搜档网
当前位置:搜档网 › Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots

Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots

Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots
Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots

Physica E13(2002)165–

169

https://www.sodocs.net/doc/1c9800201.html,/locate/physe

Magneto-optical properties of ring-shaped self-assembled

InGaAs quantum dots

D.Haft a,C.Schulhauser a,https://www.sodocs.net/doc/1c9800201.html,orov b,R.J.Warburton c,K.Karrai a;?,

J.M.Garcia d;e,W.Schoenfeld d,P.M.Petro d

a Center for NanoScience and Sektion Physik,Ludwig-Maximilians-Universit a t,Geschwister-Scholl-Platz1,

80539M u nchen,Germany

b Institute of Semiconductor Physics,RAS,Siberian Branch,630090Novosibirski,Russia

c Department of Physics,Heriot-Watt University,Edinburgh EH144AS,UK

d Materials Department and QUEST,University of California,Santa Barbara,CA93106,USA

e Instituto de Microelectronica de Madrid,CNM-CSIC Isaac Newton,8,PTM,28760Madrid,Spain

Abstract

We report on measurements of the magneto-optical properties of excitons con?ned in ring-shaped self-assembled semicon-ductor quantum dots.The rings are embedded in a?eld-e ect structure that allows the number of con?ned electrons to be set electrostatically.In addition,electron-hole pairs are generated optically.The resulting photoluminescence spectra of neutral, singly and doubly charged excitons were measured at4:2K as a function of the applied magnetic?eld(0–9T).The emission energy shows a diamagnetic shift as well as a Zeeman splitting.We measured the emission of di erent charge states of the exciton in many individual dots.In a few of the measured rings,a new behavior was observed,namely a clear departure from the low?eld diamagn etic dispersionfor?elds larger than6T.?2002Elsevier Science B.V.All rights reserved. PACS:78.67.Bf;73.21.2b,73.40.Rw;78.66.Fd

Keywords:Spectroscopy;Self-assembled systems;Quantum dots

The fabricationof self-assembled semicon ductor quantum dots by the Stranski–Krastanov growth mode has become a well-established technique[1,2].Usu-ally,the dots grownthis way have shapes(len ses, faceted truncated pyramids,etc.),sizes and compo-sitions that are dictated by the choice of materials and substrate temperature.Recently,a method that involves a growth interruption and rapid annealing

?Corresponding author.Center for NanoScience,Sektion Physik,LMU,Geschwister-Scholl-Platz1,80539M u nchen, Germany.

E-mail address:khaled.karrai@physik.uni-muenchen.de (K.Karrai).was foun d to produce a drastic modi?cationinthe shape of the dots[3].InAs based self-assembled nanostructures grown on a GaAs substrate were ob-tained with ring-shaped geometry with a well-de?ned hole of about20nm diameter in their center.The morphologic modi?cationcanbe directly measured using scanning probe microscopy.The ring shape is expected to change the electronic properties of carriers con?ned in the dots[4].Similar to atoms and molecules,the diamagnetic properties of electrons con?ned in semiconductor nanostructures are related to the morphology and the spatial distribution of their wave function in the plane perpendicular to the applied magnetic?eld.In this work we report on the

1386-9477/02/$-see front matter?2002Elsevier Science B.V.All rights reserved. PII:S1386-9477(01)00511-2

166 D.Haft et al./Physica E13(2002)165–169

diamagnetic energy shift of the photo-luminescence (PL)of excitons con?ned in ring-shaped quantum dots.

The samples were grownby solid-source molecu-lar beam epitaxy.InAs self-assembled dots are grown ona thick GaAs epitaxial?lm ona GaAs substrate.

A thinlayer(1n m)of GaAs is thengrownontop of the self-assembled dot layer and annealed at a temperature of520?C for1min[3,4].The shape of the nanostructures changes during this annealing step from a lens shape(about20nm in diameter and6nm high)to a2nm high dot with a crater of20nm diam-eter inits cen ter.At this stage,the structures resemble volcanoes of roughly60–140nm in outer diameter [3,4].Further capping with a150nm barrier material (GaAs and then AlAs=GaAs short period superlat-tice)is necessary so that the nanostructures become optically active.The dot layer is grownona25n m un-doped GaAs layer that separates it from a degenerately Si-doped GaAs back contact.With a semi-transparent NiC r fron t gate anelectric?eld canbe applied which makes it possible to control electrostatically the num-ber of electrons present per ring from none to a few. We have takenlow temperature(4:2K)photolumi-nescence(PL)spectra on tens of individual rings as a function of the front gate voltage in the range be-tween?0:8and0V.Each time an individual electron tunnels into the ring from the back contact,an abrupt red-shift of the emissionen ergy is observed as a result of the charging of the nanostructure[5–8]. Due to Coulomb blocking,the number of electrons present in the ring can be kept stable and the emission shows characteristic charging plateaus as a function of V g[5].Such gate sweep PL measurements are sys-tematically recorded before measuring the magnetic ?eld dependence of the emission in order to de?ne unambiguously the charge state of the investigated ring.For V g smaller than?0:8V electrons tunnel out of the quantum dot at a rate fast enough such that no exciton ic emissioncanbe detected.For V g larger than +0:1V,the thin InAs wetting layer surrounding the rings?lls with a two-dimensional electron system. The PL was obtained by optically pumping the InAs wetting layer with =820nm just below the band gap of GaAs.The collected PL was spectrally dispersed with a300mm focal length monochromator and de-tected with a liquid nitrogen cooled Si CCD camera, a system with spectral resolutionof0:3meV.Inthis work the polarization of the PL was not analyzed.Both the single ring PL and the ensemble measurements were performed with low enough pumping intensity such that the emissionof the higher excited exciton ic levels or bi-excitonic emission was not possible.The emissionof the wettin g layer is detected at1:425eV (870nm)and the ring emission was found in a spec-tral range spanning1.26–1:36eV.The PL of a few tens of individual rings was measured using a confocal microscope setup together with a sample preparation outlin ed inRef.[5].Fig.1shows the evolutionof the PL spectrum of a single ring as a function of the ap-plied magnetic?eld.The PL emission splits into a lower and an upper branch.Such a characteristic Zee-man splitting of the excitonic emission was observed on all the measured dots independent of their charge. Withinour spectral resolution,the Zeemansplittin g was found to be linear in

B with anaverage slope of 120 eV=T varying from dot to dot with a standard deviationof30 eV=T.Fig.1also shows that the PL peak positions shift with applied?eld B to higher en-ergies.In order to analyze such a diamagnetic shift, the peak positionof the lower(upper)bran ch of the PL peak is plotted against negative(positive)?eld values.The choice of sign convention for B is ar-bitrary.For the majority of measured rings,the PL energy dependence with the applied magnetic?eld was found to follow a quadratic function of the type E PL=E0+(12)g ex B B+ B2.Here g ex is the e ective excitonLan d?e factor and B is the Bohr magneton. The curvature inthis expressionwas foun d inall measured cases to be positive,characteristic of a dia-magnetic behavior.We have analyzed the magnetic ?eld of the PL for about20di erent rings.Whenever it was possible,we measured the excitonic emission of each ring as a function of charge,namely the neutral excitonic emission X0,the singly and doubly charged excitonX1?and X2?.In many cases charging with one excess electron could only be done in an energy level degenerate with the two-dimensional continuum in the InAs wetting layer.In the present analysis we choose to ignore such rings.

We found that we can classify the behavior of in-dividual rings into two categories according to their diamagnetic-shift.Half of the measured rings have an excitonic diamagnetic shift of10 eV=T2independent of their state of charge as showninFig.2a.We label these rings as type A.Remarkably,for this type of ring

D.Haft et al./Physica E 13(2002)165–169

167

B (T)

E n e r g y (e V )

B (T)

-8-6-4-202468

P L p e a k p o s i t i o n (e V )

Fig.1.Left:gray scale of the PL emission intensity as a function of B and energy.White level is the background signal,black level =100counts =30s above background.Right:the position of the PL peak against negative (positive)B for the lower (upper)spin-split branch.The solid line is the best quadratic ?t with =11:0 eV =T 2and (12)g ex B

=86 eV =T.B (Tesla)

-10-50510D i a m a g n e t i c s h i f t (m e V )

1

B (Tesla)

-50510 B (Tesla)

-50510

Fig.2.Diamagnetic shift of the neutral and charged exciton in three di erent types of rings.Left panel,rings of type A with =10 eV =T 2and (12)g ex B

=45 eV =T.The three di erent symbols represent X 0;X 1?,an d X 2?.Center:rings of type B.The neutral exciton (X 0)has =16:5 eV =T 2and (12)g ex B =48 eV =T,the charged excitonhas =8:7 eV =T 2and (12)g ex B

=56 eV =T.The right panel represents the type of ring that shows a clear drop of (from 20 eV =T 2downto 13 eV =T 2

)for B ?6T.

the diamagnetic shift was found to vary by only 10%from ring to ring.Another class of ring (type B)has the property that the diamagnetic shift reduces with the addition of one excess electron.A characteristic example of this type B behavior is showninFig.2b.There the diamagnetic shift of the X 0excitonis foun d

to be 16:6 eV =T 2while that of X 1?

is 8:7 eV =T 2.We observed that all the type A rings emit in a band centered around 1:31eV while the type B rings emit in a band centered around 1:34eV.Correspondingly,a measuremen t of the PL emissionof anen semble

of 106

rings also showed that there are two emission peaks at 1.31and 1:34eV.We de?ne a phenomenological excitonic diamag-netic shift E ex =(e 2 2=8 )B 2where the character-istic con?nement length ,and the mass are to be determined using speci?c theoretical models.Re-cently,Chaplik derived the diamagnetic shift of neutral and charged excitons con?ned in a ring with a parabolic radial potential [9].Such a potential,which departs from the one-dimensional ideal ring,allows for a radial motionof the electronan d hole.The noninteracting electron and hole ground states are characterized by the zero-point lengths l e and l h across the ring width.This model [9]predicts that for a neutral exciton in a ring the characteristic length

168 D.Haft et al./Physica E13(2002)165–169

is to be identi?ed with 2=(l2e+l2h)and the mass to be used is =(m e+m h)=2.Inthis formulation, the diamagnetic shift of the neutral exciton does not relate to the ring radius R0,instead it gives the char-acteristic width of the https://www.sodocs.net/doc/1c9800201.html,ing a measured mass [4]m e=0:07and an assumed mass m h=0:3for the hole,we obtain(l2e+l2h)1=2=9:5nm for a type A ring. If instead of using a ring potential one assumes that the exciton experiences a normal central parabolic con?nement,the characteristic measured length is now to be identi?ed with the exciton radius and the reduced mass =(m?1e+m?1h)?1.The diamagnetic shift of the type A rings would correspond within this model to anexcitonradius of4:8nm.Since both diamagnetic lengths are consistent with the ring-sizes estimated from scanning force microscopy measure-ments,we see that at this point,using the magnetic behavior of the neutral exciton PL alone it is not possible to di erentiate experimentally between a ring and central parabolic con?nement.The magnetic property of charged rings is expected to be more infor-mative.The model of Ref.[9]predicts that ina rin g, the PL of charged excitons shows a paramagnetic behavior(i.e. ?0).The chan ge insignfor is sim-ple to understand;it arises from the electron left after exciton recombination.Since there is only an elec-troninthe?n al state,its diamagn etic shift is sizably larger than that of the bound excitonic complex in the initial state.The di erential shift between the initial and?nal states leads therefore to a negative curvature.A very similar predictionis also made for two-dimensional free trions[10]but this was never clearly measured.Such a predicted negative curvature inthe excitonemissionwas n ot observed in this experiment.Alternative to the ring-shaped potential,we also considered a parabolic central po-tential model.Two limits are discussed.First,in the strong con?nement limit for which the zero-motion length of the harmonic potential is much smaller thanthe free excitonradius(~12nm),the prediction we make is that the diamagnetic curvature of the PL emission increases slightly for singly and dou-bly charged excitons compared to neutral excitons. Including the Coulomb interaction as a weak per-turbation,we?nd that becomes more sensitive to electron–electron interactions with increasing electron number and increasing con?nement length.Second, in the opposite limit of weak con?nement,we predict that charged excitons should generally show a para-magnetic behavior(i.e.a negative )while the neu-tral exciton has diamagnetic energy dispersion(i.e.a positive ).In the case of the singly charged exciton, the originof this behavior is very similar to the pre-dictionmade for free trion s ina magn etic?eld[10]. For doubly and triply charged excitons,the correlated motion of the electrons and the hole is more complex and the PL spectrum in the weak con?nement limit can include strong shakeup lines with even stronger paramagnetic dispersion.Since the limiting cases of strong and weak con?nements result in opposite behaviors we expect that withina parabolic cen tral potential model the dependence of onthe charge of the exciton should be a sensitive measurement of the con?nement https://www.sodocs.net/doc/1c9800201.html,ing such an argumentation, the data for the type A rings could then be interpreted using a parabolic potential in the strong con?nement limit while the excitonof type B would correspon d to intermediate con?nement strength.

So far on grounds of the diamagnetic shift data alone it is presently not possible to di erentiate be-tween a ring-shaped and parabolic central con?ning potential.However,we expect to detect a signature of a ring-shaped con?ning potential when a ux quantum threads the nanostructure[4].When this happens,the orbital symmetry of the neutral exciton is expected to change by one quantum number.This is assuming that the excitonhas n on zero polarizationinthe radial direction and so resembles a rotating dipole[11].By calculating single-particle wave functions we found that indeed electron and hole have di erent averaged radii due to di erent e ective masses and thus a nonzero dipole moment in the exciton can exist.Due to optical selectionrules for such anexciton,we expect a complete extin ctionof the PL emission[11].Such magnetic?eld induced quenching of the PL was not detected inour experimen ts.It is possible that the magnetic?elds used here are not high enough to ful-?ll the condition for ux quantization.We have mea-sured in three individual rings an unexpected sudden change in the diamagnetic curvature at?elds above 6T.The PL peak positionof the n eutral excitonof such a rin g is showninFig.2c.For this particular set of data,the low-?eld diamagnetic quadratic term was found to be =20 eV=T2while above6T this curvature reduced to13 eV=T2.Incon trast,the linear term(i.e.Zeeman e ect)remained constant.

D.Haft et al./Physica E13(2002)165–169169

The suddenreductionat6T of the diamagn etic-shift is so far not understood but could be related to the threading of a ux quantum[12].Such rings would have a hole diameter of30nm.

This work was supported by the DFG under SFB348 and EPSRC.One of us,A.O.G.,acknowledges?nan-cial support from the Volkswagen-Foundation.

References

[1]D.Leonard,K.Pond,P.M.Petro ,Phys.Rev.B50(1994)

11687.

[2]D.Bimberg,M.Grundmann,N.Ledentsov,Quantum Dot

Heterostructures,Wiley,New York,1998.

[3]J.M.Garcia,G.Medevios-Ribeiro,K.Schmidt,T.Ngo,

J.L.Feng,A.Lorke,J.Katthaus,P.M.Petro ,Appl.Phys.

Lett.71(1997)2014.

[4]A.Lorke,R.J.Luyken, https://www.sodocs.net/doc/1c9800201.html,orov,J.P.Kotthaus,

J.M.Garcia,P.M.Petro ,Phys.Rev.Lett.84(2000)223.

[5]R.J.Warburton,C.Scha ein,O.Haft,F.Bickel,A.Lorke,

K.Karral,J.M.Garcia,W.Schaenfeld,P.M.Petro ,Nature 405(2000)926.

[6]J.J.Finley,P.W.Fry, A.O.Ashmore, A.Lema? tre,

A.I.Tartakovskii,R.Oulton,O.J.Mowbray,M.S.Sholnick,

M.Hopkinson,P.O.Buckle,E.Molinari,Phys.Rev.B63 (2001)161305.

[7]F.Findeis,M.Baier,A.Zrenner,M.Bichler,G.Abstreiter,

U.Hohenester,E.Molinari,Phys.Rev.B63(2001)121309.

[8]A.Hartmann,Y.Ducommun,E.Kapon,U.Hohenester,

E.Molinari,Phys.Rev.Lett.84(2000)5648.

[9]A.V.Chaplik,JETP92(2000)169.

[10]B.St?e b?e,E.Feddi,G.Munschy,Phys.Rev.B35(1987)

4331.

[11]https://www.sodocs.net/doc/1c9800201.html,orov,A.V.Kalameitsev,R.J.Warburton,K.Karrai,

S.Ulloa,in this conference;

A.V.Kalameitev,https://www.sodocs.net/doc/1c9800201.html,orov,V.Kovalev,JETP Lett.68

(1998)669.

[12]R.A.Romer,M.E.Raikh,Phys.Rev.B62(2000)7045.

汽车修理工国家职业标准与技能标准

汽车修理工国家职业标准与技能标准 1. 职业概况 1.1 职业名称 汽车修理工。 1.2 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。1.4 职业环境条件 室内、外、常温。 1.6 基本文化程度 高中毕业(含同等学力)。 1.7 培训要求 1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1.7.2 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。

1.7.3 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600 m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业资格证书后,连续从事本职业工作4年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业资格证书后,连续从事本职业工作7年以上。 (3)取得高级技工学校或经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业(专业)毕业证书。 (4)取得本职业中级职业资格证书的大专以上本专业或相关专业毕业生,连续从事本职业工作2年以上。 ——技师(具备以下条件之一者) (1)取得本职业高级职业资格证书后,连续从事本职业工作5年以上,经本职业技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业高级职业资格证书后,连续从事本职业工作8年以上。 (3)高级技工学校本职业(专业)毕业生,连续从事本职业工作满2年。 ——高级技师(具备以下条件之一者)

车辆外廓尺寸检测公差

国家经济贸易委员会、公安部关于进一步 加强车辆公告管理和注册登记有关事项的通知 (国经贸产业[2002]768号) 各省、自治区、直辖市、计划单列市及新疆生产建设兵团经贸委(经委)、公安厅(局):为加强机动车安全管理,严格执行车辆“生产准入”和“行驶准入”制度,进一步规范《车辆生产企业及产品公告》(以下简称《公告》)管理和机动车注册登记管理,深化车辆产品管理体制改革,现将有关事项通知如下: 一、《公告》管理的范围 国家经贸委实施《公告》管理的车辆产品包括:在我国境内生产、销售并在道路上行驶的民用汽车产品及相应底盘、农用运输车、半挂车和摩托车产品。无轨电车、轮式工程机械车(含装载机、挖掘机等)、拖拉机、全挂车等不实行《公告》管理。 《公告》包括文本和光盘两部分,文本主要表述新产品批准(含产品扩展)、勘误更改和撤销等内容;光盘由本批新增产品数据库和历批汇总产品数据库两部分构成,记录产品的技术参数及产品照片等内容。文本和光盘配合使用。 公安交通管理部门要严格依据最新一批《公告》文本和配套光盘的汇总产品数据库办理车辆注册登记。在用车辆在办理过户、转出和转入登记时,要依据车辆在注册登记时发布的《公告》文本和配套光盘中的汇总产品数据库办理有关手续。未登《公告》的车辆产品或与《公告》公布的参数不符的车辆产品不得办理注册登记。不实行《公告》管理的车辆产品,公安交通管理部门依据生产企业提供的整车出厂合格证办理注册登记。 二、增加和调整强制性检验项目 (一)自2002年11月1日起,汽车生产企业申报《公告》的车型(包括改进型、扩展等,下同)必须符合《汽车和挂车侧面防护要求》(GB11567.1-2001)、《汽车和挂车后下部防护要求》(GB11567.2-2001)、《汽车燃油箱安全性能要求和试验方法》(GB18296-200 1)等3项国家标准的要求,并提供国家经贸委授权的检测机构(以下简称授权检测机构)出具的试验报告。 产品已列入《公告》的企业,自本通知发出之日起,要尽快使出厂产品符合上述3项国家标准的要求,并向国家经贸委报送由授权检验机构出具的试验报告。产品外型发生明显变化时,需提供有关照片。自2003年3月1日起,已列入《公告》的产品仍未安装符合上述标准的防护装置和燃油箱的,国家经贸委将在《公告》中予以撤销。 (二)自2003年1月1日起,装备驻车灯的车型申报《公告》时必须符合《汽车驻车灯配光性能》(GB18409-2001)要求,并提供由授权检测机构出具的试验报告。 (三)自2003年3月1日起,汽车企业申报《公告》的车型必须符合《用于保护车载接收机的无线电骚扰特性的限值及测量方法》(GB18655-2002)要求,并提供由授权检测机构出具的试验报告。 (四)自2003年1月1日起,汽车企业停止生产不符合《关于正面碰撞乘员保护的设计规则》(CMVDR 294)要求的微型客车产品,其库存产品最多允许继续销售6个月。自

压力弹簧计算公式

压力弹簧计算公式 压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例:

线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 · 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 扭力弹簧

·弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416 大量自学内容可能对你会有帮助https://www.sodocs.net/doc/1c9800201.html,/study.asp?vip=3057729

汽车维修行业标准

汽车维修行业标准国家职业标准:汽车修理工 1、职业概况 1、1 职业名称 汽车修理工。 1、2 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理与调试的人员。 1、3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1、4 职业环境条件 室内、外,常温。 1、5 职业能力特征

1、6 基本文化程度 高中毕业(含同等学力)。 1、7 培训要求 1、7、1 培训期限 全日制职业学校教育,根据其培养目标与教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1、7、2 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。 1、7、3 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600 m2以上能满足培训要求的场地,且有相应的设备、仪器仪表与必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1、8 鉴定要求 1、8、1 适用对象 从事或准备从事本职业的人员。 1、8、2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。

汽车修理工国家职业技能鉴定标准

汽车修理工国家职业标准 1.职业概况 1.1职业名称 汽车修理工。 1.2职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 1.3职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4室、外,常温。 1.5职业能力特征

1.6基本文化程度 高中毕业(含同等学历)。 1.7培训要求 1.7.1培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1.7.2培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业书,培训高级人员的教师应具有技师职业书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业书,且在本岗位工作3年以上。 1.7.3培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1.8鉴定要求 1.8.1适用对象 从事或准备从事本职业的人员。 1.8.2申报条件 ——初级(具备以下条件之一者)

(1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业书后,连续从事本职业工作4年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业书后,连续从事本职业工作7年以上。 (3)取得高级技工学校或经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业(专业)毕业证书。 (4)取得本职业中级职业书的大专以上本专业或相关专业毕业生,连续从事本职业工作2年以上。 ——技师(具备以下条件之一者) (1)取得本职业高级职业书后,连续从事本职业工作5年以上,经本职业技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业高级职业书后,连续从事本职业工作8年以上。 (3)高级技工学校本职业(专业)毕业生,连续从事本职业工作满2年。 ——高级技师(具备以下条件之一者)

弹簧计算公式

记号的含义 螺旋弹簧的设计时候使用的记号如下表1所示。横弹性系数G的值如表2所示。表1.计算时使用的记号及单位

表2.横弹性系数:G(N/m㎡) 螺旋弹簧的设计用基本计算公式 螺旋弹簧的负荷和弹簧定数?弯曲的关系具有线性特征弹簧的负荷和弯曲是成比例的。 从螺旋弹簧的尺寸求弹簧的定数 压缩螺旋弹簧的素線径因扭转而产生弯曲的弹簧定数K 螺旋弹簧的扭转应力

螺旋弹簧的扭转修正应力 螺旋弹簧试验载荷下高度(端面磨削的情况下) 螺旋弹簧两端的各厚度之和 不同材质螺旋弹簧在高温时的机械特性 表3. 不同温度下弹簧的横弹性定数(N/mm2) 表4. 不同温度下弹簧的容许应力(N/mm2)

组合弹簧的计算公式 螺旋弹簧的直列和并列 弹簧在设计的时候,虽然应该尽可能设计一根弹簧,但是一根弹簧无法满足的情况下,也会对多根弹簧进行组合以满足设计要求。 弹簧的组合有纵向排列的直列法和横向排列的并列法两种模式。 这样的分类,不仅和螺旋弹簧有关,盘形弹簧等其他种类的弹簧也是一样,也会进行直列和并列组合来使用。 从负荷的观点来考虑的话,对各个弹簧作用相等的力的组合方式叫直列,各个弹簧变位相等的组合方式叫并列。 图1. 螺旋弹簧的直列组合和并列组合 图示显示的是使用了3个弹簧的情况。 n个弹簧的各个定数就是k1 , k2 ,???, kn 弹簧并列和直列组合时全部的定数K公式参照下列。 式1. 并列的弹簧定数计算公式 式2. 直列的弹簧定数计算公式 并列组合的螺旋弹簧的个数增加会导致全体弹簧定数变大,直列组合个数的增加会导致弹簧定数变小。

図2. 亲子弹簧 并列的字面意思就是横向排列,但是单纯的排列空间上不好安排,所以像图3那样弹簧的内侧和弹簧组合,同心相排的情况下很多。这样的排列一般被称作亲子弹簧。 但是,同心组合的情况下,为了弹簧不互相缠绕在一起,交替的改变弹簧卷的方向,或者确保弹簧和弹簧之间有一定的间隙是很有必要的。 另外,对弹簧的组合进行下功夫的话,像下图a,b那样,可以制作出不是直线的弹簧特性。 例如需要像图4那样特性弹簧的时候,需要对自由长或者不同密着负荷的弹簧进行组合。 图5的弹簧特性是在图6那样结构中加入弹簧,事先加上负荷,就会得到〔上段弹簧定数〕<〔下段弹簧定数〕这样的组合。 図5.得到特殊弹簧特性的结构 弹性能量的计算公式

弹簧计算题讲解

高三专题复习:弹簧(习题讲解) 1.(13分)如图所示,将质量均为m 厚度不计的两物块A 、B 用轻质弹簧相连接,只用手托着B 物块于H 高处,A 在弹簧弹力的作用下处于静止,将弹簧锁定.现由静止释放A 、B ,B 物块着地时解除弹簧锁定,且B 物块的速度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B 物块恰能离开地面但不继续上升.已知弹簧具有相同形变量时弹性势能也相同. (1)B 物块着地后,A 向上运动过程中合外力为0时的速度υ1; (2)B 物块着地到B 物块恰能离开地面但不继续上升的过程中, A 物块运动的位移Δx ; (3)第二次用手拿着A 、B 两物块,使得弹簧竖直并处于原长 状态,此时物块B 离地面的距离也为H ,然后由静止同时释放 A 、 B ,B 物块着地后速度同样立即变为0.求第二次释放A 、B 后,B 刚要离地时A 的速度υ2. 2.(13分) (1)设A 、B 下落H 过程时速度为υ,由机械能守恒定律有: 222 1 2mv mgH = (1分) B 着地后,A 和弹簧相互作用至A 上升到合外力为0的过程中,弹簧对A 做的总功为零.(1分) 即2 212 1210mv mv -= (1分) 解得:gH v 21= (1分) (2)B 物块恰能离开地面时,弹簧处于伸长状态,弹力大小等于mg ,B 物块刚着地解除弹簧锁定时,弹簧处于压缩状态,弹力大小等于mg .因此,两次弹簧形变量相同,则这两次弹簧弹性势能相同,设为E P .(1分) 又B 物块恰能离开地面但不继续上升,此时A 物块速度为0. 从B 物块着地到B 物块恰能离开地面但不继续上升的过程中,A 物块和弹簧组成的系统机械能守恒 P P E x mg mv E +?=+212 1 (2分) 得Δx =H (1分) (3)弹簧形变量x x ?= 2 1 (1分) H

怎样计算弹簧的力

怎样计算弹簧的力? 已有一根弹簧,长度是38mm,最大直径是11.7mm,线径是1.7mm,每一圈的距离是5.5mm,要把它的高度垂直挤压到17mm,请问要用多少公斤的力? 1. 压力弹簧 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); 弹簧常数公式(单位:kgf/mm):K=(G×d4)/(8×Dm3×Nc) G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300;磷青铜线G=4500 ;黄铜线 G=3500 d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-d N=总圈数Nc=有效圈数=N-2 弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 K=(G×d4)/(8×Dm3×Nc)=(8000×24)/(8×203×3.5)=0.571kgf/mm K=(G×d4)/(8×Dm3×Nc)=(8000×0.84)/(8×6.63×2)=1.34kgf/mm 3276.8/4599.936=0.712358 预压量0.65 固定时的压缩量为2mm 2. 拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同。 拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。 拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 3. 扭力弹簧 弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). 弹簧常数公式(单位:kgf/mm): K=(E×d4)/(1167×Dm×p×N×R) E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线 E=11200 d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数R=负荷作用的力臂 p=3.1416。

弹簧的压缩量和计算

弹簧的压缩量和计算 弹簧的压缩量和计算在一套冲压模具中,需要用到比较多的弹性材料,其中包括各种不同规格的弹簧、优力胶、氮气弹簧等,按照不同的需要选用不同的弹性材料。像折弯、冲孔一般用普通的扁线弹簧就可以了,比如棕色弹簧,也称为咖啡色弹簧;如果力量不够就加氮气弹簧,当然成本要高一点;优力胶一般用于拉深模具、整形模具、或整平面度用。拉深模具用优力胶非常不错,当然也可以选用氮气弹簧。其他的像顶料销、浮块、两用销等一般用线簧或黄色弹簧,只要可以脱料、不把产品顶出印子、顶变形就好了。优力胶的特点就是力量比较均衡,然而其寿命比较短,生产一段时间就可能裂掉了、不行了、萎掉了,因此一般比较少用,通常比较常用氮气弹簧。整平面度优力胶用的多。弹簧包括扁线弹簧、线簧等,弹簧的目的就是脱料、压料,弹簧力度的???小,关系着模具生产是否顺利、打出来的产品是否合格等。弹簧力量小了,有可能会造成产品变形、模具不脱料、产品不好从模具里面拿出来、带料,刀口、冲头容易磨损等各种问题。扁线弹簧一般按颜色划分为:棕色、绿色、红色、蓝色、黄色,力量也依次减弱,颜色不同, 力量大小就不同,压缩量也不同。有一个土方法可以计算弹簧的压缩量,那是我刚进厂学模具不久,对模具还不怎么懂,我师父教我的:事先测量一下弹簧的总高度,再把弹簧放台虎钳中,锁死,然后用卡尺测量一下弹簧被夹死之后剩下的长度,再用弹簧的总长度减去这个数,再除以总长度即可,此方法任何弹簧通用,比如棕色弹簧长度为60mm,被虎钳夹死后应该还剩下45.6左右,然后你再用60 减去45.6等于14.4,再用14.4除以60,结果等于0.24,这就是它的压缩量。弹簧按照不同生产次数,比如100万次、50万次、30万次,压缩量选的越大,弹簧寿命越短, 模具寿命也就越短(当然弹簧打坏了是可以换的),模具生产一段时间可能弹簧就没力了, 质量差一点的弹簧还有可能断在模具里面。一般按照30万次来计算弹簧的压缩量,也就是说模具打30万次弹簧可能就没力了,当然一般的冲压模具寿命都没那么长,也可以按最大压缩量来计算,按最大压缩量来计算的话,只能保证弹簧不打爆在模具里面。模具压得死一点, 对产品平面度也有好处。具体的压缩量如下表: 颜色颜色100次50万次30万次最大压缩量棕色弹簧16% 18% 20% 24% 绿色弹簧19.20% 21.60% 24% 28% 红色弹簧25.60% 28.80% 32% 38% 蓝色弹簧32% 36% 40% 48% 黄色弹簧40% 45% 50% 58% 最大压缩量(这个弹簧可以压下去多少),弹簧的最大压缩量等于弹簧的自由高度乘以弹簧的最大压??比,例如棕色弹簧,长度为60mm,那么它的最大压缩量为:60*24%约等于14,这根弹簧最大可以压下去14个毫米,它的最大行程是14个毫米,模具的行程必须小于14个毫米,超过14个毫米,弹簧就可能会失效、变形,还有可能打断在模具里面,或模具打爆,冲床压不下去等。模具组立之前,也就是装模之前,必须先计算一下弹簧的压缩量是否合适,这样在试模的时候才不用担心模具会出问题、打爆等

汽车修理工国家职业标准(最新)

汽车修理工国家职业标准 1.职业概况 1.1 职业名称 汽车修理工。 1.2 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 1.3 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4 职环境条件 室内、外,常温。 1.5 职业能力特征 1.6 基本文化程度 高中毕业(含同等学历)。 1.7 培训要求 1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时,中级不少于500标准学时,高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 1.7.2 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。 1.7.3 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 1.8 鉴定要求

1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。 ——中级(具备以下奈件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作5年以上。 (3)连续从事本职业工作7年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业资格证书后,连续从事本职业工作4年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业资格证书后,连续从事本职业工作7年以上。 (3)取得高级技工学校或经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业(专业)毕业证书。 (4)取得本职业中级职业资格证书的大专以上本专业或相关专业毕业生,连续从事本职业工作2年以上。 ——技师(具备以下条件之一者) (1)取得本职业高级职业资格证书后,连续从事本职业工作5年以上,经本职业技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业高级职业资格证书后,连续从事本职业工作8年以上。 (3)高级技工学校本职业(专业)毕业生,连续从事本职业工作满2年。 ——高级技师(具备以下条件之一者) . (1)取得本职业技师职业资格证书后,连续从事本职业工作3年以上,经本职业高级技师正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业技师职业资格证书后,连续从事本职业工作5年以上。 1.8.3 鉴定方式 分为理论知识考试和技能操作考核,理论知识考试采用闭卷笔试方式,技能操作考核采用现场实际操作方式进行。理论知识考试和技能操作考核均实行百分制,两门均达到60分以上者为合格。技师和高级技师鉴定还需进行综合评审。 1.8.4 考评人员与考生配比 理论知识考试考评员与考生配比为员与考生配比为1:5。 1.8.5 鉴定时间 根据职业等级不同,理论知识考试为90~120min,技能操作考核为150~240min,论文答辩不少于40min。 1.8.6 鉴定场所设备 理论知识考试在标准教室进行。技能操作考枝在具有必备的设备、仪器仪表,工、夹、量具及设施、通风条件良好,光线充足和安全措施完善的场所进行。 2. 基本要求

普通压缩弹簧设计原理和方法及实例教程

普通压缩弹簧设计原理和方法及实例教程 首先说下弹簧设计的2个最基本的公式: 1.弹簧常数K:单位kg/mm 2.簧作用力P:单位g 说明:G(弹性系数):对不同材料,可以查资料(不锈钢304为7000 kg/mm2) d(线径) OD(外径) Dcen(中心径):OD-d Nc(有效圈数):总圈数-2 L(作用长度):预压长度+作用行程 当然做好一个要求高的压缩弹簧,要考虑的远不止这些,要考虑弹簧处理后应力的变化、摩擦力影响等等因素。 下面我们看看原题的要求,附图片: 1.压缩弹簧被用在一个装配件里,里面的为塑料件。塑料件和弹簧相配合的直径为。 2.装配好后,在不受外力的情况下,弹簧的长度为10mm。 3.在受外力270-280g的情况下,弹簧的长度为为5mm,也就是说弹簧作用行程也为5mm。 分析上面的2个基本公式: ((弹性系数)是通过选材料可以确定的。(我用的不锈钢304) (线径)怎么选取呢我们假想下,如果选d=1的话,那么弹簧的圈数就不能超过6圈(保守的圈数),因为在280g力压紧后,空间高只有5 mm(6圈*1=6 mm),会产生矛盾干涉。所以根据以往画弹簧经验,这里我就取d=,(直径太细影响受力,就不取d=了),那么同时确定弹簧的总圈数=7圈,Na有效圈数为5圈,符合弹簧受力的要求(个人认为圈数太少也会影响受力),弹簧压紧后的高度=7圈*= mm,小于5 mm,符合设计意图。 (外径) 怎么选取呢根据图纸,塑料件和弹簧相配的直径为,所以取弹簧的内径为9 mm(不松也不紧)那么OD =9+*2= (中心径)= OD-d= mm (有效圈):上面确定线径的时候已经确定了Na=7-2=5圈(两头有2圈是并齐的,就不多说了) 综合上面所叙述,弹簧常数K就可以算出来了 K=7000*^4/8*^3*5=mm=mm (代入公式1就OK了) 那么弹簧常数K出来了,代入公式2就可以算得L=P/K=≈11 mm 因为L=预压长度+作用行程所以预压长度=L-作用行程=11-5=6mm 得出结论:弹簧的自由长度=预压长度+预压载荷时的长度=6+10=16mm 接下来就是出图纸了,就不多说了呢!! --------------------------------------教程完---------------------------------------------

强制性国家标准道路车辆外廓尺寸轴荷及质量限值

强制性国家标准道路车辆外廓尺寸轴荷及质量限值

强制性国家标准《道路车辆外廓尺寸、轴荷及质量限值》 征求意见稿编制说明 一、工作简况 (一)任务来源: 受国家工业和信息化部(以下简称工信部)委托,全国汽车标准化技术委员会(以下简称汽标委)整车分技术委员会启动了标准的修订计划,标准项目计划编号: 20120011-Q-339,标准项目名称:《道路车辆外廓尺寸、轴荷及质量限值》。(二)制定过程 2012年初,工信部经与国家标准化管理委员会、交通运输部、公安部、国家质量监督检验检疫总局(以下简称质检总局)、国家认证认可监督管理委员会(以下简称认监委)等单位讨论协商后,启动了GB 1589-2004《道路车辆外廓尺寸、轴荷及质量限值》的修订工作,委托中国汽车技术研究中心(以下简称中汽中心)牵头,研究标准具体如何修改、分析后续影响,尽快拿出修订方案。 1、汽标委提出修订方案

中汽中心对一汽、东风、重汽等多个重点企业进行了调研,初步征求了汽车行业对三个标准的修订意见, 2012年10月16日,汽标委在杭州召开了GB 1589及相关标准修订行业研讨会。会议对前期工作进行了通报,针对各企业代表对GB 1589—2004标准在实施及企业新产品开发中所遇到的问题进行了梳理和汇总,并就下一阶段工作进行了布置和安排。会议研究成立了车辆运输车专项验证项目组,开展半挂车辆运输列车和中置轴车辆运输列车的试验验证工作。 杭州会议后,车辆运输车专项验证项目组召开会议,研究了车辆运输车的半挂车、中置轴挂车、铰接列车、中置轴列车的长度调整问题,以及通道圆及外摆值等指标的论证方案,并制定了工作计划。会后该工作组完成了半挂车辆运输列车及中置轴车辆运输列车的计算机模拟及实车验证试验。 2013年1月25日,汽标委在深圳召开GB1589标准修订会议。集中研究了牵引销和牵引鞍座的技术尺寸、车辆运输车(半挂列车、中置轴列车)、侧帘车等的问题,形成了统一意见。

强制性国家标准道路车辆外廓尺寸轴荷及质量限值

强制性国家标准《道路车辆外廓尺寸、轴荷及质量限值》 征求意见稿编制说明 一、工作简况 (一)任务来源: 受国家工业和信息化部(以下简称工信部)委托,全国汽车标准化技术委员会(以下简称汽标委)整车分技术委员会启动了标准的修订计划,标准项目计划编号: -Q-339,标准项目名称:《道路车辆外廓尺寸、轴荷及质量限值》。 (二)制定过程 2012年初,工信部经与国家标准化管理委员会、交通运输部、公安部、国家质量监督检验检疫总局(以下简称质检总局)、国家认证认可监督管理委员会(以下简称认监委)等单位讨论协商后,启动了GB 1589-2004《道路车辆外廓尺寸、轴荷及质量限值》的修订工作,委托中国汽车技术研究中心(以下简称中汽中心)牵头,研究标准具体如何修改、分析后续影响,尽快拿出修订方案。 1、汽标委提出修订方案 中汽中心对一汽、东风、重汽等多个重点企业进行了调研,初步征求了汽车行业对三个标准的修订意见, 2012年10月16日,汽标委在杭州召开了GB 1589及相关标准修订行业研讨会。会议对前期工作进行了通报,针对各企业代表对GB 1589—2004标准在实施及企业新产品开发中所遇到的问题进行了梳理和汇总,并就下一阶段工作进行了布置和安排。会议研究成立了车辆运输车专项验证项目组,开展半挂车辆运输列车和中置轴车辆运输列车的试验验证工作。 杭州会议后,车辆运输车专项验证项目组召开会议,研究了车辆运输车的半挂车、中置轴挂车、铰接列车、中置轴列车的长度调整问题,以及通道圆及外摆值等指标的论证方案,并制定了工作计划。会后该工作组完成了半挂车辆运输列车及中置轴车辆运输列车的计算机模拟及实车验证试验。 2013年1月25日,汽标委在深圳召开GB1589标准修订会议。集中研究了牵引销和牵引鞍座的技术尺寸、车辆运输车(半挂列车、中置轴列车)、侧帘车等的问题,形成了统一意见。

弹簧参数计算

第15章弹簧元件 15.1 弹簧元件的的功用和类型 弹簧受外力作用后能产生较大的弹性变形,在机械设备中广泛应用弹簧作为弹性元件。弹簧的主要功用有:1)控制机构的运动或零件的位置,如凸轮机构、离合器、阀门以及各种调速器中的弹簧;2)缓冲及吸振,如车辆弹簧和各种缓冲器中的弹簧;3)储存能量,如钟表、仪器中的弹簧;4)测量力的大小,如弹簧秤中的弹簧。 弹簧的种类很多,从外形看,有螺旋弹簧、环形弹簧、碟形弹簧、平面涡卷弹簧和板弹簧等。 螺旋弹簧是用金属丝(条)按螺旋线卷饶而成,由于制造简便,所以应用最广。按其形状可分为:圆柱形(下图a、b、d)、截锥形(下图c)等。按受载情况又可分为拉伸弹簧(下图a)、压缩弹簧(下图b、c)和扭转弹簧(下图d)。 环形弹簧(下图a)和碟形弹簧(下图b)都是压缩弹簧,在工作过程中,一部分能量消耗在各圈之间的摩擦上,因此具有很高的缓冲吸振能力,多用于重型机械的缓冲装置。 平面涡卷弹簧或称盘簧(下图c),它的轴向尺寸很小,常用作仪器和钟表的储能装置。 板弹簧(下图d)是由许多长度不同的钢板叠合而成,主要用作各种车辆的减振装置。 本章主要介绍圆柱螺旋拉伸、压缩弹簧的结构和设计。 15.2 圆柱螺旋拉伸、压缩弹簧的应力与变形 一、弹簧的应力 圆柱螺旋拉伸及压缩弹簧的外载荷(轴向力)均沿弹簧的轴线作用,它们的应力和变形计算是相同的。现以圆柱螺旋压缩弹簧为例进行分析。 下左图所示为一圆柱螺旋压缩弹簧,轴向力F作用在弹簧的轴线上,弹簧丝是圆截面的,直径为d,弹簧中径为D2,螺旋升角为a。一般,弹簧的螺旋

升角a很小(a<9°),可以认为通过弹簧轴线的截面就是弹簧丝的法截面。由力的平衡可知,此截面上作用着剪力F和扭矩T=FD2/2。 如果不考虑弹簧丝的弯曲,按直杆计算,以W T表示弹簧丝的抗扭截面系数,则扭矩T在截面引起的最大扭切应力(上右图)为 若剪力引起的切应力为均匀分布,则切应力 弹簧丝截面上的最大切应力τ发生在内侧,即靠近弹托轴线的一侧,其值为 令 则弹簧丝截面上的最大切应力为 式中:C称为旋绕比,或称为弹簧指数,是衡量弹簧曲率的重要参数;抬号内的第二项为切应力τ″的影响。 较精确的分析指出,弹簧丝截面内侧的最大切应力(上左图)及其强度条

中华人民共和国国家标准汽车车架修理技术条件

中华人民共和国国家标准汽车车架修理技术条件 UDC 629.113.011.3.004.124GB 3800-83 Technical requirements for automobileframes being overhauied 本标准适用于边梁式车架的大修。修理竣工的车架应符合本标准的要求。 1 技术要求 1.1 车架应无泥砂、油污、锈蚀及袭纹。 1.2 车架宽度极限偏差为-3+4mm。 1.3 车架纵梁上平面及侧面的纵向直线度公差,在任意1000mm长度上为3mm,在全长上为其长度的千分之一。 1.4 车架总成左、右纵梁上平面应在同一平面内,其平面度公差为被测平面长度的千分之一点五。 1.5 纵梁侧面对车架上平面的垂直度公差为纵梁高度的百分之一。 1.6 车架主要横梁对纵梁的垂直度公差不大于横梁长度的千分之二。 1.7 车架分段(如下图)检查,各段对角线长度差不大于5mm。 注:aa'--前钢板前支架销承孔轴线; bb'--前钢板后支架销承孔轴线; cc'--后钢板前支架销承孔轴线; dd'--后钢板后支架销承孔轴线; ab'、a'b--第Ⅰ段对角线; bc'、b'c--第Ⅱ段对角线; cd'、c'd--第Ⅲ段对角线; ac'、a'c--第Ⅳ段对角线;

1.8 左右钢板弹簧固定支架销孔应同轴,其同轴度公差为φ 2.0mm(按GB 1958-80《形状和位置公差检测规定》检测方法5-1进行检测)。前后固定支架销孔轴线间的距离左、右相差:轴距在4000mm及其以下的应不大于2mm,轴距在4000mm以上的应不大于3mm。 1.9 车架的焊接应符合焊接规范。焊缝应平整、光滑、无焊瘤、弧坑,咬边深度不大于0.5mm,咬边长度不大于焊缝长度的百分之十五,并不得有气孔、夹渣等缺陷。 1.10 车架挖补或截修的焊缝方向,除特殊车架外,不允许与棱线垂直、重叠;焊缝及其周围基体金属上,不应有裂纹。 1.11 铆接件的接合面必须贴紧,铆钉应充满钉孔,铆钉头不得有裂纹、歪斜、残缺,所有铆钉不得以螺栓代替。 1.12 前后保险杠应平整,形状符合原设计规定。 注:原设计是指制造厂和按规定程序批准的技术文件(下同)。 1.13 车架的其他附属装置及其安装应符合原设计规定。 1.14 修竣车架所增加的重量不得超过原设计重量的百分之十。 1.15 修竣的车架应进行防锈处理。 1.16 除本标准规定外,其他技术要求可参照原设计执行。 2 检验规则 经检验合格的车架应签发合格证。 附加说明: 本标准由中华人民共和国交通部提出,由交通部标准计量研究所归口。 本标准由河北省交通局、安徽省交通厅、四川省交通厅负责起草。 本标准主要起草人董先为、厉鸿培、陈盛模。

弹簧计算公式

弹簧计算公式 弹簧的弹力F=-kx,其中:k是弹性系数,x是形变量。 物体受外力作用发生形变后,若撤去外力,物体能恢复原来形状的力,叫作“弹力”。它的方向跟使物体产生形变的外力的方向相反。因物体的形变有多种多样,所以产生的弹力也有各种不同的形式。 例如,一重物放在塑料板上,被压弯的塑料要恢复原状,产生向上的弹力,这就是它对重物的支持力。将一物体挂在弹簧上,物体把弹簧拉长,被拉长的弹簧要恢复原状,产生向上的弹力,这就是它对物体的拉力。 扩展资料: 在线弹性阶段,广义胡克定律成立,也就是应力σ1<σp(σp为比例极限)时成立。在弹性范围内不一定成立,σp<σ1<σe(σe为弹性极限),虽然在弹性范围内,但广义胡克定律不成立。 胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力F和弹簧的伸长量(或压缩量)x成正比,即F= k·x 。k是物质的弹性系数,

它只由材料的性质所决定,与其他因素无关。负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。 满足胡克定律的弹性体是一个重要的物理理论模型,它是对现实世界中复杂的非线性本构关系的线性简化,而实践又证明了它在一定程度上是有效的。然而现实中也存在这大量不满足胡克定律的实例。 胡克定律的重要意义不只在于它描述了弹性体形变与力的关系,更在于它开创了一种研究的重要方法:将现实世界中复杂的非线性现象作线性简化,这种方法的使用在理论物理学中是数见不鲜的。 Fn ∕S=E·(Δl ∕l。) 式中Fn表示内力,S是Fn作用的面积,l。是弹性体原长,Δl是受力后的伸长量,比例系数E称为弹性模量,也称为杨氏模量,由于应变ε=Δl∕l。 为纯数,故弹性模量和应力σ=Fn ∕S具有相同的单位,弹性模量是描写材料本身的物理量,由上式可知,应力大而应变小,则弹性模量较大;反之,弹性模量较小。 弹性模量反映材料对于拉伸或压缩变形的抵抗能力,对于一定的材料

汽车维修行业标准

汽车维修行业标准

国家职业标准:汽车修理工 1. 职业概况 职业名称 汽车修理工。 职业定义 使用工、夹、量具,仪器仪表及检修设备进行汽车的维护、修理和调试的人员。 职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 职业环境条件 室内、外,常温。 职业能力特征 基本文化程度

高中毕业(含同等学力)。 培训要求 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于600标准学时;中级不少于500标准学时;高级不少于320标准学时;技师不少于200标准学时;高级技师不少于120标准学时。 培训教师 理论培训教师应具有本职业(专业)大学本科以上学历或中级以上专业技术职务;实际操作教师:培训初、中级人员的教师应具有高级职业资格证书,培训高级人员的教师应具有技师职业资格证书,培训技师、高级技师的教师应具有本专业高级专业技术职务或高级技师职业资格证书,且在本岗位工作3年以上。 培训场地设备 理论培训场地应具有可容纳20名以上学员的标准教室,并配备投影仪、电视机及播放设备。实际操作培训场所应具有600 m2以上能满足培训要求的场地,且有相应的设备、仪器仪表和必要的工具、夹具、量具,通风条件良好、光线充足、安全设施完善。 鉴定要求 适用对象 从事或准备从事本职业的人员。 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)在本职业连续见习工作2年以上。 (3)本职业学徒期满。

弹簧设计计算过程

弹簧设计计算 已知条件: 弹簧自由长度H0= 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D= 弹簧直径d= 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=~ b σ=~*1716MPa=~ 取p τ=。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。 2 .33.22==d D C =(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K = 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 弹簧刚度663.2282.379834 34' ???==n D Gd P =mm 节距t= 66 2.35.1795)2~1(0?-=-n d H =≈12 计算出来的自由高度H0=nt+=66*12+*= 压并高度Hb=(n+d=(66+*=216mm

弹簧最小工作载荷时的压缩量F1=795-411=384mm 则最小工作载荷3 431413.226683842.3798????==nD F Gd P = 螺旋角α=arctan(t/πD)=arctan(12/*)= 弧度= ° 弹簧展开长度L=1696 .0cos 683.22cos 1??=παπDn = ≈4833mm 弹簧压并高度H b ≤n 1*d max =68*(+)=,取值216mm 弹簧压并时的变形量为= 弹簧压并时的载荷为Fa=*= (4)螺旋弹簧的稳定性、强度和共振的验算 高径比b=H0/D==> n B c P H P C P >=0' 不稳定系数C B = ==0'H P C P B c **=

相关主题