搜档网
当前位置:搜档网 › 自动控制原理简答题要点

自动控制原理简答题要点

自动控制原理简答题要点
自动控制原理简答题要点

三.名词解释

47、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。

48、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。

49、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。

50、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。

51、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。

52、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。

53、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。

54、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。

55、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()()

C z G z R z =。 56、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣

57、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统。

58、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

59、尼柯尔斯图(Nichocls 图):将对数幅频特性和对数相频特性画在一个图上,即以(度)为线性分度的横轴,以 l(ω)=20lgA(ω)(db )为线性分度的纵轴,以ω为参变量绘制的φ(ω) 曲线,称为对数幅相频率特性,或称作尼柯尔斯图(Nichols 图)

60、零阶保持器:零阶保持器是将离散信号恢复到相应的连续信号的环节,它把采样时刻的采样值恒定不变地保持(或外推)到下一采样时刻。

61、状态反馈设系统方程为,x

Ax Bu y cx =+=&,若对状态方程的输入量u 取u r Kx =-,则称状态反馈控制。

四.简答题

62、常见的建立数学模型的方法有哪几种?各有什么特点?

有以下三种:

(1)机理分析法:机理明确,应用面广,但需要对象特性清晰,(2)实验测试法:不需要对象特性清晰,只要有输入输出数据即可,但适用面受限,(3)以上两种方法的结合:通常是机理分析确定结构,实验测试法确定参数,发挥了各自的优点,克服了相应的缺点

63、PD 属于什么性质的校正?它具有什么特点?

超前校正。可以提高系统的快速性,改善稳定性

64、幅值裕度,相位裕度各是如何定义的?

|

)()(|1`g g g jw H jw G K = , 。180)()(-=∠g g jw H jw G 65、典型的非线性特性有哪些?

饱和特性、回环特性、死区特性、继电器特性

66、举例说明什么是闭环系统?它具有什么特点?

既有前项通道,又有反馈通道,输出信号对输入信号有影响,存在系统稳定性问题。

67.简要画出二阶系统特征根的位置与单位阶跃响应曲线之间的关系。

68、减小系统在给定信号或扰动信号作用下的稳态误差的方法主要有那些?

①、保证系统中各环节(或元件)的参数具有一定的精度及线性性;

②、适当增加开环增益或增大扰动作用前系统前向通道的增益;

③、适当增加系统前向通道中积分环节的数目;

④、采用前馈控制(或复合控制)。

69、连续控制系统或离散控制系统稳定的充分必要条件是什么?

连续控制系统稳定的充分必要条件是闭环极点都位于S 平面左侧;离散控制系统稳定的充分必要条件系统的特性方程的根都在Z 平面上以原点为圆心的单位圆内。

70、非线性系统和线性系统相比,有哪些特点?

非线性系统的输入和输出之间不存在比例关系,也不适用叠加定理;非线性系统的稳定性不仅与系统的结构和参数有关,而且也与它的初始信号的大小有关;非线性系统常常会产生自振荡。

71、自动控制系统的数学模型有哪些?

自动控制系统的数学模型有微分方程、传递函数、频率特性、结构图。

72、定值控制系统、伺服控制系统各有什么特点?

定值控制系统为给定值恒定,反馈信号和给定信号比较后控制输出信号;伺服控制系统为输入信号是时刻变化的,输入信号的变化以适应输出信号的变化。

73、从元件的功能分类,控制元件主要包括哪些类型的元件?

控制元件主要包括放大元件、执行元件、测量元件、补偿元件。

74、对于最小相位系统而言,若采用频率特性法实现控制系统的动静态校正,静态校正的理论依据是什么?动校正的理论依据是什么?

静态校正的理论依据:通过改变低频特性,提高系统型别和开换增益,以达到满足系统静态性能指标要求的目的。

动校正的理论依据:通过改变中频段特性,使穿越频率和相角裕量足够大,以达到满足系统动态性能要求的目的。

75、在经典控制理论中用来分析系统性能的常用工程方法有那些?分析内容有那些? 常用的工程方法:时域分析法、根轨迹法、频率特性法;分析内容:瞬态性能、稳态性能、稳定性。

76、用状态空间分析法和用传递函数描述系统有何不同?

传递函数用于单变量的线性定常系统,属于输入、输出的外部描述,着重于频域分析;状态空间法可描述多变量、非线性、时变系统,属于内部描述,使用时域分析。 1 滞后超前串联校正改善系统性能的原因。

2 惯性环节在什么条件下可以近似为比例环节。

3

列举3种非线性系统与线性系统特性的不同之处。 4 现实中,真实的系统都具有一定程度的非线性特性和时变特性,但是理论分析和设

计经常采用线性时不变模型的原因。

5 零阶保持器传递函数1()Ts

h e G s s

--=中是否包含积分环节?为什么? 36.为什么说物理性质不同的系统,其传递函数可能相同 ? 举例说明。

37.一阶惯性系统当输入为单位阶跃函数时,如何用实验方法确定时间常数T ?其调整时间t s 和时间常数T 有何关系,为什么?

38.什么是主导极点?主导极点起什么作用,请举例说明。

39.什么是偏差信号?什么是误差信号?它们之间有什么关系?

40.根轨迹的分支数如何判断?举例说明。

36.传递函数是线性定常系统输出的拉氏变换与输入的拉氏变换之比,它通常不能表明系统的物理特性和物理结构,因此说物理性质不同的系统,其传递函数可能相同。(3分)举例说明(2分)略,答案不唯一。

37.常用的方法(两方法选1即可):其单位阶跃响应曲线在 0.632(2.5分)稳态值处,经过的时间t =T (2.5分);或在 t =0处曲线斜率 k =1/T ,t s =(3~4)T

38.高阶系统中距离虚轴最近的极点,其附近没有零点,它的实部比其它极点的实部的1/5还小,称其为主导极点。(2分)将高阶系统的主导极点分析出来,利用主导极点来分析系统,相当于降低了系统的阶数,给分析带来方便。(2分)

举例说明(1分)略,答案不唯一。

39.偏差信号:输入信号与反馈信号之差;(1.5分)误差信号:希望的输出信号与实际的输出信号之差。(1.5分)

两者间的关系:()()()s H s E s =ε,当()1=s H 时,()()s E s =ε(2分)

40.根轨迹S 平面止的分支数等于闭环特征方程的阶数,也就是分支数与闭环极点的数目

相同(3分)。举例说明(2分)略,答案不唯一。

36.开环控制系统:是没有输出反馈的一类控制系统。其结构简单,价格低,易维修。精

度低、易受干扰。(2.5分)

闭环控制系统:又称为反馈控制系统,其结构复杂,价格高,不易维修。但精度高,抗干扰能力强,动态特性好。(2.5分)

37.答案不唯一。例如:即在系统的输入端加入一定幅值的正弦信号,系统稳定后的输入

也是正弦信号,(2.5分)记录不同频率的输入、输出的幅值和相位,即可求得系统的频率特性。(2.5分)

38.0型系统的幅频特性曲线的首段高度为定值,20lgK

(2分)

1型系统的首段-20dB/dec,斜率线或其延长线与横轴的交点坐标为ω

1=K

1

(1.5分)

2型系统的首段-40dB/dec,斜率线或其延长线与横轴的交点坐标为ω

1=K

2

(1.5分)

39.根轨迹与虚轴相交,表示闭环极点中有极点位于虚轴上,即闭环特征方程有纯虚根,

系统处于临界稳定状态,可利用此特性求解稳定临界值。(3分)

举例,答案不唯一。如求开环传递函数G(s)=K/(s(s+1)(s+2))的系统稳定时的K值。根据其根轨迹与虚轴相交的交点,得到0

40.1)当控制系统的闭环极点在s平面的左半部时,控制系统稳定;(1分)

2)如要求系统快速性好,则闭环极点越是远离虚轴;如要求系统平稳性好,则复数极点最好设置在s平面中与负实轴成?45?夹角线以内;(1分)

3)离虚轴的闭环极点对瞬态响应影响很小,可忽略不计;(1分)

4)要求系统动态过程消失速度快,则应使闭环极点间的间距大,零点靠近极点。即存5)在偶极子;(1分)

5)如有主导极点的话,可利用主导极点来估算系统的性能指标。(1分)

36.开环控制系统和闭环控制系统的主要特点是什么?

37.如何用实验方法求取系统的频率特性函数?

38.伯德图中幅频特性曲线的首段和传递函数的型次有何关系?

39.根轨迹与虚轴的交点有什么作用? 举例说明。

40.系统闭环零点、极点和性能指标的关系。

36. 1)各前向通路传递函数的乘积保持不变。(2分)

2)各回路传递函数的乘积保持不变。(2分)

举例说明(1分)略,答案不唯一。

37.其极坐标图为单位圆,随着ω从0??变化,其极坐标图顺时针沿单位圆转无穷多圈。

(2.5分)图略。(2.5分)

38.可采用以下途径:

1)提高反馈通道的精度,避免引入干扰;(1.5分)

2)在保证系统稳定的前提下,对于输入引起的误差,可通过增大系统开环放大倍数和提高系统型次减小。对于干扰引起的误差,可通过在系统前向通道干扰点前加积分增大

放大倍数来减小;(2分)

3)采用复合控制对误差进行补偿。(1.5分)

39.开环不稳定的系统,其闭环只要满足稳定性条件,就是稳定的,否则就是不稳定的。

(3分)举例说明答案不唯一略。(2分)

40.保留主导极点即距虚轴最近的闭环极点,忽略离虚轴较远的极点。一般该极点大于其

它极点5倍以上的距离;(2.5分)如果分子分母中具有负实部的零、极点在数值上相近,则可将该零、极点一起小调,称为偶极子相消(2.5分)

36. 方块图变换要遵守什么原则,举例说明。

37.试说明延迟环节s

=

(的频率特性,并画出其频率特性极坐标图。

)

Gτ-

e

s

38.如何减少系统的误差?

39.开环不稳定的系统,其闭环是否稳定?举例说明。

40. 高阶系统简化为低阶系统的合理方法是什么?

36.自动控制理论分为“经典控制理论”和“现代控制理论”,(1分)“经典控制理论”以

传递函数为基础(1分),以频率法和根轨迹法为基本方法,(2分)“现代控制理论”

以状态空间法为基础,(1分)。

37.要减小最大超调量就要增大阻尼比(2分)。会引起上升时间、峰值时间变大,影响系

统的快速性。(3分)

38.系统特征方程式的所有根均为负实数或具有负的实部。(3分)

或:特征方程的根均在根平面(复平面、s平面)的左半部。

或:系统的极点位于根平面(复平面、s平面)的左半部

举例说明(2分)略,答案不唯一

39.对于输入引起的误差,可通过增大系统开环放大倍数和提高系统型次减小。(2.5分)对于干扰引起的误差,可通过在系统前向通道干扰点前加积分增大放大倍数来减小(2.5分)。

40.如果开环零点数m小于开环极极点数n,则(n-m)趋向无穷根轨迹的方位可由渐进线

决定。(2.5分)渐进线与实轴的交点和倾角为:( 2.5分)

36. 简要论述自动控制理论的分类及其研究基础、研究的方法。

37.二阶系统的性能指标中,如要减小最大超调量,对其它性能有何影响?

38. 用文字表述系统稳定的充要条件。并举例说明。

39.在保证系统稳定的前提下,如何来减小由输入和干扰引起的误差?

40.根轨迹的渐近线如何确定?

36.较高的谐振频率(1.5分),适当的阻尼(1.5分),高刚度(1分),较低的转动惯量

(1分)。

37.最大超调量:单位阶跃输入时,响应曲线的最大峰值与稳态值之差;反映相对稳定性;

(1分)

调整时间:响应曲线达到并一直保持在允许误差范围内的最短时间;反映快速性;(1分)

峰值时间:响应曲线从零时刻到达峰值的时间。反映快速性;(1分)

上升时间:响应曲线从零时刻到首次到达稳态值的时间。反映快速性;(1分)

振荡次数:在调整时间内响应曲线振荡的次数。反映相对稳定性。(1分)

38. 1)将系统频率特性化为典型环节频率特性的乘积。(2分)

2)根据组成系统的各典型环节确定转角频率及相应斜率,并画近似幅频折线和相频曲线(2分)

3)必要时对近似曲线做适当修正。(1分)

39.由静态误差系数分析可知,在输入相同的情况下,系统的积分环节越多,型次越高,稳态误差越小(3分)。举例说明(2分)略,答案不唯一

40.串联滞后校正并没有改变原系统最低频段的特性,故对系统的稳态精度不起破坏作用。相反,还允许适当提高开环增益,改善系统的稳态精度(2.5分);而串联超前校正一般不改善原系统的低频特性,如果进一步提高开环增益,使其频率特性曲线的低频段上移,则系统的平稳性将下降。(2.5分)

36.对于受控机械对象,为得到良好的闭环机电性能,应该注意哪些方面?

37.评价控制系统的优劣的时域性能指标常用的有哪些?每个指标的含义和作用是什么?

38.写出画伯德图的步骤。

39.系统的误差大小和系统中的积分环节多少有何关系?举例说明。

40.为什么串联滞后校正可以适当提高开环增益,而串联超前校正则不能?

36.由系统的微分方程;(1分)由系统的传递函数;(1分)通过实验的手段。(1分)例略(2

分)答案不唯一

37.当固有频率一定时,求调整时间的极小值,可得当?=0.707时,调整时间最短,也就

是响应最快(3分);又当?=0.707时,称为二阶开环最佳模型,其特点是稳定储备大,静态误差系数是无穷大。(2分) 38.ωωω?ωωωarctan 1.0arctan )(100110

)(22--=++=A (2.5分)

0)0(1)0(0===?ωA 180)(0)(-=∞=∞∞=?ωA (2.5分)

39.对超前校正,由于正斜率、正相移的作用,使截止频率附近的相位明显上升,增大了稳定裕度,提高了稳定性。(2.5分)而滞后校正是利用负斜率、负相移的作用,显着减小了频宽,利用校正后的幅值衰减作用使系统稳定。(2.5分)

40.根轨迹的起点与终点;(1分)分支数的确定;(1分)根轨迹的对称性;(1分)实轴上的轨迹;(1分)根轨迹的渐近线;(1分)答案不唯一

36. 如何求取系统的频率特性函数?举例说明。

37.为什么二阶振荡环节的阻尼比取?=0.707较好,请说明理由。

38.设开环传递函数10)

1)((10)(++=s s s G ,试说明开环系统频率特性极坐标图的起点和终点。

39.串联校正中,超前、滞后校正各采用什么方法改善了系统的稳定性?

40.绘制根轨迹的基本法则有哪些?

36.上升时间、峰值时间、调整时间、延迟时间反映快速性(2.5分)。最大超调量、振荡次数反映相对稳定性(2.5分)。

37.传递函数的型次对应相应的起点(2分),如0型系统的乃氏图始于和终于正实轴的有限值处(1分),1型系统的乃氏图始于相角为-90o 的无穷远处,终于坐标原点处,(1

分)

2型系统的乃氏图始于相角为-180o 的无穷远处,终于坐标原点处(1分)。

38.输入()32121)(s

s R t t r =?= 0)(lim 20==→s G s K s a (2.5分) ∞===→a s ss K s G s e 1)(lim 120

稳态误差无穷大(输出不能跟随输入)(2.5分) 39.校正是指在系统增加新的环节以改善系统的性能的方法(2分)。根据校正环节在系统中的联结方式,校正可分为串联校正、反馈校正、顺馈校正三类。(3分)

40.计算机控制系统按功能分可以分为数据采集系统;(1分)操作指导控制系统;(1分)。监督控制系统;(1分)直接数字控制系统;(1分)按控制方式可以分为开环控制和闭环控制系统(1分)

36.时域分析的性能指标,哪些反映快速性,哪些反映相对稳定性?

37.作乃氏图时,考虑传递函数的型次对作图有何帮助?

38.试证明?型系统在稳定条件下不能跟踪加速度输入信号。

39.什么是校正?根据校正环节在系统中的联结方式,校正可分为几类?

40.计算机控制系统按功能和控制方式可以分为哪几类?

36.尽可能对研究的非线性系统进行线性化处理,用线性理论进行分析(2分)。常用方法有忽略不计(取常值)、切线法或小偏差法(3分)

37.误差平方积分性能指标的特点是重视大的误差,忽略小的误差。(3分)原因是误差大时其平方更大,对性能指标的影响更大,(3分)

38.(1)写出)()(ωωj G j G ∠和的表达式 ;(1分)。

(2)分别求出)(0ωωωj G 时的和+∞→=;(1分)

(3)求乃氏图与实轴的交点(1分);

(4)求乃氏图虚轴的交点(1分);

(5)必要时画出乃氏图中间几点然后勾画出大致曲线(1分)。

39.首先仅选择比例校正,使系统闭环后满足稳定性指标(1.5分)。然后在此基础上根据稳态误差要求加入适当参数的积分校正(1.5分)。而积分校正的加入往往使系统稳定裕量和快速性下降,再加入适当参数的微分校正以保证系统和稳定性和快速性。如此循环达到理想的性能指标(2分)

40.偶极子对:是指若在某一极点的附近同时存在一个零点,而在该零点,极点的附近又无其它的零点或极点。就称这个极点和这个零点为一个偶极子对(3分)。

由于零极点在数学上位置分别是分子分母,工程实际中作用又相反,因此在近似的处理上可相消,近似地认为其对系统的作用相互抵消了。对于高阶系统的分析,相当于降低了系统的阶数,给分析带来方便(2分)。

36.非线性特性函数线性化的本质和方法是什么?

37.分析误差平方积分性能指标的特点及其原因。

38.乃氏图作图的一般方法是什么?

39.如何用试探法来确定PID参数?

40.什么是偶极子?偶极子起什么作用,请举例说明。

人闭上眼见很难达到预定的目的试从控制系统的角度进行分析

1 如何测量得到一个不稳定环节的稳定性?

断开闭环系统,测量开环频率特征。可以通过比较输入正选信号与输出振幅比逐点画图,也可以用系统分析仪。这样可以画出伯德图奶奎斯特图,从而分析频率特性。

2增加系统的开环增益,对于闭环控制系统的性能有怎样的影响?

增大了系统无阻尼震荡频率,减小系统的阻尼比,降低了系统的动态性能。误差系数有所增大,减小了稳态误差,因而提高了系统的精度。

3滞后\超前串联校正能够改善系统性能的原因?

超前:利用超前相角补偿系统的滞后相角改善系统的动态性能,如增加相位裕度,提高系统的稳定性,增加系统的快速性。

滞后:利用滞后校正的这一低通滤波所造成的高频衰减特性,可以降低系统的截止频率,提高系统的相位裕度。

4 从控制观点分析飞机在气流中和轮船在海浪中能保持预定航向行驶的原因。

两者的控制系统是采用反馈的闭环控制系统,对于外部的扰动有一定的抑制能力,气流和海浪相对于系统是扰动,在扰动的作用下,闭环反馈系统能够保持原看来的性能。

5惯性环节在什么条件下可以近似为比例环节?在什么条件下可以近似为积分环节?T<<1时可以近似为比例环节。T>>1是可以近似为积分环节

6在调试某个采用PI控制器的控制系统时,发现输出持续震荡。试分析可以采取哪些措施解决问题?

7某个被控对象的模型为H(s),有人认为只要在被控对象前串联环节1/H(s),这个开环控制系统就具有很好的性能。这种做法可行吗?为什么?

8自动控制系统通常通过负反馈构成一个闭环控制系统。简述负反馈的主要作用。(3个)

被控量直接间接地的参与控制,从而使系统具有自动修正偏差的作用

9在绘制连续系统频率特性bode图的幅频特性时,常采用(对数频率—分贝)坐标。简述原因。(3个)

横坐标w以对数分度,能够将w=0→∞紧凑地表示在一张图上,既能够清楚地表明频率特性的低频、中频段这些重要的频率特性,也能够大概地表示高频段部分频率特性。纵坐标采用分贝具有鲜明的物理意义,而且也能将取值范围为0→∞的频率特性紧凑地表示在一张图上。采用对数坐标后,幅频特性曲线能够用一些支线近似,大大简化了伯德图的绘制

10系统在某个输入信号作用下的稳态误差为无限大,是否意味着系统不稳定?请给出明确的判断,并简述理由。

不意味着不稳定。

对单位负反馈系统,当时间t趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。和系统的稳定性无关

11与劳斯判据相比,nyquist判据的主要优点有哪些?(3个)

计算方便,判断较直观,容易计算临街稳定时的参数,能直接从系统的频率特性等

实验数据来分析、设计系统。

13列举3种非线性系统与线性系统特性的不同之处。

非线性系统的输入和输出之间不存在比例关系,也不适用叠加定理;非线性系统的稳定性不仅与系统的结构和参数有关,而且也与它的初始信号的大小有关;非线性系统常常会产生自振荡。

15如何测量得到一个含积分环节的频率特性

构成一个稳定的闭环控制系统,在闭环系统中分别测量环节的输出和输入处信号,从而获得频率特性

16相比较经典控制理论现代控制理论中出现了哪些新的概念 5个以上

17控制系统开环幅频特性的各个频段分别影响控制系统的哪些性能

低频段影响系统是否产生误差和稳态误差的大小。

中频段影响系统的稳定性,中频段斜率为-20dB/dec系统稳定,中频段斜率为-60dB/dec 系统不稳定,中频段斜率为-40dB/dec系统可能稳定可能不稳定。

高频段影响系统的抗干扰能力。

18滞后—超前串联校正改善系统性能的原因。

(1)降低截止频率,(2)中频段提高相位裕度,(3)避免了单独采用超前校正或单独采用滞后校正的不足。

19惯性环节在什么条件下可以近似为比例环节。

在惯性时间常数很小的情况下。

20列举3种非线性系统与线性系统特性的不同之处。

(1)是否满足叠加原理(2)是否有可能产生自激振荡,(3)系统的特性(如稳定性)

与初始状态是否有关。

21现实中,真实的系统都具有一定程度的非线性特性和时变特性,但是理论分析和设计经常采用线性时不变模型的原因。

(1)通常系统工作在平衡点附近的小范围内,(2)近似的精度通常满足工程要求,(3)线性系统的分析与设计方法成熟、方便。(4)对于本质非线性,或者非线性明显的情况,或者要求比较高的情况,必须采用非线性的方法

21零阶保持器传递函数

1

()

Ts

h

e

G s

s

-

-

=中是否包含积分环节?为什么?

不包含积分环节,因为s趋向0时,G(s)并不趋向无穷。

我的一点见解,不一定正确。

1、可以用频域法求取。输入不同正弦信号,测量输出幅值和相宜,划伯德图近似。书上明确说明,这种方法可以求非最小相位环节的传递函数。

7、如果你用现代控制理论的能控能观性去思考一下,就会发现问题。从传递函数上看,控制器相当于比例环节(K=1),直接发散,谈何性能

自动控制原理试题

自动控制原理试题

一、填空题 1、对自动控制系统的基本要求可以概括为三个方面,即:、快速性和。 2、反馈控制又称偏差控制,其控制作用是通过与反馈量的差值进行的。 3、复合控制有两种基本形式:即按的前馈复合控制和按的前馈复合控制。 4、根轨迹起始于,终止于。 5、PI控制器的输入-输出关系的时域表达式是, 其相应的传递函数为,由于积分环节的引入,可以改善系统的性能。 二、选择题: 1、下列关于转速反馈闭环调速系统反馈控制基本规律的叙述中,错误的是( ) A、只用比例放大器的反馈控制系统,其被调量仍是有静差的 B、反馈控制系统可以抑制不被反馈环节包围的前向通道上的扰动 C、反馈控制系统的作用是:抵抗扰动、服从给定 D、系统的精度依赖于给定和反馈检测的精度 2、转速电流双闭环调速系统中的两个调速器通常采用的控制方式是( ) A.PID B.PI C.P D.PD

3、下列不属于双闭环直流调速系统启动过程特点的是( ) A、饱和非线性控制 B、转速超调 C、准时间最优控制 D、饱和线性控制 4、静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,则静差率( ) A.越小B.越大C.不变D.不确定 5、普通逻辑无环流(既无推β又无准备)可逆调速系统中换向时待工作组投入工作时,电动机处于()状态。 A、回馈制动 B、反接制动 C、能耗制动 D、自由停车 6、在交—直—交变频装置中,若采用不控整流,则PWN逆变器的作用是()。 A、调压 B、调频 C、调压调频 D、调频与逆变 7、下列交流异步电动机的调速方法中,应用最广的是()。 A、降电压调速 B、变极对数调速 C、变压变频调速 D、转

自动控制原理总经典总结

《自动控制原理》总复习

第一章自动控制的基本概念 一、学习要点 1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对 象、控制器、反馈、负反馈控制原理等。 2.控制系统的基本方式: ①开环控制系统;②闭环控制系统;③复合控制系统。 3.自动控制系统的组成:由受控对象和控制器组成。 4.自动控制系统的类型:从不同的角度可以有不同的分法,常有: 恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。 5.对自动控制系统的基本要求:稳、快、准。 6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。 二、基本要求 1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。 2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制 系统稳、准、快三方面的基本要求。 3.了解控制系统的典型输入信号。 4.掌握由系统工作原理图画方框图的方法。 三、容结构图

四、知识结构图 第二章 控制系统的数学模型 一、学习要点 1.数学模型的数学表达式形式

(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。 2.数学模型的图形表示 (1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。 二、基本要求 1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。 2、了解动态微分方程建立的一般方法及小偏差线性化的方法。 3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。 4、正确理解传递函数的定义、性质和意义。熟练掌握由传递函数派生出来的系统开环传递 函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。(#) 5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构 图及结构图的简化,并能用梅逊公式求系统传递函数。(##) 6、传递函数的求取方法: 1)直接法:由微分方程直接得到。 2)复阻抗法:只适用于电网络。 3)结构图及其等效变换,用梅逊公式。 4)信号流图用梅逊公式。

自动控制原理试题与答案解析

课程名称: 自动控制理论 (A/B 卷 闭卷) 一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ , 该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 。 6、根轨迹起始于 极点 ,终止于 零点或无穷远 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 。 8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。

自动控制原理知识点总结

~ 自动控制原理知识点总结 第一章 1、什么就是自动控制?(填空) 自动控制:就是指在无人直接参与得情况下,利用控制装置操纵受控对象,就是被控量等于给定值或按给定信号得变化规律去变化得过程。 2、自动控制系统得两种常用控制方式就是什么?(填空) 开环控制与闭环控制 3、开环控制与闭环控制得概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高. 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程得影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否得问题。 掌握典型闭环控制系统得结构。开环控制与闭环控制各自得优缺点? (分析题:对一个实际得控制系统,能够参照下图画出其闭环控制方框图。) 4、控制系统得性能指标主要表现在哪三个方面?各自得定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程得振荡倾向与系统恢复平衡得能力 (2)、快速性:通过动态过程时间长短来表征得 (3)、准确性:有输入给定值与输入响应得终值之间得差值来表征得 第二章 1、控制系统得数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2、了解微分方程得建立? (1)、确定系统得输入变量与输入变量 (2)、建立初始微分方程组.即根据各环节所遵循得基本物理规律,分别列写出相应得微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关得项写在方程式等号得右边,与输出量有关得项写在等号得左边 3、传递函数定义与性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量得拉普拉斯变换域系统输入量得拉普拉斯变

燕山大学2018年《自动控制原理》考研大纲

燕山大学2018年《自动控制原理》考研大纲 一、课程的基本内容要求 1.掌握自动控制系统的工作原理、自动控制系统的组成与几种不同分类。重点掌握反馈的概念、基本控制方式、对控制系统的基本要求。 2.线性系统的数学模型 掌握传递函数;极点、零点;开环传递函数、闭环传递函数、误差传递函数的概念;典型环节的传递函数。掌握建立电气系统(有源网络和无源网络)、机械系统(机械平移系统)的微分方程和传递函数模型的方法。重点掌握方框图化简或信号流图梅森增益公式获得系统传递函数的建模方法。 3.控制系统时域分析 要求能够分析系统的三大基本性能,即系统的稳(稳定性)、准(准确性)、快(快速性)。掌握如下概念:稳定性;动态(或暂态)性能指标(最大超调量、上升时间、峰值时间、调整时间);稳态(静态)性能指标(稳态误差);一阶、二阶系统的主要特征参量;欠阻尼、临界阻尼、过阻尼系统特点;主导极点。重点掌握系统稳定性判别(Routh判据);稳态误差终值计算(包括三个稳态误差系数的计算);二阶系统动态性能指标计算。掌握利用主导极点对高阶系统模型的简化与性能分析。 4.根轨迹法 要求能够利用根轨迹(闭环系统特征方程的根随系统参数变化在S平面所形成的轨迹)分析系统性能。需掌握的概念:根轨迹;常规根轨迹;相角条件、幅值条件;根轨迹增益。重点掌握常规根轨迹的绘制(零度根轨迹不作要求)。掌握增加开环零、极点对根轨迹的影响;利用根轨迹分析系统稳定性与具有一定的动态响应特性(如衰减振荡、无超调等特性)的方法。 5.控制系统频域分析 要求能够利用频域分析方法对控制系统进行分析与设计。掌握如下概念:频率特性;开环频率特性、闭环频率特性;最小相位系统;幅值穿越频率(剪切频率)、相角穿越频率、相角裕度、幅值裕度;谐振频率、谐振峰值;截止频率、频带宽度;三频段。重点掌握开环频率特性Nyquist图、Bode图的绘制;由

自动控制原理简答题

三.名词解释 47、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。 48、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。 49、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。 50、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。 51、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。 52、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。 53、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。 54、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。 55、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()() C z G z R z =。 56、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣ 57、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统。

自动控制原理课程总结1

HEFEI UNIVERSITY 自动控制原理课程总结 系别电子信息与电气工程系 专业自动化 班级 09自动化(1)班 姓名 完成时间 2011.12.29

自动控制原理课程总结 前言 自动控制技术已广泛应用于制造、农业、交通、航空及航天等众多产业部门,极大地提高了社会劳动生产率,改善了人们的劳动环境,丰富了人民的生活水平。在今天的社会中,自动化装置无所不在,为人类文明进步做出了重要贡献。本学期我们开了自动控制原理这门专业课,下面主要介绍下我对这门课前五章的认识和总结。 一、控制系统的数学模型 1.传递函数的定义: 在线性定常系统中,当初是条件为零时,系统输出的拉氏变换与输入的拉氏变换之比。 (1)零极点表达式: (2)时间常数表达式: 2.信号流图

(1)信号流图的组成 节点:用来表示变量或信号的点,用符号“○”表示。 支路:连接两节点的定向线段,用符号“→”表示。(2)信号流图与结构图的关系 3.梅逊公式

其中:Δ=1-La+LbLc-LdLeLf+...成为特征试。 Pi:从输入端到输出端第k条前向通路的总传递函数 Δi:在Δ中,将与第i条前向通路相接触的回路所在项除去后所余下的部分,称为余子式。 La:所有单回路的“回路传递函数”之和 LbLc:两两不接触回路,其“回路传递函数”乘积之和 LdLeL:所有三个互不接触回路,其“回路传递函数”乘积之和“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数只积并且包含表示反馈极性的正负号。 二、线性系统的时域分 1.ζ、ωn坐标轴上表示如下: (1)闭环主导 极点:

当一个极点距离虚轴较近,且周围没有其他闭环极点和零点,并且该极点的实部的绝对值应比其他极点的实部绝对值小5倍以上。(2)对于任何线性定常连续控制系统由如下的关系: ①系统的输入信号导数的响应等于系统对该输入信号响应的导数; ②系统对输入信号积分的响应等于系统对该输入信号响应的积分,积分常数由初始条件确定。 2.劳斯判据: 设系统特征方程为 : 劳斯判据指出:系统稳定的充要条件是劳斯表中第一列系数都大于零,否则系统不稳定,而且第一列系数符号改变的次数就是系统特征方程中正实部根的个数。 劳斯判据特殊情况的处理 ⑴某行第一列元素为零而该行元素不全为零时——用一个很小的正数ε代替第一列的零元素参与计算,表格计算完成后再令ε→0。 ⑵某行元素全部为零时—利用上一行元素构成辅助方程,对辅助方程求导得到新的方程,用新方程的系数代替该行的零元素继续计算。 3.稳态误差 (1)定义: (2)各种误差系数的定义公式

《自动控制原理》(科目代码845)考试大纲

参考书目: (1)各出版社出版的各种自动控制原理教材及习题集 (2)孙优贤、王慧主编. 自动控制原理. 北京:化工出版社,2011年6月 (3)胡寿松主编. 自动控制原理(第四版、第五版、第六版). 分别于2001年2月、2007年6月、2013年5月由科学出版社的(该书初版于1979年,前三版均由国防工业出版社出版,亦可作为参考书) 特别提醒:本考试大纲仅适合报考2017年浙江大学控制科学与工程学院、专业课考<自动控制原理>(科目代码845)课程的考生。该门课程的满分为150分。 一、总的要求 全面掌握自动控制系统的基本概念与原理,深入理解与掌握自动控制系统分析与综合设计的方法,并能用这些基本的原理与方法去分析问题、解决问题。 二、基本要求 (1) 自动控制的一般概念:自动控制的基本原理与自动控制系统组成、分类,能将具体对象的控制系统物理结构图表示抽象成控制系统的方块图表示,能分析其中各种物理量、信息流之间的关系。 (2) 动态系统的数学模型:能建立给定典型系统的数学模型,包括微分方程模型、传递函数模型、状态空间模型等;能熟练地通过方块图简化方法与信号流图等方法获得系统总的传递函数;能根据要求进行各种数学模型之间的相互转换。 (3) 线性时不变连续系统的时域分析:掌握系统微分方程模型的求解,拉普拉斯变换在时域分析中的应用,一阶、二阶及高阶系统的时域分析;状态空间模型的求解与分析;系统时间响应的性能指标及计算;系统的稳定性分析、稳态误差系数与稳态误差的计算等。 (4) 根轨迹: 掌握根轨迹法的基本概念;根轨迹绘制的基本法则及推广法则;利用根轨迹进行系统性能的分析与设计。 (5) 频率分析:掌握系统的频率特性基本概念;开环系统的典型环节分解与开环频率特性曲线及其分析;利用伯德图建立对象的传递函数模型;奈魁斯特频率特性稳定判据以及稳定裕度分析。

自动控制原理试题及答案解析

自动控制原理 一、简答题:(合计20分, 共4个小题,每题5分) 1. 如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面 说明该系统会有什么样的表现?并解释原因。 2. 大多数情况下,为保证系统的稳定性,通常要求开环对数幅频特性曲 线在穿越频率处的斜率为多少?为什么? 3. 简要画出二阶系统特征根的位置与响应曲线之间的关系。 4. 用根轨迹分别说明,对于典型的二阶系统增加一个开环零点和增加一 个开环极点对系统根轨迹走向的影响。 二、已知质量-弹簧-阻尼器系统如图(a)所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。求m 、k 和μ的值。(合计20分) F ) t 图(a) 图(b) 三、已知一控制系统的结构图如下,(合计20分, 共2个小题,每题10分) 1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调 节时间s t 和峰值时间p t ; 2) 当()21(),()4sin3r t t n t t =?=时,求系统的稳态误差。

四、已知最小相位系统的开环对数幅频特性渐近线如图所示,c ω位于两个交接频率的几何中心。 1) 计算系统对阶跃信号、斜坡信号和加速度信号的稳态精度。 2) 计算超调量%σ和调节时间s t 。(合计20分, 共2个小题,每题10分) [ 1 %0.160.4( 1)sin σγ =+-, s t = 五、某火炮指挥系统结构如下图所示,()(0.21)(0.51) K G s s s s = ++系统最 大输出速度为2 r/min ,输出位置的容许误差小于2,求: 1) 确定满足上述指标的最小K 值,计算该K 值下的相位裕量和幅值裕量; 2) 前向通路中串联超前校正网络0.41 ()0.081 c s G s s +=+,试计算相位裕量。 (合计20分, 共2个小题,每题10分) (rad/s)

湖南大学自动控制原理复习总结(精辟)

自动控制理论(一)复习指南和要求【】

第二章 控制系统的数学模型复习指南与要点解析 要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同) 一、控制系统3种模型,即时域模型----微分方程;※ 复域模型 ——传递函数;频域模型——频率特性。其中重点为传递函数。 系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。 零初始条件下:如要求传递函数需拉氏变换,这句话必须的。 二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。 1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45) 2.结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中: ※引出点前移在移动支路中乘以()G s 。(注意:只须记住此,其他根据倒数关系导出即可) 引出点后移在移动支路中乘以1/()G s 。 相加点前移在移动支路中乘以1/()G s 。 相加点后移在移动支路中乘以()G s 。 [注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,()G s 就是谁。 例1: ) 解法 1: 1) 3()G s 前面的引出点后移到3()G s 的后面(注:这句话可不写,但是必须绘制出下面的结构图,) 2) 消除反馈连接

) 3) 消除反馈连接 4) 得出传递函数 123121232123()()()() ()1()()()()()()()()() G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数 () () C s R s =。。。。) 解法 2: 1()G s 后面的相加点前移到1()G s 前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。 [注]:条条大路通罗马,但是其最终传递函数 () () C s R s =一定相同) [注]:※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线) 三. ※※※应用信号流图与梅森公式求传递函数 梅森公式: ∑=??=n k k k P P 1 1 式中,P —总增益;n —前向通道总数;P k —第k 条前向通道增益; △—系统特征式,即Λ+-+-=?∑∑∑f e d c b a L L L L L L 1 Li —回路增益; ∑La —所有回路增益之和; ∑LbLc —所有两个不接触回路增益乘积之和; ∑LdLeLf —所有三个不接触回路增益乘积之和; △k —第k 条前向通道的余因子式,在△计算式中删除与第k 条前向通道接触的回路。 [注] :一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。 注意2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。 例2: 已知系统的方框图如图所示 。试求闭环传递函数C (s )/R (s ) (提示:应用信号流图及梅森公式) 解1) [注]

自动控制原理考试复习笔记本科生总结

自动控制原理复习总结笔记 一、自动控制理论的分析方法: (1)时域分析法; (2)频率法; (3)根轨迹法; (4)状态空间方法; (5)离散系统分析方法; (6)非线性分析方法 二、系统的数学模型 (1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数 (2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线 时域响应分析 一、对系统的三点要求: K (1)必须稳定,且有相位裕量γ和增益裕量 g

(2)动态品质指标好。p t 、s t 、r t 、σ% (3)稳态误差小,精度高 二、结构图简化——梅逊公式 例1、 解:方法一:利用结构图分析: ()()()()[]()()[]()s X s Y s R s Y s X s R s E 11--=+-= 方法二:利用梅逊公式 ? ? = ∑=n k K K P s G 1 )( 其中特征式 (11) ,,1 ,1 +- + -=?∑∑∑===Q f e d f e d M k j k j N i i L L L L L L 式中: ∑i L 为所有单独回路增益之和 ∑j i L L 为所有两个互不接触的单独回路增益乘积之和 ∑f e d L L L 为所有三个互不接触的单独回路增益乘积之和 其中,k P 为第K 条前向通路之总增益; k ? 为从Δ中剔除与第K 条前向通路有接触的项; n 为从输入节点到输出节点的前向通路数目 对应此例,则有:

通路:211G G P ?= ,11=? 特征式:312131211)(1G G G G G G G G ++=---=? 则: 3 121111)() (G G G G P s R s Y ++?= 例2:[2002年备考题] 解:方法一:结构图化简 继续化简:

自动控制原理简答

自动控制原理简答 1、简要论述自动控制理论的分类及其研究基础、研究的方法。 自动控制理论分为“经典控制理论”和“现代控制理论”。“经典控制理论”以递函数为基础,以时域法、根轨迹法、频域法为基本方法,“现代控制理论”以状态空间法为基础,以频率法和根轨迹法为基本方法。 2、在经典控制理论中用来分析系统性能的常用工程方法有那些?分析内容有那些? 常用的工程方法:时域分析法、根轨迹法、频率特性法; 分析内容:瞬态性能、稳态性能、稳定性。 3、相比较经典控制理论,在现代控制理论中出现了哪些新的概念? 系统的运动分析,能控性,能观性,极点配置,观测器设计,跟踪器等。 4、人闭上眼见很难达到预定的目的试从控制系统的角度进行分析。 人闭上眼睛相当于系统断开反馈,没有反馈就不知道偏差有多大,并给予及时修正。所以人闭上眼睛很难到达预定目标。 5、试分析汽车行驶原理 首先,人要用眼睛连续目测预定的行车路线,并将信息输入大脑(给定值),然后与实际测量的行车路线相比较,获得行驶偏差。通过手来操作方向盘,调节汽车,使其按照预定行车路线行驶。 6、对飞机与轮船运行原理加以分析 飞机和轮船在行驶时,都会发射无线电信号来进行定位,无线电信号通过雷达反射到计算机中央处理器中。进行对比得出误差,再将误差发射,进入雷达反射到飞机和轮船的接收器中,计算机收到信号后可还原为数据,进而可知偏差而及时修正,这是时刻都进行的。所以飞机,轮船都能保持预定航向行驶。 7、从元件的功能分类,控制元件主要包括哪些类型的元件? 控制元件主要包括放大元件、执行元件、测量元件、补偿元件。 8、线性定常系统的传递函数定义 传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。 9、常见的建立数学模型的方法有哪几种?各有什么特点? 有以下三种:(1机理分析法:机理明确,应用面广,但需要对象特性清晰 (2实验测试法:不需要对象特性清晰,只要有输入输出数据即可,但适用面受限 (3以上两种方法的结合:通常是机理分析确定结构,实验测试法确定参数,发挥了各自的优点,克服了相应的缺点 10、自动控制系统的数学模型有哪些 自动控制系统的数学模型有微分方程、传递函数、频率特性、结构图。 11、离散系统的数学模型 (1 差分方程 Z变换将差分变成代数方程 (2 脉冲传递函数脉冲传递函数:零初始条件下,输出离散时间信号的 z 变换 C z 与输入离散信号的变 C z换 R z 之比,即 G z /R z (3 离散空间表达式 12、定值控制系统、伺服控制系统各有什么特点? 定值控制系统为给定值恒定,反馈信号和给定信号比较后控制输出信号;伺服控制系统为输入信号是时刻变化的,输入信号的变化以适应输出信

2018华中科技大学829《自动控制原理》考试大纲

2018华中科技大学硕士研究生入学考试《自动控制原理》考试大纲 科目名称:自动控制原理(含经典控制理论、现代控制理论) 代码:829 第一部分考试说明 一.考试性质 《自动控制原理》是为我校招收控制科学与工程专业硕士研究生设置的考试科目。它的评价标准是高等学校优秀毕业生能达到良好及以上水平,以保证被录取者具有较扎实的专业基础。 二.考试形式与试卷结构 (一)答卷方式:闭卷,笔试; (二)答题时间:180分钟。 (三)题型:计算题、简答题、选择题 第二部分考查要点 (一)自动控制的一般概念 1.自动控制和自动控制系统的基本概念,负反馈控制的原理; 2.控制系统的组成与分类; 3.根据实际系统的工作原理画控制系统的方块图。 (二)控制系统的数学模型 1.控制系统微分方程的建立,拉氏变换求解微分方程。 2.传递函数的概念、定义和性质。 3.控制系统的结构图,结构图的等效变换。 4.控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。 (三)线性系统的时域分析 1.稳定性的概念,系统稳定的充要条件,Routh稳定判据。 2.稳态性能分析 (1)稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差; (2)静态误差系数和动态误差系数,系统型别与静态误差系数,影响稳态误差的因素。 3.动态性能分析 (1)一阶系统特征参数与动态性能指标间的关系; (2)典型二阶系统的特征参数与性能指标的关系; (3)附加闭环零极点对系统动态性能的影响; (4)主导极点的概念,用此概念分析高阶系统。 (四)线性系统的根轨迹法 1.根轨迹的概念,根轨迹方程,幅值条件和相角条件。 2.绘制根轨迹的基本规则。 3.0o根轨迹。非最小相位系统的根轨迹及正反馈系统的根轨迹的画法。

自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 e来表征的 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边

3.传递函数定义和性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比 5.动态结构图的等效变换与化简。三种基本形式,尤其是式2-61。主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。(化简) 等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。串联,并联,反馈连接,综合点和引出点的移动(P27) 6.系统的开环传递函数、闭环传递函数(重点是给定作用下)、误差传递函数(重点是给定作用下):式2-63、2-64、2-66 系统的反馈量B(s)与误差信号E(s)的比值,称为闭环系统的开环传递函数 系统的闭环传递函数分为给定信号R(s)作用下的闭环传递函数和扰动信号D(s)作用下的

胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第1~2章)【圣才出品】

第1章自动控制的一般概念 1.1复习笔记 本章内容主要是经典控制理论中一些基本的概念,一般不会单独考查。 一、自动控制的基本原理与方式 1.反馈控制方式 反馈控制方式的主要特点是: (1)闭环负反馈控制,即按偏差进行调节; (2)抗干扰性好,控制精度高; (3)系统参数应适当选择,否则可能不能正常工作。 2.开环控制方式 开环控制方式可以分为按给定量控制和按扰动控制两种方式,其特点是:(1)无法通过偏差对输出进行调节; (2)抗干扰能力差,适用于精度要求不高或扰动较小的情况。 3.复合控制方式 复合控制即开环控制和闭环控制相结合。 二、自动控制系统的分类

根据系统性能可将自动控制系统按线性与非线性、连续和离散、定常和时变三个维度进行分类,本书主要介绍了线性连续控制系统、线性定常离散控制系统和非线性控制系统的性能分析。 三、对自动控制系统的基本要求 1.基本要求的提法 稳定性、快速性和准确性。 2.典型外作用 (1)阶跃函数 阶跃函数的数学表达式为: 0,0(),0 t f t R t

f t A tω? =- ()sin() 式中,A为正弦函数的振幅;ω=2πf为正弦函数的角频率;φ为初始相角。 1.2课后习题详解 1-1图1-2-1是液位自动控制系统原理示意图。在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。 图1-2-1液位自动控制系统原理图 解:当Q1≠Q2时,液面高度的变化。例如,c增加时,浮子升高,使电位器电刷下移,产生控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。反之,当c 减小时,则系统会自动增大阀门开度,加大流入水量,使液位升到给定高度c。方块图如图1-2-2所示。

自动控制原理考研大纲

《自动控制原理》考研大纲 科目名称:控制理论 适用专业:仿生装备与控制工程 参考书目:《自动控制原理》第六版,胡寿松编,科学出版社; 《自动控制理论》第二版,邹伯敏编,机械工业出版社; 《现代控制理论基础》第二版,王孝武主编,机械工业出版社 考试时间:3小时 考试方式:笔试 总分:150分 考试范围:包括经典控制理论(不包含非线性部分)与现代控制理论两部分,经典控制理论内容占70%,现代控制理论内容占30%。 经典控制理论部分 第一章绪论 1. 掌握自动控制系统的工作原理、自动控制系统的组成与几种不同分类。 2. 重点掌握反馈的概念、基本控制方式、对控制系统的基本要求。 第二章线性系统的数学模型 控制理论的两大任务是系统分析与系统设计,系统分析和设计中首先要建立被研究系统的数学模型。本章主要给出古典控制理论使用的系统数学模型——传递函数的建立。 本章要求: 1.掌握的概念:传递函数;极点、零点;开环传递函数、闭环传递函数、误差传递函数;典型环节的传递函数。 2.重点掌握建立电气系统、机械系统的微分方程和传递函数模型的方法。 3.重点掌握方框图化简或信号流图梅森增益公式获得系统传递函数的建模方法。 第三章控制系统时域分析 根据研究系统采用的不同数学模型,分析方法是不同的,本章给出利用系统传递函数数学模型求取时间响应的系统时域分析法。主要是分析系统的三大基本性能,即系统的稳(稳定性)、准(准确性)、快(快速性)。稳定性是系统工作的必要条件;快速性和相对稳定程度(振荡幅度)是评价系统动态响应的性能指标;准确性是指系统稳态响应的稳态精度,用稳态误差来衡量,需注意:讨论的稳态误差是指由输入信号和系统结构引起的系统稳态时的误差。 本章要求: 1.掌握的概念:稳定性;动态(或暂态)性能指标(最大超调量、上升时间、峰值时间、调整时间);稳态(静态)性能指标(稳态误差);一阶、二阶系统的主要特征参量;欠阻尼、临界阻尼、过阻尼系统特点;主导极点。 2.重点掌握系统稳定性判别(Routh判据);稳态误差终值计算(包括三个稳态误差系数的计算);二阶系统动态性能指标计算。 3.掌握利用主导极点对高阶系统模型的简化与性能分析。 第四章根轨迹法 闭环系统特征方程的根(系统闭环极点)在S平面的分布完全决定了系统的稳定性、主要决定了系统的动态性能,因此利用根轨迹(闭环系统特征方程的根随系统参数变化在S 平面所形成的轨迹)可对系统性能进行分析。根轨迹法是经典控制理论系统分析与设计的两大主要方法之一,是利用开环传递函数分析闭环系统性能。根轨迹绘制依据根轨迹方程(由

自动控制原理试题及答案

自动控制原理 一、简答题:(合计20分,共4个小题,每题5分) 1. 如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面 说明该系统会有什么样的表现?并解释原因。 2. 大多数情况下,为保证系统的稳定性,通常要求开环对数幅频特性曲 线在穿越频率处的斜率为多少?为什么? 3. 简要画出二阶系统特征根的位置与响应曲线之间的关系。 4. 用根轨迹分别说明,对于典型的二阶系统增加一个开环零点和增加一 个开环极点对系统根轨迹走向的影响。 二、已知质量-弹簧-阻尼器系统如图(a)所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。求m 、k 和μ的值。(合计20分) F ) t 图(a) 图(b) 三、已知一控制系统的结构图如下,(合计20分,共2个小题,每题10分) 1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调 节时间s t 和峰值时间p t ; 2) 当()21(),()4sin 3r t t n t t =?=时,求系统的稳态误差。

四、已知最小相位系统的开环对数幅频特性渐近线如图所示,c ω位于两个交接频率的几何中心。 1) 计算系统对阶跃信号、斜坡信号和加速度信号的稳态精度。 2) 计算超调量%σ和调节时间s t 。(合计20分,共2个小题,每题10分) [ 1 %0.160.4( 1)sin σγ =+-, s t = 五、某火炮指挥系统结构如下图所示,()(0.21)(0.51) K G s s s s = ++系统最 大输出速度为2 r/min ,输出位置的容许误差小于2 ,求: 1) 确定满足上述指标的最小K 值,计算该K 值下的相位裕量和幅值裕 量; 2) 前向通路中串联超前校正网络0.41 ()0.081 c s G s s +=+,试计算相位裕量。 (合计20分,共2个小题,每题10分) (rad/s)

自动控制原理知识点总结

河南省郑州市惠济区河南商业高等专科学校,文化路英 才街2号 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 2.自动控制系统的两种常用控制方式是什么?(填空) 3.开环控制和闭环控制的概念?掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) sa 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) 第二章 1.控制系统的数学模型有什么?(填空) 2.了解微分方程的建立? 3.传递函数定义和性质?认真理解。(填空或选择) 4.七个典型环节的传递函数(必须掌握)。了解其特点。(简答) 5.动态结构图的等效变换与化简。三种基本形式,尤其是式2-61。主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。(化简) 6.系统的开环传递函数、闭环传递函数(重点是给定作用下)、误差传递函数(重 点是给定作用下):式2-63、2-64、2-66 第三章 1.P42系统的时域性能指标。各自的定义,各自衡量了什么性能?(填空或选择) 2.一阶系统的单位阶跃响应。(填空或选择) 3.二阶系统: (1)传递函数、两个参数各自的含义;(填空)

(2)单位阶跃响应的分类,不同阻尼比时响应的大致情况(图3-10);(填空)(3)欠阻尼情况的单位阶跃响应:掌握式3-21、3-23~3-27;参考P51例3-4的欠阻尼情况、P72习题3-6。 4.系统稳定的充要条件?劳斯判据的简单应用:参考P55例3-5、3-6。(分析题) 5.用误差系数法求解给定作用下的稳态误差。参考P72习题3-13。(计算题) 第四章 1.幅频特性、相频特性和频率特性的概念。 2.七个典型环节的频率特性(必须掌握)。了解其伯德图的形状。(简答题) 3.绘制伯德图的步骤(主要是L(ω)) 4.根据伯德图求传递函数:参考P110习题4-4。(分析题) 5.奈氏判据的用法:参考P111习题4-6。(分析题) 6.相位裕量和幅值裕量的概念、意义及工程中对二者的要求。(填空或判断) 7.开环频率特性与时域指标的关系中低频段、中频段、高频段各自影响什么性能?注意相位裕量和穿越频率各自影响什么性能?(填空或判断) 第五章 1.常用的校正方案有什么?(填空) 2.PID控制: (1)时域表达式P122式5-18 (2)P、PI、PD、PID控制各自的优缺点?(简答题) 第六章 填空

5.自动控制原理考试复习笔记--本科生总结

自动控制原理复习总结笔记 一、 自动控制理论的分析方法: (1)时域分析法; (2)频率法; (3)根轨迹法; (4)状态空间方法; (5)离散系统分析方法; (6)非线性分析方法 二、系统的数学模型 (1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数 (2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线 时域响应分析 一、对系统的三点要求: (1)必须稳定,且有相位裕量γ和增益裕量g K (2)动态品质指标好。p t 、s t 、r t 、σ% (3)稳态误差小,精度高 二、结构图简化——梅逊公式 例1、 解:方法一:利用结构图分析: ()()()()[]()()[]()s X s Y s R s Y s X s R s E 11--=+-=

方法二:利用梅逊公式 ? ? = ∑=n k K K P s G 1 )( 其中特征式 (11) ,,1 ,1 +- + -=?∑∑∑===Q f e d f e d M k j k j N i i L L L L L L 式中: ∑i L 为所有单独回路增益之和 ∑j i L L 为所有两个互不接触的单独回路增益乘积之和 ∑f e d L L L 为所有三个互不接触的单独回路增益乘积之和 其中,k P 为第K 条前向通路之总增益; k ? 为从Δ中剔除与第K 条前向通路有接触的项; n 为从输入节点到输出节点的前向通路数目 对应此例,则有: 通路:211G G P ?= ,11=? 特征式:312131211)(1G G G G G G G G ++=---=? 则: 3 121111)() (G G G G P s R s Y ++?= 例2:[2002年备考题]

国防科技大学2019年研究生考试大纲851自动控制原理

2019年硕士研究生入学考试自命题科目考试大纲 科目代码:851科目名称:自动控制原理 一.考试要求 主要考查学生对经典控制、现代控制和计算机控制基本概念、相关理论和方法的理解与掌握;考查学生运用系统建模、分析及控制器设计相关方法和手段的能力;考查学生运用Matlab控制相关的基本命令进行系统建模、分析和仿真、控制器设计的能力。 二、考试内容 1.自动控制 控制的基本概念;简单电路、机械系统和直流电机的物理建模;物理系统的微分方程及线性化;传递函数、框图化简及Mason增益公式;系统的时间响应、主导极点及时域性能指标计算、直流增益、稳态误差和稳态误差系数计算;系统的稳定性及劳斯判据;180?和0?根轨迹、根轨迹的手工绘制、根轨迹关键特征点计算;系统的频率响应、Bode图的手工绘制及传递函数辨识、开环频率指标与系统动态性能计算、Nyquist图手工绘制和Nyquist稳定性判据;基于根轨迹的控制器设计(P、PD、PI、PID、PIDF、超前和滞后)和前置滤波器设计,基于Bode图的控制器设计(超前、滞后)。 2.现代控制 物理系统的状态方程描述、系统的能控性和能观性、极点配置控制器设计、状态观测器设计 3.计算机控制 采样信号描述、星号拉普拉斯变换及性质;零阶保持器及性质;Z变换;离散系统的脉冲传递函数;混合系统的离散化;离散系统稳定性、July判据、W变换和劳斯判据;离散系统直流增益及稳态误差计算;离散系统的动态性能;离散系统的根轨迹及性质、离散系统的Bode图;控制器的离散化方法及性质(反向差分、前向差分、双线性变换、零极点匹配和预曲双线性变换);离散状态方程、能控性和能观性、状态反馈控制器及状态观测器设计。连续离散等效设计方法、离散系统的直接分析及控制器设计:根轨迹法、Bode图法、极点配置方法。 4.Matlab控制相关的基本命令 zpk,tf,ss,frd,feedback,impulse,step,lsim,pzmap,rlocus,bode,margin,nyquist, sisotool,c2d,place(acker) 三、考试形式 考试形式为闭卷、笔试,考试时间为3小时,满分150分。 题型包括:填空题、简答题、计算题、分析设计题等。 四、参考书目 1.《现代控制系统》.Richard C.Dorf,Robert H.Bishop著,谢红卫等译,电子工业出版社,2011。第十一版 2.《现代控制工程》.Katsuhiko Ogata著,卢伯英等译,电子工业出版社,2012。第五版 3.《动态系统的数字控制》.Gene F.Frankin J.David Powell著.清华大学出版社,2001。第3版 4.《计算机控制及网络技术》.龙志强等编.中国水利水电出版社,2007。第1版 5.《Linear System Theory and Design》,Chi-Tsong Chen著,Oxford University Press,1999,Third Edition.

相关主题