,以及现有

煤炭直接液化技术总结

煤炭直接液化技术总结 洁净煤技术——直接液化技术 —、德国IGOR工艺 1981 年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200 吨的半工业试验装置,操作压力由原来的70 兆帕降至30兆帕,反应温度450?480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。 原理图: IGOR 直接液化法工艺流程 工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。 液化油经两步催化加氢,已完成提质加工过程。油中的氮和硫含量可降低到10-5 数量级。此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。柴油只需加少量添加剂即可得到合格产品。与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36?0. 50 t /( m3 ? h)。在反应器相同的条件下,IGOR 工艺的生产能力可比其他煤液化工艺高出50%?100%由于煤液化粗油的提质加工与 煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。 工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。投资可节约20%左右,并提高了能量效率。反应条件苛刻(温度470C,压力30MPa);催化剂使用铝工业的废渣(赤泥);液化反应和加氢精制在高压下进行,可一次得到杂原子含量极低的液化精制油;循环溶剂是加氢油,供 氢性能好,液化转化率高。 优点:(1)煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤 液化油不仅收率高,而且油品质量好。 (2)供氢性能好,液化转化率高 (3) 结构简单,投资少,克服了反应尺寸、能力、压力等诸多方面的局限 (4) 传热效果好,反应温度易控制.

煤气化技术及其工业应用

煤气化技术及其工业应用 摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。 关键词:煤化工,煤气化技术,工业应用 我国是一个以煤炭为主要能源的国家。近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。 以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。 煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。 1煤气化工艺概述 煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。 目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。气化剂为水蒸气、纯氧、空气、CO2和H2。煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。 煤气化根据供热原理大致可分为3种: (1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用; (2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;

煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。根据不同的加工 ,使其转化成为液体燃 料路线,煤炭液化可分为直 接 、化工原料 和液化和间接液 化 两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使 煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人 于1913 年发现的,并于二战期间在德国实现了工业 化生产。德国先后有12套煤炭直接液化装置建成投产, 到1944年,德国煤炭直接 液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日 本、德国、美国等工业发达国家,在原有基础上相继研究开发出一 批煤炭直接液化新 工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有 较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成 了新工艺技术的处 理煤100t/d 级以上大型中间试 验,具备了建设大规模液化厂的技术能力。煤炭直接 液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工 艺原理 煤的分 子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以 设想由以下四个部分复合而成。 第一部 分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网 络结构,它的主要前身物来自维管植物中以 芳族结构为基础的木质素。 第二部 分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

煤直接液化法和煤液化的基础知识

煤直接液化 煤直接液化,煤液化方法之一。将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。因过程主要采用加氢手段,故又称煤的加氢液化法。 沿革 煤直接液化技术早在19世纪即已开始研究。1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。此外,日本、法国、加拿大及美国也建过一些实验厂。战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。 埃克森供氢溶剂法 简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体

燃料。建有日处理250t煤的半工业试验装置。其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。反应温度425~450℃,压力10~14MPa,停留时间30~100min。反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。溶剂和煤浆分别在两个反应器加氢是EDS法的特点。在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。气态烃和油品中 C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。减压残油通过加氢裂化可得到中油和轻油。图一: 溶剂精炼煤法

煤液化技术的重要性

煤液化技术的重要性 1.1 中国的能源现状 随着我国经济的快速发展,能源消费急剧增加,20世纪90年代我国已成为石油净进口国。2003年,我国已是全球仅次于美国的第二大石油进口国和消耗国,2008年我国石油净进口量超过19985万t,进口原由占国消费比重达53.1%。石油资源匮乏和国石油供应不足已成为中国能源发展的一个严峻现实, 随着国民经济的发展,石油供需矛盾将呈持续性扩大趋势。经济高速增长、石油资源缺乏的中国已经把石油安全置于能源战略的核心位置。 我国“多煤炭、少石油、缺天然气”的能源资源特点决定了我国能源在较长时期以煤为主的格局不会改变,确立我国的能源安全战略,必须从这一基本条件出发。充分利用我国丰富的煤炭资源解决石油短缺问题并保证能源安全供给,是我国能源安全战略的一条有效而又可行的途径。 1.2 煤液化技术在我国应用前景 在替代石油的化石资源中,只有煤炭可以在近中期满足与千万吨数量级的油品缺口相匹配的需要。在这样的背景下,合理利用中国丰富的煤炭资源, 开发“煤制油”技术, 作为石油资源的补充, 解决目前燃油短缺、环境污染两大难题, 对中国具有十分重要的战略意义[1]。 若以目前已查证的煤炭资源量的2 0 %作为直接液化原料,则相当于为中国增加了约4 5 0亿吨的原油资源量。有专家预计,到2 0 2 0 年中国的“煤制油”项目将形成年产5 0 0 0万吨油品的生产能力,加上届时将有年产2 0 0 0万吨的生物质油品投入使用,中国原油对外依赖程度有望从6 0 %以上下降到45%以下。到2030 年,在全球替代能源中非石油替代能源将达到日产1 0 0 0万桶,其中煤制油将占2 9%。就中国来说,煤炭储量丰富,政府有意愿发展这一产业,煤制油工业有着光明的前景。 1.3 煤液化技术在我国中战略地位 中国将长期坚持能源供应基本立足国的方针, 把煤炭作为主体能源, 这是中国能源安全的基石。长期以来, 中国政府坚持能源生产、消费与环境保护并重的方针, 把支持清洁煤技术的开发应用作为一项重要的战略任务。煤炭直接液化是中国能源战略的组成部分, 对充分利用国资源, 解决石油安全具有重要的战略和现实意义。 2 煤液化的发展状况 2.1 煤液化技术简介 煤液化工艺大致可分为两大部分,即在高温高压条件下把粉煤催化加氢生产液化粗油的液化工艺和把液化粗油加氢裂解的提质加工精制工艺。其中煤液化技术又包括直接液化技术和间接液化技术。 2.1.1 煤直接液化技术 煤的直接液化法,就是以煤为原料,在高温高压条件下,通过催化加氢直接

煤炭气化技术的进展(论文)

煤炭气化技术的进展 《摘要》:煤炭气化技术是我国煤炭高效洁净利用的关键技术,本文主要阐述了煤炭气化技术的基本原理、过程和发展概况,以及在总结我国多年来研究开发煤气化工艺技术的基础上,对该技术的发展趋势以及发展煤炭气化的必要性进行了相关介绍。 《关键词》:煤炭气化;工业应用;发展现状;发展趋势; Abstract: Coal gasification technology is the key technology of efficient and clean use of coal in our country, this paper describes the basic principle, process and development of coal gasification technology, and based on the summary of our country for many years research and development of coal gasification technology, the necessity of the development trend of the technology and development of coal gasification was introduced. Key words : Coal gasification; Industrial application; Development Status; development trend; 引言 煤炭气化是指以煤或以煤焦为原料,以氧气(空气,富氧或纯氧)、水蒸气或氢气等作气化剂,在一定温度和压力下通过化学反应将固体煤或煤焦中的可燃部分转化为气体燃料的热化学过程。本文就煤炭气化技术及发展趋势作简要介绍。 煤炭在我国能源生产与消费结构中一直占主导地位。煤炭的开发和加工利用已经成为我国环境污染物排放的主要来源。因此,发展洁净煤技术、提高煤炭利用率是我国能源发展战略的必然选择。作为洁净、高效利用煤炭的先进技术之一的煤炭气化技术是我国能源领域重点发展对象,是煤炭化工合成、煤炭直接/间接液化、IGCC技术、燃料电池等高新洁净煤利用技术的先导性技术和核心技术。煤炭气化技术分为地面气化和地下气化2种。笔者根据自己掌握的煤化工基础理论,结合多年积累的煤气化工作实践经验,着重从工程应用角度对煤气化的发展道路作初步探讨,并提出参考性意见。 1 煤的气化原理及气化工艺 1.1 煤炭气化的基本原理及过程 在气化炉内,煤炭经历了干燥、干馏、气化和燃烧等几个过程。 干燥:原料煤进人气化炉后受热,大约在200~C煤孔中吸附态或吸藏的气体及水分首先被脱除。干馏:干馏是脱除挥发分过程,当干燥煤的温度进一步提高,煤中的挥发物从煤中逸出。 气化过程的基本反应:经干馏后得到的半焦与气流中的H2O,CO:,H2:等反应,生成可燃性气体等产物,其主要反应有碳与水蒸气的反应,碳与二氧化碳的反应,甲烷生成反应,变换反应。燃烧:经气化后残留的半焦与气化剂中的氧进行燃烧。由于碳与水蒸气、二氧化碳之间的反应都是强烈的吸热反应,因此气化炉内要保持高温才能维持吸热反应的进行。 煤中硫、氮的反应:除了以上反应外,气化过程同时还有s、N等杂原子发生的反应,其反应会引起腐蚀和环境污染,因此须经净化工艺将其脱除。 1.2 煤炭气化工艺 煤炭气化工艺按照不同的分类标准有多种分类方法,本文只介绍其中两类。 按煤炭是否需要开采分类:按该标准分为地面气化和地下气化,①地面气化。煤的地面气化是指原料煤炭预先开采出来,在地面气化炉内进行气化反应生成煤气的过程,目前开发应用的绝大多数属于地面气化;②地下气化。煤炭地下气化是通过在地下煤层中直接构筑“气化炉”,通入气化剂,有控制地使煤炭在地下进行气化反应,使煤炭在原地自然状态下转化为可燃气体并输送到地面的过程。 地下气化的基本特征:①煤层不发生移动,但气化过程中各气化反应区的位置和燃空区状态时刻都在变化;②地下气化进行到一定程度后,对于较薄煤层,气化剂只能在与煤壁接触的单一表面上反应,另外三个表面为顶板,底板及反应完的灰渣和顶板塌陷物,因此没有地面气化炉金属外壳似的密闭层,气体会在空间中扩散;③由于气化反应过程和加热过程的不均匀性及加热过程范围扩大,反应过程产生的热量不仅随气流带向出口方向,同时也通过热辐射、对流、传导等过程将热量传至煤层纵向的深部,并沿煤层深度形成温度梯度,煤层温度不同,其所发生的反应也不同。因此在煤层纵深方向上可分为:燃控带,焦化带,干流带,干燥带,煤层自燃带。 与地面气化相比,地下气化最大的技术瓶颈是不可视和不可控,因受煤层赋存条件复杂、测温技

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

中国煤炭气化现状及发展趋势

中国煤炭气化现状及发展趋势 金离尘 1前言 我国是以煤炭为主要一次能源国家(见表一);煤炭的转化利用是国家经济发展的重要支柱。而我国目前的煤炭转化过程普遍存在效率低、污染严重等问题,要实现全面、协调、可持续发展,必须大幅度提高煤炭转化的效率,并且大幅度降低污染物排放,即洁净煤技术。除此之外,我国目前对进口石油的依存度高达40%以上,在国际局势复杂多变的形势下,依靠煤气化及煤液化技术降低对进口石油的依存度是一条有效的途径。 我国的煤炭资源丰富,油气匮乏,一次能源消费煤占62%,为世界之最。在未来几十年内,煤炭在我国能源机构中仍将占主导地位,它是我国战略上最安全和最可靠的能源。但是,作为能源生产与消费大国,我国的煤炭利用技术总体上是落后的:效率低,造成能源浪费;污染严重,导致环境质量恶化。 中国经济的发展是以资源(包括能源在内)大量消耗为代价的,而在二十一世纪中国若继续以资源大量消耗性的发展模式是行不通的。目前,中国提高可持续发展的模式是未来将要面对的巨大问题。我国社会经济发展中存在着许多问题,特别是有些长期积累的深层次矛盾后问题有待今后逐步解决。 “十一五”针对经济发展中的突出矛盾和问题,提出6个重点,

其中之一是节约资源,保护环境,推动发展。 早在“十五”规划中,各方都强调要推进煤炭气化技术的开发和应用。 洁净煤技术的范畴非常广泛,从前出处理,过程中处理到后处理都有许多核心技术。其中大规模煤气化技术、煤液化技术、煤气化多联产技术和煤气净化技术是洁净煤技术发展核心技术。 “十一五”期间,煤气化仍属于国家鼓励项目。年初公布的《“十一五”化学工业科技发展纲要》提出优先发展六大领域,第二领域是新型煤化工及天然气化工。重点开发和实施煤的焦化技术,大型煤气化技术和以煤气化为核心的“多联产”技术。 2中国煤气化技术及工业运行情况 我国煤气化技术总体水平落后,与世界先进技术相比差距甚远。国家从“六五”至“九五”投入大量人力、物力,引进、研制、开发先进的煤气化技术。我国先后从国外引进的煤气化技术多种多样。 上世纪80年代末以前,我国的煤气化完全依赖常压固定床技术,国内有常压固定床化炉数千台,配套小型合成氨生产装置,这些气化装置中一部分至今仍在运转。80年代初我国开始引进第二代煤气化技术,1家引进加压Lurgi技术,于山西潞城建厂,气化炉三开一备;共有5家引进Chevron Texaco水煤浆气化装置,分别建于矿鲁南化肥厂、上海焦化总厂、陕西渭河化肥厂、安徽淮南化工厂、黑龙江浩良河化肥厂。这五套装置均用于生产合成气,制氨或甲醇。目前正在

煤液化

煤液化 煤液化是指经过一定的加工工艺,将固体煤炭转化为液体燃料或液体化工原料的过程。按化学加工方法的不同煤的液化可分为两类:①煤在较高温度和压力下加氢直接转化为液体产品。煤的间接液化是指煤经气化产生合成气(CO + H2),再催化合成液体产品。 煤的液化是具有战略意义的一种煤转化技术,可将煤转化为替代石油的液体燃料和化工原料,有利于缓解石油资源的紧张局面。从全世界能源消耗组成看,可燃矿物(煤、石油、天然气)占92%左右,其中石油44%,煤30%,天然气18%。每个国家由于自身能源禀赋和工业发达程度的不同,各种能源所占的比重也不同。目前全世界已探明的石油可采储量远不如煤炭,不能满足能源、石油化工生产的需求。因此可以将储量相对较丰富的煤炭,通过煤炭液化转化为石油替代用品。尤其由于我国相对“富煤、贫油、少气”的能源格局,煤炭液化技术对于保障国家能源战略安全和经济可持续发展具有重要的意义[1]。 煤的直接液化已经走过了漫长的历程。1913年德国科学家F.Bergius发明了煤炭直接液化技术,为煤的加氢液化奠定了基础。此后,德国IG公司在第二次世界大战期间实现了工业化,战后由于中东地区廉价石油的开发,煤炭液化失去了竞争力。20世纪70年代由于石油危机煤炭液化又活跃起来。日本、德国、美国等工业发达国家相继开发出一批煤炭液化工艺。这些国家集中在如何降低反应条件的苛刻度,从而达到降低煤炭液化成本。目前,世界上煤炭直接液化有代表性的是德国的IGOR工艺、日本的NEDOL工艺和美国的HTI工艺。这些新工艺的特点是:反应条件与老液化工艺相比大大缓和,压力从40MPa降低到17-30MPa。并且产油率和油的质量都有很大提高,具备了大规模建设液化厂的技术能力。目前,国外没有实现工业化生产的主要原因是:由于原煤价格和液化设备造价以及人工费用偏高,导致液化成本相对于石油偏高,难以与石油竞争。 我国从20世纪70年代末开始进行煤炭直接液化技术的研究和攻关,其目的是用煤生产汽油、柴油等运输燃料和芳香烃等化工原料。煤炭科学研究总院先后从日本、德国、美国引进直接液化试验装置。经过近20年的试验研究,找出了14种适于直接液化的中国煤种;选出了5种活性较高的、具有世界先进水平的催化剂;完成了4种煤的工艺条件试验。为开发适于中国煤种的煤直接液化工艺奠定了基础,成功地将煤液化后的粗油加工成合格的汽油、柴油和航空煤油等。目前,从煤一直到合格产品的全流程已经打通,煤炭直接液化技术在中国已完成基础性研究,为进一步工艺放大和建设工业化生产厂打下了坚实的基础。 1923年,德国出现了煤炭间接液化技术。第二次世界大战时期,建造了9个煤炭间接液化工厂。战后,同样由于廉价的石油开发,导致这项技术停滞不前。之后,由于铁系催化剂的研制成功,新型反应器的开发和利用,煤炭液化技术得到了发展。但是,由于煤炭间接液化工艺复杂,初期投资大,成本高,除了南非外,其他国家对间接液化的兴趣相对于直接液化来说逐渐淡弱。 间接液化的技术主要3种,南非的费一托合成法、美国的莫比尔法和正在开发的直接合成法。目前间接液化技术在世界上已实现商业化生产。全世界共有3家商业生产厂正在运行,其中有南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。新西兰采用莫比尔法液化工艺,但是只进行间接液化的第一部反应,即利用天然气或者煤气化合成气生产甲醇。马来西亚煤炭间接液化厂采用的工艺和南非的类似,但不同的是以天然气为原料来生产优质柴油和煤油。因此,从严格意义上来说,南非的萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。该公司生产的汽油和柴油可满足南非28%的需求量,其煤炭间接液化技术处于世界领先地位。 我国从20世纪50年代初即开始进行煤炭间接液化技术的研究,曾在锦州进行过煤间接液化试验,后因发现大庆油田而中止。由于70年代的两次石油危机,以及“富煤少油”的能源结构带来的一系列问题,我国自80年代初又恢复对煤间接液化合成汽油技术的研究,

相关主题