搜档网
当前位置:搜档网 › HBVDNA荧光定量PCR技术

HBVDNA荧光定量PCR技术

HBVDNA荧光定量PCR技术
HBVDNA荧光定量PCR技术

一、HBV DNA荧光定量PCR技术

(一)标本

血清、血浆(其它如组织细胞、乳汁、精子、尿液等体液);标本应封闭保存,特别在夏季,如果标本暴露的过久,开盖保存,很容易出现水分蒸发,检测结果和上一次的检测结果会有较大的差异。环境条件影响不大,比如保存在-8°、-20°、24°、还是室温,对高中低病毒含量的最后的检测结果影响不是太大,只要封闭保存就可以。因此可常温运输,但不可泄露。

(二)检测方法

国内最常使用PEG(聚乙二醇方法)法进行核酸提取,采用TaqMan探针进行荧光PCR 扩增。扩增40循环进行结果分析,如下图一所示:典型的双S形的曲线图,越早出现荧光曲线的病毒含量越高,越晚越低。根据不同的梯度的四个标准品进行定量。如果血清或标本里面没有病毒,就是一个阴性直线。最近我们在彻底解决污染问题之后采用扩增50个循环的方法。优点是让扩增管里的反应液充分反应,缺点是如果实验室存在一个潜在的污染或操作人员操作习惯不好,很容易出现携带污染,造成假阳性。对实验室的来说不应该通过减少扩增的循环数来解决污染问题,而应该通过科学的管理,提高试剂的质量,以及养成一个良好的操作习惯,或防污染的习惯来解决假阳性的问题。增加循环数有利于标本检测结果的判断,这将来可能是实验室发展的一个趋向。COBAS TaqMan技术在我们国家已经有好多实验室有这种全自动的核酸提取扩增系统,它的优势重点在于检测病毒含量比较低的血清标本,但是对于病毒含量比较高的,往往出现荧光PCR竞争的缺点。

图一为:PCR扩增曲线

(三)污染的预防与排除

PCR扩增产物污染是PCR反应中最主要最常见的污染问题,所以扩增区的仪器如枪头等要注意。最可能造成PCR产物污染的形式是气溶胶污染;在空气与液体面摩擦时就可形成气溶胶,在操作时比较剧烈地摇动反应管,开盖时、吸样时及污染进样枪的反复吸样都可形成气溶胶而污染。据计算一个气溶胶颗粒可含48000拷贝,因而由其造成的污染是一个值得特别重视的问题。标本处理区,包括扩增摸板的制备;PCR扩增区,包括反应液的配制和PCR扩增;产物分析区,凝胶电泳分析,产物拍照及重组克隆的制备。各工作区要有一定的隔离,操作器材专用,要有一定的方向性。如:标本制备→PCR扩增→产物分析→产物处理。切记:产物分析区的产物及器材不要拿到其他两个工作区。使用一次性吸头,严禁与PCR产物分析室的吸头混用,吸头不要长时间暴露于空气中,避免气溶胶的污染。(四)常用仪器

常用的PCR仪器:ABI系列、罗氏系列、安捷伦系列、国产SLAN等。

(五)临床意义

检测血清或血浆HBV DNA阳性有什么临床意义?

1.判断血清中是否有HBV DNA的存在

我们检测到的HBV DNA包括完整HBV病毒和DNA片段。目前我们用的HBV DNA荧光PCR法,还不能区分是完整病毒还是片段。只要检测到的病毒载量在检测线以上就可以定为标本含有HBV DNA。

2.判断抗病毒疗效的评估指标

细胞内HBV DNA和HBV DNA确认方法。病人采用各种抗病毒药物,比如拉米夫定、阿德福韦、恩替卡韦或替米夫定等抗病毒药物,因为这些药可以有效的抑制病毒复制,用药之

前或用药之后,病人的血清里或外周血白细胞里是不是还有病毒的存在?病毒下降了多少?是不是有病毒的反弹?这是临床医生关心的问题。随着抗病毒药物用药时间的延长,有些病人血清里面的HBV DNA一直处于检测线以下。因此目前临床医生有一些新的需求,就是能不能确认病人血清里究竟有没有HBV DNA。不同的实验室报告检测低限值不一样,有的实验室报<1000IU,有的实验室报<100IU,COBAS TaqMan<12个,<12个还是有病毒,血清里究竟有多少个?是临床急需的一种HBV DNA确认方法。即确认血清里面究竟有没有病毒。现在已经提出一种检测方法。

3.HBV DNA阳性与传染性

感染乙肝病毒必须达到一定的量,突破各种屏障(血液里的补体、细胞因子、抗体等),进入肝细胞复制,才能达到传染性的要求,因此并不是接触到病毒都会被感染。HBeAg的产生与意义→HBeAg与HBV DNA清除的不平衡带来的异常模式→HBsAg的包裹与剪切(完整HBV形成)→不同形式HBsAg的产生与意义。抗HBc、抗HBe和抗HBs的产生。四,HBV DNA定量与乙肝血清学模式不同组合的意义。大三阳(表面抗原、E抗原和核心抗体阳性)并抗HBs阳性:HBsAg/IgM。E抗原阳性说明病人体内的乙肝病毒处于一种活跃性的复制状态。这时有的病人合并表面抗体的阳性,是不是获得一定的抵抗力?不是。表面抗体往往是病毒复制时诱发了机体免疫答应而产生相应的抗体,这个抗体是针对表面抗原的IgM大蛋白抗体。因此它是机体对乙肝病毒复制免疫反抗的结果。这时要提高病人或保持病人的免疫功能;小三阳并抗HBs阳性:病毒活动性复制、不同型病毒的感染等;抗HBs或抗HBc与HBV DNA同时阳性:细胞内HBV的释放。

4.血清游离和细胞内HBV检测与抗病毒治疗的关系

乙肝病人体内的病毒分成两个病毒状态,一个是游离的病毒,一个是细胞内的病毒,包括肝细胞和血细胞。游离的病毒意味着要被清除掉的病毒,除了个别的病毒再进入肝细胞,进行感染肝细胞。而细胞内的病毒与抗病毒治疗的效果更有直接的关系,如果要彻底清除乙肝病毒,最终检测肝脏细胞里病毒是阴性。但是肝穿只能局限于肝穿的组织,不能代表整个肝脏。近几年对外周血HBV DNA的研究越来越多,外周血HBV DNA先消失,然后肝细胞游离的DNA再消失。即通过检测外周血HBV DNA来间接反应肝脏细胞里DNA是不是存在。虽然不能相互代替,但比血浆里面的DNA更进了一步。重性肝炎发生胆酶分离,检测不到血清里的病毒,但是外周血里面的HBV DNA反而和胆酶分离之前的水平一致。有的临床研究数据报道,如果外周血里的HBV DNA逐渐下降或消失,病人基本上得以康复。外周血HBV DNA的检测对重性肝炎患者的预后判断有重要的意义。

5.血清cccDNA与肝脏组织内cccDNA的不同意义

最早的观点认为cccDNA是双价闭环环状DNA,它只在肝细胞里存在。后来越来越多的研究者发现,血清里不但有cccDNA,而且也有肝组织内的cccDNA。因为血清里的cccDNA 是从坏死的肝细胞释放出来的,并且它是环状的,不易被蛋白结合,也不易被消化,因此与肝组织内的HBV DNA有着不同的意义。目前认为血清里的cccDNA存在是病毒启动复制的标志,即病毒正处在复制的上升期,而肝组织内的cccDNA是病毒慢性化的标志。如果判断抗病毒药物效果,检测血清里的cccDNA没有太多的意义,而肝组织内的cccDNA反而有意义。即如果外周血HBV DNA已经转移到检测线以下,判断病毒是不是彻底清除?我们要检测肝组织内的cccDNA。血清cccDNA阳性代表病毒复制处在上升期。

(六)生物暴露与措施

1.无损伤暴露

部位的清洗方法不同,如果血清溅到衣服上,通过有效的消毒液进行浸泡、清洗,一般浸泡的时间不能低于半个小时;如果溅到皮肤上,直接用洗涤液来洗,不要用力搓,要轻搓,然后用流水冲掉;如果溅到眼睛上,最忌讳的是用力来揉搓眼睛,用清水冲洗,一般病毒很

难通过皮肤黏膜。也要对溅到你眼睛的血浆里做一个鉴定,看看它是不是含有病毒,病毒含量高低。

2.创伤暴露

确定污染源HBV含量状态,如果高于104以上,感染的可能性很大,如果低于104以下,感染的可能性非常小。要在最短时间内要注射有效的高效价免疫球蛋白。

3.特殊人群的讨论

孕妇和儿童。如果孕妇在怀孕以前是乙肝,尽可能建议孕妇通过干扰素或核苷类似物把体内的病毒降到检测线以下,停药3个月再怀孕。有的孕妇怀孕7、8个月发现自己感染了乙肝,这时不主张终止妊娠,应该保持自身良好的免疫状态和良好的精神状态,在孩子出生以后要第一时间使孩子和母亲的血液脱离,同时对孩子注射高效价免疫球蛋白。可以对脐血进行检测,脐血里HBV DNA是阴性,孩子就没被感染。

1、HCV RNA(+)和抗HCV(—)是(B)

A既往感染

B感染的初期

C慢性化感染的过程

D肝癌的早期

2、COBAS TaqMAN技术的优势是(C)

A重复性好

B灵敏度高

C检测病毒含量比较低的血清标本

D检测病毒含量比较高的血清标本

3、关于HCV RNA核酸提取的注意事项说法错误的是(D)

A核酸裂解时间不应太长,避免72℃温育处理

B过柱离心时间和速度应均一

C洗脱液应加到层析柱中间

D配置好的试剂剧烈震荡混均

4、下列哪种疾病属于慢性病毒感染(D)

A HAV

B HEV

C SARS

D HCV

5、国内最常使用的HCV核酸提取方法是(D)

A PEG

B煮沸法

C磁珠吸附法

D层析柱法

6、PCR反应中最主要最常见的污染问题是(A)

A PCR扩增产物污染

B标本交叉污染

C大片段核酸的污染

D反应液污染

7、如果抗HBS抗体水平和抗HBV DNA同时很高,应考虑是(A)

A不同HBsAg亚型病毒的双重感染

B机体免疫清除的重要信息

C血清转换的标记

D HBV感染急性期

8、大三阳并抗HBs阳性说明(D)

A细胞内HBV的释放

B病毒活动性复制

C不同型病毒的感染

D抗体是针对表面抗原的IgM大蛋白抗体

9、血清游离和细胞内HBV检测与抗病毒治疗的关系说法错误的是(C)A游离的病毒意味着要被清除掉的病毒

B细胞内的病毒与抗病毒治疗的效果更有直接关系

C肝细胞游离的DNA先消失,然后外周血HBV DNA再消失

D检测外周血HBV DNA来间接反应肝脏细胞里DNA是不是存在

10、目前临床最常见的ELISA酶标记物是(A)

A HRP

B AP

C葡萄糖氧化酶

荧光定量PCR的原理及使用

荧光定量PCR的原理及使用 荧光定量PCR(FQ-PCR)是新近出现的一种定量PCR检测方法。其基本特点是:1、用产生荧光信号的指示剂显示扩增产物的量。2、荧光信号通过荧光染料嵌入双链DNA,或双重标记的序列特异性荧光探针或能量信号转移探针等方法获得,大大提高了检测的灵敏度、特异性和精确性。3、动态实时连续荧光检测,免除了标本和产物的污染,且无复杂的产物后续处理过程,高效、快速。下面介绍常用的几种检测方法: 1、双链DNA内插染料 某些染料如SYBR Green Ⅰ能选择性地与双链DNA结合,同时产生强烈荧光。在PCR过程中SYBR Green Ⅰ可与新合成的双链DNA结合,产生的荧光信号与双链DNA成正比。 SYBR Green I荧光染料技术原理SYBR Green I是一种只与DNA双链结合的荧光染料。当它与DNA双链结合时,发出荧光;从DNA双链上释放出来时,荧光信号急剧减弱。因此,在一个体系内,其信号强度代表了双链DNA分子的数量。SYBR Green荧光染料法定量PCR的基本过程是:1、开始反应,当SYBR Green染料与DNA双链结合时发出荧光。2、DNA变性时,SYBR Green染料释放出来,荧光急剧减少。3、在聚合延伸过程中,引物退火并形成PCR产物。4、聚合完成后,SYBR Green染料与双链产物结合,定量PCR系统检测到荧光的净增量加大。

SYBR Green I荧光染料与DNA双链的结合 SYBR Green I荧光染料能与所有的DNA双链相结合,对DNA模板没有选择性,所以特异性不如TaqMan探针。要想用荧光染料法得到比较好的定量结果,对PCR引物设计的特异性和PCR反应的质量要求就比较高。在此前提下,本法是 一种成本低廉的选择。 2、TaqMan探针技术原理 TaqMan探针法是高度特异的定量PCR技术,其核心是利用Taq酶的3′→5′外切核酸酶活性,切断探针,产生荧光信号。由于探针与模板是特异性结合,所以荧光信号的强弱就代表了模板的数量。在TaqMan探针法的定量PCR反应体系中,包括一对PCR引物和一条探针。探针只与模板特异性地结合,其结合位点在两条引物之间。探针的5′端标记有报告基团(Reporter, R),如FAM、VIC等,3′端标记有荧光淬灭基团(Quencher, Q),如TAMRA等。当探针完整的时候,报告基团所发射的荧光能量被淬灭基团吸收,仪器检测不到信号。随着PCR的进行,Taq酶在链延伸过程中遇到与模板结合的探针,其5′→3′外切核酸酶活性就会将探针切断,报告基团远离淬灭基团,其能量不能被吸收,即产生荧光信号。所以,每经过一个PCR循环,荧光信号也和目的片段一样,有一个同步指数增长的

实时荧光定量PCR原理和实验

实时荧光定量PCR原理和实验 陈云地 作者单位:200030 美国应用生物系统公司(Applied Biosystems) 无论是对遗传病(如地中海贫血和血友病)、传染病(如肝炎和艾滋病)或肿瘤进行基因诊断,还是研究药物对基因表达水平的影响,或者监控药物和疗法的治疗效果,定量PCR技术都可以发挥很大作用。定量PCR技术的最新进展是实时荧光定量。该技术借助于荧光信号来检测PCR产物,一方面提高了灵敏度,另一方面还可以做到PCR每循环一次就收集一个数据,建立实时扩增曲线,准确地确定CT值,从而根据CT值确定起始DNA拷贝数,做到了真正意义上的DNA定量。这是DNA定量技术的一次飞跃。 根据最终得到的数据不同,定量PCR可以分为相对定量和绝对定量两种。典型的相对定量如比较经过不同方式处理的两个样本中基因表达水平的高低变化,得到的结果是百分比;绝对定量则需要使用标准曲线确定样本中基因的拷贝数或浓度。根据所使用的技术不同,荧光定量PCR 又可以分为TaqMan探针和SYBR Green I 荧光染料两种方法。比较而言,探针杂交技术在原理上更为严格,所得数据更为精确;荧光染料技术则成本更为低廉,实验设计更

为简便。在选择实验方案时要根据实验目的和对数据精度的要求来决定。 定量实验与定性实验最大的不同,是要考虑统计学要求并对数据进行严格的校正,以消除偶然误差。因此重复实验和设立内对照非常重要。由于各种各样的客观原因,这一点在实践中往往被轻视或忽视,需要着重强调。当然,与定性实验一样,定量PCR也要设立阴性和阳性对照,以监控试剂和实验操作方面可能出现的问题。 1 为什么终点定量不准确? 我们都知道理论上PCR是一个指数增长的过程,但是实际的PCR扩增曲线并不是标准的指数曲线,而是S形曲线。这是因为随着PCR循环的增多,扩增规模迅速增大,Taq酶、dNTP、引物,甚至DNA模板等各种PCR要素逐渐不敷需求,PCR的效率越来越低,产物增长的速度就逐渐减缓。当所有的Taq酶都被饱和以后,PCR就进入了平台期。由于各种环境因素的复杂相互作用,不同的PCR反应体系进入平台期的时机和平台期的高低都有很大变化,难以精确控制。所以,即使是重复实验,各种条件基本一致,最后得到的DNA拷贝数也是完全不一样的,波动很大(图1)。

实时荧光定量PCR(Real-Time-PCR)实验流程

实时荧光定量PCR(Real-Time PCR)实验流程 一、RNA的提取(详见RNA提取及反转录) 不同组织样本的RNA提取适用不同的提取方法,因为Real-Time PCR对RNA样品的质量要求较高,所以,正式实验前要选择一款适合自己样品的提取方法,在实验过程中要防止RNA的降解,保持RNA的完整性。 在总RNA的提取过程中,注意避免mRNA的断裂;取2ug进行RNA的甲醛变性胶电泳检测,如果存在DNA污染时,要用DNase I进行消化(因为在处理过程中RNA极易降解,建议体系中加入适量RNA酶抑制剂)。 二、DNase I 消化样品RNA 中的DNA 用DNase I 消化DNA 组份加量 模板(RNA) 10ug RNase Inhibitor 4ul DNase I buffer 10ul DNase I 10ul DEPC处理H2O 至100ul 混匀,37℃ 90min 三、RNA琼脂糖凝胶电泳 1.1%的琼脂糖凝胶电泳凝胶的配制: 1)称取琼脂糖0.45g放入三角瓶中,向其中加入4.5ml的10×MOPS缓冲液和39.5ml 的DEPC水,放微波炉里溶化。 2)待冷却到60摄氏度左右时,加入1ml甲醛,摇匀(避免产生气泡)。倒入凝胶板上凝固30min。 2.取各个RNA样品4μl,加入6×RNA电泳上样缓冲液2μl混匀,加入变性胶加样孔中。3.120V电压下电泳25min。用凝胶紫外分析仪观察,照相保存。 4.RNA电泳结果如下图所示。可见28S和18S两条明亮条带,无DNA条带污染。 四.RNA反转录为cDNA 反转录程序(以MBI的M-MLV为例) 组份加量(20ul体系) 加量(40ul体系) 模板(RNA) 0.1~2.5ug(根据条带的亮度适当调整) 3ug(根据条带的亮度适当调整) 引物T18(50uM)(或其他引物) 2.0ul 4.0ul DEPC处理H2O 至12.5ul 至25ul

实时荧光定量PCR原理

实时荧光定量PCR原理 所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1. Ct 值的定义 在荧光定量PCR技术中,有一个很重要的概念-- Ct值。C代表Cycle,t代表threshold,Ct值的含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数(如图1所示)。 2. 荧光域值(threshold)的设定 PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10 ′ SDcycle 3-15 3. Ct值与起始模板的关系 研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 4. 荧光化学 荧光定量PCR所使用的荧光化学可分为两种:荧光探针和荧光染料。现将其原理简述如下:1)TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。而新型TaqMan-MGB探针使该技术既可进行基因定量分析,又可分析基因突变(SNP),有望成为基因诊断和个体化用药分析的首选技术平台。2)SYBR荧光染料:在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA 双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。 内标在传统定量中的意义 1.几种传统定量PCR方法简介: 1)内参照法:在不同的PCR反应管中加入已定量的内标和引物,内标用基因工程方法合成。上游引物用荧光标记,下游引物不标记。在模板扩增的同时,内标也被扩增。在PCR 产物中,由于内标与靶模板的长度不同,二者的扩增产物可用电泳或高效液相分离开来,分别测定其荧光强度,以内标为对照定量待检测模板。2)竞争法:选择由突变克隆产生的含有一个新内切位点的外源竞争性模板。在同一反应管中,待测样品与竞争模板用同一对引物同时扩增(其中一个引物为荧光标记)。扩增后用内切酶消化PCR产物,竞争性模板的产物被酶解为两个片段,而待测模板不被酶切,可通过电泳或高效液相将两种产物分开,分别测定荧光强度,根据已知模板推测未知模板的起始拷贝数。3)PCR-ELISA法:利

实时荧光定量PCR方法简介

实时荧光定量PCR方法简介 一.实时荧光定量PCR的基本原理 理论上,PCR过程是按照2n(n代表PCR循环的次数)指数的方式进行模板的扩增。但在实际的PCR反应过程中,随着反应的进行由于体系中各成分的消耗(主要是由于聚合酶活力的衰减)使得靶序列并非按指数方式扩增,而是按线性的方式增长进入平台期。因此在起始模板量与终点的荧光信号强度间没有可靠的相关性。如采用常规的终点检测法(利用EB染色来判断扩增产物的多少,从而间接的判断起始拷贝量),即使起始模板量相同经PCR 扩增、EB染色后也完全有可能得到不同的终点荧光信号强度。 为了能准确判断样品中某基因转录产物(mRNA)的起始拷贝数,实时荧光定量PCR采用新的参数——Ct值,定量的根本原理是Ct值与样品中起始模板的拷贝数的对数成线性反比关系。 Ct值是如何得到的 在实时荧光定量PCR的过程中,靶序列的扩增与荧光信号的检测同时进行,定量PCR仪全程采集荧光信号,实验结束后分析软件自动按数学算法扣除荧光本底信号并设定阈值从而得到每个样品的Ct值。 Ct值的定义 Ct值中的“C”代表Cycle(循环),“t”代表检测threshhold(阈值),其含义是PCR扩增过程中荧光信号强度达到阈值所需要的循环数;也可以理解为扩增曲线与阈值线交点所对

应的横坐标。 Ct值与样品中模板的对应关系 Ct值与样品中起始模板的拷贝数的对数成线性反比关系(y=ax+b,x代表起始模板拷贝数的对数,y代表Ct值)。 与终点法相比利用Ct值的优势 由于Ct值是反映实际PCR反应过程中扩增即将进入指数期的参数,该参数几乎不受试剂消耗等因素的影响,因此利用Ct值判断的起始模板拷贝数更加精确,重复性也更好。传统的终点检测法是在PCR扩增经历了指数扩增期进入平台期后利用EB等染料染色来判断扩增产物的多少,从而间接的判断起始拷贝量,这种方法的精确度不高、重复性也不好。 下图中是96个复孔的实时扩增曲线(完全相同的反应体系、相同的反应protocol、相同的样品起始浓度),可以看到Ct值具有很好的重复性,而终点的荧光信号强度差异达到300个单位。 此外,采用实时荧光定量PCR还能从方法学上有效的防止PCR实验中交叉污染的问题。因为荧光定量PCR中模板的扩增与检测是同时进行的,当实验完成后即可获得定量结果,

实时荧光定量PCR仪ViiA7操作步骤

实时荧光定量PCR仪ViiA 7 操作步骤 ——以RNase P示例实验为例 一、定义384孔样品模块的实验属性 打开电脑访问ViiA 7 软件,然后打开左侧仪器开关。单击Experiment Setup图标。单击Experiment Properties以访问Experiment Properties屏幕。 在ViiA 7 软件中设计RNase P实验示例时,请输入: 二、使用Define屏幕定义RNase P示例实验的目标基因、样品。 1. 单击Define以访问Define屏幕。 2. 定义目标基因 a. 单击New以增加和定义目标基因。 b. 在目标基因表中,单击Target Name列中的一个单元格,并输入: c. (可选)单击Save以便将新增或原有的正在编辑的目标基因保存到Target Library。 d. 单击Add Saved从目标基因库添加目标基因。 3. 定义样品 a. 单击New以增加和命名样品。 b. 在样品表中,单击Sample Name列中的一个单元格,并输入: c. (可选)单击Save以将新增或原有的正在编辑的样品保存到Sample Library。 d. 单击Add Saved从样品库添加样品。 4. (可选)定义生物学平行测定 a. 在Define Biological Replicates Groups表中,单击New以增加和命名生物学平行 测定组。 b. 从下拉菜单选择Color。 c. 单击Comments列,以便为该生物学平行测定组添加注释。 注:实验示例不使用生物学平行测定组。保留Biological Replicate Groups空白。 5. 选择用作参比荧光的染料ROX。

实时荧光定量PCR技术的原理及应用

实时荧光定量PCR技术的原理及应用(图) 一、实时荧光定量PCR原理 (一)定义:在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 (二)实时原理 1、常规PCR技术: 对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准确定量,无法对扩增反应实时检测。 2、实时定量PCR技术: 利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct值和标准曲线的分析对起始模板进行定量分析 3、如何对起始模板定量? 通过Ct值和标准曲线对起始模板进行定量分析. 4、几个概念: (1)扩增曲线: (2)荧光阈值:

(3)Ct值: CT值的重现性:

5、定量原理: 理想的PCR反应:X=X0*2n 非理想的PCR反应:X=X0 (1+Ex)n n:扩增反应的循环次数 X:第n次循环后的产物量 X0:初始模板量 Ex:扩增效率 5、标准曲线 6、绝对定量 1)确定未知样品的C(t)值 2)通过标准曲线由未知样品的C(t)值推算出其初始量

7、DNA的荧光标记: 二、实时荧光定量PCR的几种方法介绍 方法一:SYBR Green法 (一)工作原理 1、SYBR Green 能结合到双链DNA的小沟部位 2、SYBR Green 只有和双链DNA结合后才发荧光

3、变性时,DNA双链分开,无荧光 4、复性和延伸时,形成双链DNA,SYBR Green 发荧光,在此阶段采集荧光信号。

PCR反应体系的建立及优化: 1、SYBR Green 使用浓度:太高抑制Taq酶活性,太低,荧光信号太弱,不易检测 2、Primer:引物的特异性高,否则扩增有杂带,定量不准 3、MgCl2的浓度:可以降低到1.5mM,以减少非特异性产物 4、反应Buffer 体系的优化 5、反应温度和时间参数:由酶和引物决定 6、其他与常规PCR相同 (二)应用范围 1、起始模板的测定; 2、基因型的分析; 3、融解曲线分析:可以优化PCR反应的条件,对常规PCR有指导意义,如对primer 的评价;可以区分单一引物、引物二聚体、变异产物、多种产物。 (三)优点及缺点 优点:对DNA模板没有选择性;适用于任何DNA;使用方便;不必设计复杂探针;非常灵敏;便宜。 缺点:容易与非特异性双链DNA结合,产生假阳性;但可以通过融解曲线的分析,优化反应条件;对引物特异性要求较高。

实时荧光定量pcr步骤

实时荧光定量pcr步骤: 荧光定量PCR 实验步骤:①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。③RNA沉淀将水相上层转移到一干净无RNA 酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。⑥溶解RNA 沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。1)紫外吸收法测定先用稀释用的TE溶液将分光光度计调零。然后取少量RNA 溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm 处的吸收值,测定RNA溶液浓度和纯度。① 浓度测定A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下:RNA溶于40 μl DEPC

实时荧光定量pcr步骤

实时荧光定量PCR (Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。· Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR 进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA 沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。

⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl 用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。

实时荧光定量PCR具体实验步骤

以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL 试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm 离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA 溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

实时荧光定量PCR具体实验步骤

实时荧光定量PCR操作步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放臵5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75% O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心乙醇(75%乙醇用DEPCH 2 5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或 0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板放入电泳槽内,加足量的1×MOPS电泳缓冲液至覆盖胶面几个毫米。

实时荧光定量pcr步骤

实时荧光定量PCR: 实时荧光定量PCR (Quantitative Real-time PCR)是一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应(PCR)循环后产物总量的方法。通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。· Real-timePCR是在PCR扩增过程中,通过荧光信号,对PCR 进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。 原理: 所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 检测方法 1.SYBRGreenⅠ法: 在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA双链后,发射荧光信号,而不掺入链中的SYBR 染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR 产物的增加完全同步。 SYBR定量PCR扩增荧光曲线图 PCR产物熔解曲线图(单一峰图表明PCR扩增产物的单一性) 2.TaqMan探针法:

探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR 扩增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物的形成完全同步。 服务流程 1.客户认真写好订单,提供待检基因相关信息; 2.签订技术服务合同,支付预付款(30-50%); 3.设计合成定量PCR引物(或客户提供文献引物委托本公司合成); 4.DNA/RNA的抽提、定量、RNA反转录; 5.PCR预实验,主要检测引物的特异性和扩增效率; 6.正式定量实验:对所有样品上机检测; 7.实验结果和数据分析,形成报告。 收费标准 优惠包干价:120元/样/基因(SYBRgreenI法,相对定量) (含RNA提取,反转录,引物合成费用,上机测试费用(3个重复);一个内参免费(内参3个重复) 技术原理 将标记有荧光素的Taqman探针与模板DNA混合后,完成高温变性,低温复性,适温延伸的热循环,并遵守聚合酶链反应规律,与模板DNA互补配对的Taqman探针被切断,荧光素游离于反应体系

CFX96 实时荧光定量PCR仪器的操作流程及注意事项

CFX96 实时荧光定量PCR仪器的操作流程及注意事项1、开始运行仪器 1.1打开电脑 1.2打开定量PCR仪底座开关 1.3启动CFX Manager软件 2、放置样品 2.1将PCR反应体系加入到0.2ml底缘八联管,盖上管盖;或加入底缘96孔板,用光学级封膜封好。注意,必须戴一次性塑料手套,不要让手指接触到反应管表面。将反应管按顺序放入仪器的加热孔中。 3、设置程序,运行试验 3.1定量PCR软件操作基本步骤为:a.设置热循环程序文件(protocol tab)b.设置反应板文件(plate tab)。c.点击‘‘start run’’键,运行程序。 3.2热循环程序文件(protocol tab)设置指南:点击edit(编辑)或create new (创建新程序)。 3.3反应板设置文件(plate tab)设置指南:选择本次试验所需要使用的荧光染料种类;单机样品类型;如要某些反应孔第一荧光染料对应的样品类型为标准品(standard),点击‘‘dilution series’’键可设置其标准品浓度及稀释倍数。 3.4点击‘‘start run’’键。单击open lid(打开热盖)或close lid(关闭热盖)放置样品;单击start run,保存文件,开始运行程序。 4、结果分析 4.1PCR反应结束后,软件会自动计算标准曲线和CT值等。 4.2如需进行表达量分析、等位基因分析等,在软件窗口选择相应分析功能。 4.3点击右上方的“Report”键,还可输出结果报告单。 5、关闭运行仪器 5.1实验结束后取出反应管,顺序关闭CFX Manager软件、定量PCR仪电 源,关闭电脑。注意!CFX仪器上盖部分为全自动控制,在通电状态,严禁任何人为干涉上盖开启或关闭的行为,此类行为会导致上盖故障,危及仪器使用。

DA7600实时荧光定量PCR仪确认方案模板

确认文件 类别:确认方案编号: 部门:质量部页码:共11页,第1页 DA7600PCR扩增仪 方案与报告 版次:新订替代: 起草:年月日 审阅会签: (确认小组) 批准:年月日

目录 1.概述 (2) 2.确认目的 (2) 3.确定确认范围 (3) 4.确定确认小组成员及职责 (3) 确认小组成员及确认小组负责人 (3) 人员 (3) 评价方法: (3) 标准: (3) 5.风险评估 (4) 评估概述 (4) 评估方法 (4) 6.确认内容 (7) .安装确认 (7) 安装信息 (7) 仪器放置检查 (7) 操作规程等资料确认 (8) 运行确认 (8) 基本称重功能确认 (8) 校正功能确认 (9) 性能确认 (9) 准确度 (9) 天平重现性检查: (10) 四角偏差检查: (11) 7确认计划安排 (11) 9.确认结果评定与结论 (11) 10.拟订日常监测程序及确认周期 (12)

1.概述 DA7600实时荧光定量PCR仪,是中山大学达安基因公司推出的具有全自动、实时监测、定量分析的DNA荧光检测系统。结合半导体致冷器实现PCR扩增过程,并通过高灵敏度的光电系统和高通量光纤导光系统对荧光信号进行实时监测,实现同时对样品的扩增和检测。友好的全中文计算机界面,可满足不同PCR实验的需求。其反应速度及准确性、操作实用性和使用灵活性均有较好的提高,能满足科研工作者对于定量PCR系统高通量方面的要求,是特异性靶基因检测与定量的一体化平台。它主要有一台DA7600和PC计算机及显示器组成。 2.确认目的 通过用HCV荧光PCR检测试剂盒来确认DA7600实时荧光定量PCR仪的扩增和检测体系精密度、线性、准确度等,验证仪器能否正常准确运行,给出可靠的分析结果,以及48孔孔间差异是否在允许范围内。 3.确定确认范围 本方案适用于DA7600实时荧光定量PCR仪运行确认及性能确认。 4.确定确认小组成员及职责 确认小组成员及确认小组负责人 列出参加DA7600确认的所有人员名单,评价培训情况是否符合操作的要求。 评价方法: 查阅培训档案,确认是否对有关操作者进行了相关培训,包括:

免费实时荧光定量PCR具体实验步骤

实时荧光定量PCR实验操作步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75% O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心乙醇(75%乙醇用DEPCH 2 5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数×40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl ×0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板放入电泳槽内,加足量的1×MOPS电泳缓冲液至覆盖胶面几个毫米。

实时荧光定量PCR具体实验步骤

实时荧光定量PCR具体实验步骤 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下:

荧光定量PCR流程和操作原理(收集整理)

实时荧光定量PCR原理和实验

实时荧光定量PCR原理和实验 无论是对遗传病(如地中海贫血和血友病)、传染病(如肝炎和艾滋病)或肿瘤进行基因诊断,还是研究药物对基因表达水平的影响,或者监控药物和疗法的治疗效果,定量PCR技术都可以发挥很大作用。定量PCR技术的最新进展是实时荧光定量。该技术借助于荧光信号来检测PCR产物,一方面提高了灵敏度,另一方面还可以做到PCR每循环一次就收集一个数据,建立实时扩增曲线,准确地确定CT值,从而根据CT值确定起始DNA拷贝数,做到了真正意义上的DNA定量。这是DNA定量技术的一次飞跃。 根据最终得到的数据不同,定量PCR可以分为相对定量和绝对定量两种。典型的相对定量如比较经过不同方式处理的两个样本中基因表达水平的高低变化,得到的结果是百分比;绝对定量则需要使用标准曲线确定样本中基因的拷贝数或浓度。根据所使用的技术不同,荧光定量PCR又可以分为TaqMan探针和SYBR Green I荧光染料两种方法。比较而言,探针杂交技术在原理上更为严格,所得数据更为精确;荧光染料技术则成本更为低廉,实验设计更为简便。在选择实验方案时要根据实验目的和对数据精度的要求来决定。 定量实验与定性实验最大的不同,是要考虑统计学要求并对数据进行严格的校正,以消除偶然误差。因此重复实验和设立内对照非常重要。由于各种各样的客观原因,这一点在实践中往往被轻视或忽视,需要着重强调。当然,与定性实验一样,定量PCR也要设立阴性和阳性对照,以监控试剂和实验操作方面可能出现的问题。 1为什么终点定量不准确? 我们都知道理论上PCR是一个指数增长的过程,但是实际的PCR扩增曲线并不是标准的指数曲线,而是S形曲线。这是因为随着PCR循环的增多,扩增规模迅速增大,Taq酶、dNTP、引物,甚至DNA模板等各种PCR要素逐渐不敷需求,PCR的效率越来越低,产物增长的速度就逐渐减缓。当所有的Taq酶都被饱和以后,PCR就进入了平台期。由于各种环境因素的复杂相互作用,不同的PCR反应体系进入平台期的时机和平台期的高低都有很大变化,难以精确控制。所以,即使是重复实验,各种条件基本一致,最后得到的DNA拷贝数也是完全不一样的,波动很大(图1)。

相关主题