搜档网
当前位置:搜档网 › WCDMA技术Chapter04

WCDMA技术Chapter04

WCDMA技术Chapter04
WCDMA技术Chapter04

UMTS

Introduction to 3GPP WCDMA Signal scrambling with PN sequences Dipl.-Ing. (Univ) Reinhold Krueger

R&S -TRAINING CENTER

? 2002

https://www.sodocs.net/doc/1d8229239.html,

?2003 / Dipl. Ing. (Univ) Reinhold Krüger/ 1

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ) Reinhold Krüger / 2

Block Scrambling

Channel

PN Sequence PN Sequence a(k)

x(k)

c(k)

a(k)

x(k)

c(k)

c(k) = a(k) ⊕x(k)a(k) = c(k) ⊕x(k)

⊕= modulo 2 (XOR)

Receiver

Transmitter

The statistics of a data sequence a(k) depends on the statistics of the origin source data. For instance appears the probability of a single letter with different probabilities in different languages, i.e. they have different a-priori probabilities. For instance the ASCII standard specifies a source coding scheme which represents individual letters with a specific 8 bit sequence. Thus, the probability of the binary digits is directly depending on the a-priori probabily of the individual ASCII coded letters.

To achieve a reliable transmission of data in digital systems the bit clock is required at any time. The clock signal could be retrieved from a separate clock line, however, this is not very simple in radio systems. Thus, the clock must be retrieved from the received signal, i.e. altering bit sequences would be appreciated. However, this depends again on the a-priori probability of the source symbols. To avoid long constant bit sequences the data are scrambled prior to transmission using pseudo noise sequences. The statistics of such PN sequences is such that the probability of binary …0“ and binary …1“ is equal to 50% for a sufficient period of time.

The receiver can descramble the received signal when the used PN sequence is known, however, synchronisation of the PN generators is required. This can be achieved by adding pilot sequences to the signal.

In fact UMTS applies block scrambling by using special PN

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 3

Pseudo Noise Sequences

l Pseudo Noise (PN) Sequenzes l Simple, reproduceable generation l

Properties of random sequences

l

Other names

-PRBS -Pseudo Random Bit Sequences -PN sequences

-Maximal-length (shift-register) sequences -m-sequences

Pseudo Noise sequences are random with respect to their statistics and correlation properties, however, they can be easily reproduced and thus can be exactly predicted.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 4

feedback shift register

Feedback shift register for generation PN sequences

CODES_PCD_01.VSD

1

23i m r x m-m

x m-1

x m

m-2m-1x m-2

x m-3

x m-i

x m-r

x m-(m-2)

x m-(m-1)

x m +x m-i +x m-r +1i r = {i,r,m)

l

Polynomial representation of the register: x m +x m-i +x m-r +1 l

Feedback points: i r = {i, r, m}

The generation of PN sequences is quiet simple using feedback shift registers.

The feedback of shift register content at certain feedback points i r results in a PN sequence. In case of m cells the shift register can have 2m -1 states which represents the maximum length the PN sequence, since the state all “0” is excluded.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 5

(m-sequence)

Maximum-length sequences

CODES_PCD_02.VSD

10001I r = {1,4}y=x 4+x 3+1

0001100111011110111101101011010110101100011100101000010

123456789101112131415

Length of sequence

0001I r = {3,4}y=x 4+x+1

000112345

6789101112131415

Length of sequence

0001I r = {2,4}y=x 4+x 2+1

000112345

6789101112131415

Length of sequence

100001000011100111000111101001011011110111111110011

0100001011010010000100001100001011010010000100001100

0The maximum length of 2m -1 is not achieved with all possible feedback circuits. Only a few configurations produce sequences of the maximal length called m-sequences.

Above illustrations show two m-sequence circuits producing maximum length sequences with L = 15 = 24 -1.

The third feedback proposal does not achieve maximum length.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 6

Auto correlation PN sequence

Auto-correlation

BASICS_ACC_02.VSD

31

10000101011101100011111001101001000010101110110001111100110100100001010111011000111110011010010000101011101100011111001101001-1

1000010101110110001111100110100

1000010101110110001111100110100101000010101110110001111100110100100001010111011000111110011010010

x 5 + x 2 + 1

1111111111111111111111111111111111111111111111111111111111111111111111111111

-1

-1

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1The auto correlation of m-sequences is almost ideal. There is maximum correlation for exact copies of the signal, and almost neglectable correlation -provided long sequences -in case of shifted copies.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 7

-0,4

-0,2

0,2

0,4

0,6

0,8

1

1,2

t/T

sequence length L

-1/L

Auto correlation of m-sequences

The auto correlation of m-sequences have very strong periodical maxima with the distance of L. In between the correlation is equal to -1/L . Thus, for large L this is neglectable. This is very much appreciated for synchronisation purposes.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 8

Auto correlation of a sequence which is not a m-sequence

Auto-correlation

CODES_PCD_05.VSD

Auto-correlation of

x 5

+x+1

-0,6

-0,4

-0,2

0,2

0,4

0,6

0,8

1

1,2

-1

1

The auto correlation of a PN sequence which is not a m-sequence is no more that

interesting for synchronisation purposes as real m-sequences.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 9

Cross-correlation

BASICS_ACC_06.VSD

3

100001010111011000111110011010010000101011101100011111001101005

10000101011101100011111001101001000010101110110001111100110100

x 5 + x 2 + 1 / x 5 + x 3 + 1

111111111111-9

-7

100001001011001111100011011101011111100001001011001111100011011101010000100101100111110001101110101000010010110011111000110111010111111111111111111111111111111111111111111111111

1

10

100

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1Cross correlation m-sequences

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 10

-0,4

-0,2

0,2

0,4

0,6

0,8

1

1,2

-1

t/T

Cross correlation of two m-sequences

The cross correlation of m-sequences is a measure of mutual inteference. The mutual degradation is no neglectable, however a significant improvement compared to orthogonal codes sequences. Further studies of m-sequences (Gold codes) gained some improvements of the cross correlation which are applied by UMTS scrambling techniques.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 11

Downlink scrambling code

UMTS_CDS_SCC_03.VSD

760

16177501617x 18 + x 7 + 1

Initial condition:00000 (00001)

x 18 + x 10 + x 7 + x 5 + 1

Initial condition:11111 (11111)

218-2 = 262 141

I 131 072

38400

38400

218-1 downlink scrambling codes

0 ... 262 142

910z -n

685Q

9108::

GOLD found that an Exclusive OR combination of two distint m-sequences, called mother codes, result in a new PN sequence with improved cross correlation properties. By simple relative shifting of the mother codes more distinct PN sequences can be achieved. Thus, a very simple method has been found to produce scrambling codes with sufficient cross correlation properties. The GOLD codes are used for UMTS scrambling.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 12

Scrambling Code Groups

Scrambling Code Sets

0:Primary Scrambling Code 1:Primary Scrambling Code

7:Primary Scrambling Code 0:Primary Scrambling Code 1:Primary Scrambling Code

7:Primary Scrambling Code

Scrambling Code Group #63

806480808176Scrambling Code Group #1

1441602560:Primary Scrambling Code 1:Secondary Scrambling Code

15:Secondary Scrambling Code Scrambling Code Set #5118176817781910:Primary Scrambling Code 1:Secondary Scrambling Code

15:Secondary Scrambling Code

Scrambling Code Set #1

161731Grouping of the downlink scrambling codes

UMTS_CDS_SCC_02.VSD

218-1

Scrambling Codes

(0 .. 262 142)

0:Primary Scrambling Code 1:Secondary Scrambling Code 15:

Secondary Scrambling Code

Scrambling Code Set #0

0115

0:Primary Scrambling Code 1:Primary Scrambling Code 7:

Primary Scrambling Code

Scrambling Code Group #0

016128

Left alternative scrambling

codes

for compressed mode

(k+8192)Right alternative scrambling codes for compressed mode

(k+16384)

A set of 218-1 scrambling codes are available for the downlink in

UMTS. A subset of 213codes are taken to build 64 code groups each containing 8 primary scrambling codes. The residual codes are used as secondary scarmbling codes.

Thus, 8192 codes are divided into 512 code sets, each containing 16 scrambling codes, the first of them used as primary scrambling code.The residual 2 x 8192 codes are reserved for future applications.The allocation of scrambling codes to the base stations is a matter of network planning.

? Rohde & Schwarz GmbH & Co. KG -Trainings Center -UMTS -Introduction to 3GPP WCDMA -Chapter 4 ?2003 / Dipl. Ing. (Univ ) Reinhold Krüger / 13

Generation of uplink scrambling codes

Uplink long scrambling code

UMTS_CDS_SCC_01.VSD

3210

423243210

42324x 25 + x 3 + 1

Initial condition:

1 + Scrambling sequence number

x 25 + x 3 + x 2 + x + 1

Initial condition:11111 (11111)

225-2 = 33 554 430

C long,1,n C long,2,n

16 777 232

38400

38400

224 uplink long scrambling codes 0 ... 16 777 216

For uplink scrambling the GOLD codes are produced as illustrated above. A single GOLD code is used and portions of 38400 chips are taken for scrambling. Two different portions C long,1,n and C long,2,n are used to scramble the I and Q branch separately.

Uplink scrambling

l UEs are using distinct scrambling codes, temporarily assigned by the node B

l Node B identifies UEs according to their scrambling code

l224-1 Uplink scrambling codes available

l Scrambling process

-I and Q branch are scrambled with complex GOLD

sequences

-Scrambling codes are selected such that the

number of origin crossing due to modulation is

minimised. (HPSK -Hybrid PSK)

?2003 / Dipl. Ing. (Univ) Reinhold Krüger/ 14? Rohde & Schwarz GmbH & Co. KG -Trainings Center-UMTS -Introduction to 3GPP WCDMA -Chapter 4

WCDMA核心网原理及关键技术

WNC_100_C1 WCDMA核心网原理及关键技术 课程目标: z掌握WCDMA网络结构及网元功能 z了解WCDMA核心网接口及协议 z了解2G/3G核心网主要差异 z了解移动网络的区域划分和编号计划 z了解WCDMA核心网关键技术 参考资料: z3GPP TS23.002 V3.4.0 z3GPP TS23.002 V4.3.0 z3GPP TS23.002 V5.4.0 z《中兴通讯WCDMA基本原理》

第1章WCDMA网络结构 知识点 z WCDMA系统网络结构 z WCDMA系统接口与协议 1.1 WCDMA网络的演进 WCDMA网络的规范是按R99-R4-R5阶段演进的,演进过程中,核心网基本网络逻辑 上的划分没有变化,都分为电路域和分组域,只是到R5版本增加了多媒体子系统 (IMS)。网元实体的变化主要体现为,R99的MSC到R4阶段逻辑上分为MGW和 MSC Server,同时增加了传输信令网关(T-SGW)和漫游信令网关(R-SGW),到R5 阶段在R4的基础上增加了IMS(多媒体子系统)。同时,R4和R5阶段增加了相应的 接口。 各版本发展的情况: ●–R99:标准已完成,已商用  功能冻结:1999.12,商用版本:2001.6  基于2.5G网络结构,电路域基于传统的TDM ●–R4:标准已完成,已商用  功能冻结:2001.3  采用软交换技术,控制与承载(TDM/ATM/IP)分离  引入TD-SCDMA ●–R5:标准已完成  功能冻结:2002.6 引入多媒体域(IMS)和无线新技术HSDPA

WNC_100_C1 WCDMA核心网原理及关键技术 1.2 UMTS系统网络结构 1.2.1 UMTS网络子系统的划分 从网元功能上将UMTS系统分为无线网络子系统和核心网子系统两部分介绍,结构图 见下图。 下面UMTS网络结构是基于R99的,UE、UTRAN和CN构成了完整的UMTS网络 (UE在图中未体现),从规范的角度来看,CN侧网元实体沿用了GSM/GPRS的定义, 这样可以实现网络的平滑过渡;而无线侧UTRAN则基于WCDMA技术的R99定义, 其变化是革命性的。 图 1.2-1 UMTS系统网络结构图 此外,UMTS网络的规范是按R99---R4---R5阶段演进的,上图是基于R99系列规范 描述的网络结构,在R4/R5阶段的规范制定中,核心网的网元的定义接口发生了变化。 1.2.2 UMTS R99网络基本构成 UMTS R99网络基本构成如下图所示。 核心网分为电路域(CS)和分组域(PS),电路域基于GSM Phase2+的电路核心网的 基础上演进而来,网络单元包括移动业务交换中心(MSC)、访问位置寄存器(VLR)、 网关移动业务交换中心(GMSC),分组域基于GPRS核心网的基础上演进而来,网络

12种无线接入方式

12种无线接入方式 伴随着互联网的蓬勃发展和人们对宽带需求的不断增多,原来羁绊人们手脚单一、烦人的电缆和网线接入已经无法满足人们对接入方式的需要。这时,因势而起的另一种联网方式消然走入了人们视线,并在新旧世纪交替过程中演绎着一场“将上网进行到底”的运动,这就是无线接入技术。借助无线接入技术,无论在何时、何地,人们都可以轻松地接入互联网。或许,未来的互联网接入标准也将在此诞生。本文特选出当前国内、国际上流行的一些无线接入技术,并对其进行一次大检阅,希望对大家今后选择无线接入方式有所帮助。 1、GSM接入技术 GSM是一种起源于欧洲的移动通信技术标准,是第二代移动通信技术。该技术是目前个人通信的一种常见技术代表。它用的是窄带TDMA,允许在一个射频?即…蜂窝??同时进行8组通话。GSM是1991年开始投入使用的。到1997年底,已经在100多个国家运营,成为欧洲和亚洲实际上的标准。GSM数字网具有较强的保密性和抗干扰性,音质清晰,通话稳定,并具备容量大,频率资源利用率高,接口开放,功能强大等优点。我国于20世纪90年代初引进采用此项技术标准,此前一直是采用蜂窝模拟移动技术,即第一代GSM技术(2001年12月31日我国关闭了模拟移动网络)。目前,中国移动、中国联通各拥有一个GSM网,GSM手机用户总数在1.4亿以上,为世界最大的移动通信网络。 2、CDMA接入技术 CDMA即code-divisionmultipleaccess的缩写,译为“码分多址分组数据传输技术”,被称为第2.5代移动通信技术。目前采用这一技术的市场主要在美国、日本、韩国等,全球用户达9500万。CDMA手机具有话音清晰、不易掉话、发射功率低和保密性强等特点,发射功率只有GSM手机发射功率的1?60,被称为“绿色手机”。更为重要的是,基于宽带技术的CDMA使得移动通信中视频应用成为可能。CDMA与GSM一样,也是属于一种比较成熟的无线通信技术。与使用Time-Divisi

空中接口技术

WCDMA的空中接口技术浅析 瞿水华 摘要:随着3G网络的走近,广大网络工作者面临新的挑战。与2G不同,3G 无线接入网采用CDMA技术,对大家来说是全新的概念。本文中,作者 根据自己对WCDMA无线接口关键技术的理解,,对扩频和加扰技术、上 下行链路、功率控制和RAKE接收等内容,向各位网络优化的同仁做简 要的介绍,抛砖引玉,希望能有助于读者对WCDMA无线接口技术的理解,未雨绸缪,为3G的到来做好充分准备。 关键词:WCDMA 扩频加扰传输信道物理信道比特符号功率控制 RAKE 接收 1无线接口协议结构 图1 UTRAN OSI MODEL 图1是WCDMA无线接入网(RAN)Un接口的协议结构图。无线接入网分成用户平面和控制平面,用户平面负责数据的传送而控制平面负责信令接续。

Un接口分成三个协议层:L1、L2和L3,分别对应于OSI参考模型的物理层、数据链路层和网络层,其中L2又被分为媒体接入控制协议(MAC)、无线链路控制协议(RLC),L3的最底层是无线资源控制(RRC),负责处理UE和RNC 之间的信令管理,并直接负责物理层的呼叫建立和释放等事务,它只存在控制平面。 无线接入承载(RAB)是在UE和核心网之间为UMTS提供支持QoS承载业务的连接分段,类似于GSM里根据话音或数据业务建立的手机到核心网的电路连接。每个RAB映射到一个或几个RB(Radio Bearer),而每个RB映射到不同的RLC。在UE和RNC之间,通过一个或几个逻辑信道在RLC对等实体之间通信。 关于Un口的信道分类将在第二节里细述。 二传输信道和物理信道 1 引入传输信道的意义 在WCDMA里,传输信道是按照数据在空中接口上传输的方式和特点来定义的,而逻辑信道是按照传输信息内容的类型来定义的,包含了用户数据和L3控制信令,将在后面介绍下行DPCCH和DPDCH的复用时会提到它的具体应用。 GSM系统将信道简单地分为逻辑信道和物理信道,这里多出了一个传输信道的概念。逻辑信道是一个抽象的概念,由于在高层协议中,控制信息和业务信息是分别由不同的实体处理的,而对于一个用户来说,在进行业务通信的同时,必然传送着相关控制信息,就涉及到要将业务信息和控制信息通过

广东移动,WCDMA关键技术

WCDMA关键技术 广东移动通信有限责任公司企业发展部 200x-x-xx

WCDMA 关键技术 第一章 概述 本文是一篇讨论WCDMA 关键技术的文档。其中列出的功率控制、切换技术、负荷平衡、动态信道分配、准入控制、拥塞控制、动态AMR 调整等几个专题都是构成WCDMA 系统的空中物理层接口的核心技术。本文在对各关键技术原理进行介绍的基础上,还重点的分析了这些关键技术所涉及到的一些参数的设置问题。希望能通过本文,对公司未来的WCDMA 网络建设有所帮助。 第二章 功率控制 一、技术描述 1、 上行开环功率控制 1.1 PRACH 信道 对于PRACH 信道的功率控制主要是由UE 根据UTRAN 侧配置的参数进行计算, PRACH 前缀的初始发射功率的计算公式如下: Preamble_Initial_Power = Primary CPICH TX power – CPICH_RSCP + UL interference + Constant V alue (3.1.1.1-1) 其中: Primary CPICH DL TX power :PCPICH 发射功率; CPICH_RSCP :UE 接收到的PCPICH 信号强度 UL interference :是上行干扰,通过系统信息广播给UE Constant V alue :是修正值 PRACH 的功率控制方式如下:当UE 发出前缀后,在规定的时间未收到NODEB 的应答,则UE 会在下一个发前缀的时刻把前缀的发射功率在前一个前缀功率的基础上再增加一个调整步长Power_Step 。PRACH 消息部分控制信道的发射功率就等于UE 发送的最后一个AP (收到nodeB 肯定的应答)的发射功率基础上增加P p-m 。PRACH 消息部分数据信道的发射功率可以根据UTRAN 侧为其配置的控制信道和数据信道的功率增益因子c β和d β来得到。 其中: Power Ramp offset :连续的两个前缀之间的功率偏差; Pp_m :消息部分控制信道和最后一个前缀之间的功率偏差 1.2 上行DPCH 信道 对于UE 来说,当建立DPCCH 时,UE 将按照以下功率水平启动上行内环功控:

无线接入解决方案

无线接入解决方案 篇一:成都阳城大厦无线接入网络解决方案 波迅WBS无线网络 Wi-Fi通信系统 成都阳城大厦 无线网络接入解决方案 目录 第一章概述 ................................................ ................................................... ...................................... - 2 - 商务中心无线网络 ................................................ ................................................... ................. - 2 - 厂商介绍 ................................................ ................................................... ................................. - 2 - 项目概况 ................................................ ...................................................

................................. - 3 - 第二章项目需求分析 ................................................ ................................................... .................... - 5 - 项目需求分析 ................................................ ................................................... ......................... - 5 - 方案设计 ................................................ ................................................... ................................... - 5 - 第三章工程实施配套要求 ................................................ ................................................... .......... - 10 - 设备安装方式 ................................................ ................................................... ....................... - 10 - 接

12种无线接入技术类型全介绍

12种无线接入技术类型全介绍 无线发展,离不开无线技术的进步。那么我们现在的无线接入技术都有哪些呢?有些技术我们还在使用,有些已经渐渐淡出了我们的视野。那么,就让我们一起来归纳下这些无线接入技术类型吧。 无线接入技术类型1.GSM接入技术 GSM是一种起源于欧洲的移动通信技术标准,是第二代移动通信技术?该技术是目前个人通信的一种常见技术代表?它用的是窄带TDMA,允许在一个射频即“蜂窝"同时进行8组通话?GSM是1991年开始投入使用的?到1997年底,已经在100多个国家运营,成为欧洲和亚洲实际上的标准?GSM数字网具有较强的保密性和抗干扰性,音质清晰,通话稳定,并具备容量大,频率资源利用率高,接口开放,功能强大等优点?我国于20世纪90年代初引进采用此项技术标准,此前一直是采用蜂窝模拟移动技术,即第一代GSM技术(2001年12月31日我国关闭了模拟移动网络)?目前,中国移动?中国联通各拥有一个GSM网,GSM手机用户总数在1.4亿以上,为世界最大的移动通信网络? 无线接入技术类型2.CDMA接入技术 CDMA即code-division multiple access 的缩写,译为“码分多址分组数据传输技术",被称为第2.5代移动通信技术?CDMA手机具有话音清晰?不易掉话?发射功率低和保密性强等特点,被称为“绿色手机"?更为重要的是,基于宽带技术的CDMA使得移动通信中视频应用成为可能?CDMA与GSM一样,也是属于一种比较成熟的无线通信技术?与使用Time-Division Multiplexing 技术的GSM不同的是,CDMA并不给每一个通话者分配一个确定的频率,而是让每一个频道使用所能提供的全部频谱?因此,CDMA数字网具有以下几个优势:高效的频带利用率和更大的网络容量?简化的网络规划?通话质量高?保密性及信号覆盖好,不易掉话等?另外,CDMA系统采用编码技术,其编码有4.4亿种数字排列,每部手机的编码还随时变化,这使得盗码只能成为理论上的可能? 无线接入技术类型3.GPRS接入技术

WCDMA下行分集技术

摘要众所周知WCDMA系统中在上行采用了分集接收技术,实际上在下行也采用了分集技术即称为下行发射分集技术。文章对下行发射分集技术的种类及原理进行了阐述,并对采用不同的发射分集技术的效果进行了定量的分析总结。 由于无线传播环境的恶劣,在蜂窝移动通信中,基站的发射信号往往是经过多次反射、散射和折射才到达移动台的接收端的。这样很容易就造成了信号的多径衰落。在衰落环境中,多天线分集技术可以有效地改善无线通信系统的性能。在3G系统中,多天线的发射分集是一个非常重要的关键技术。信号通过多个空间上分开足够远的天线发射出去,实现空间分集。天线之间的间隔足够远,可以保证每个天线发射出去的信号经过信道后所遭受的衰落是不相关的。WCDMA系统使用了开环和闭环发射分集技术。 一、开环发射分集 在WCDMA系统使用了两种开环发射分集方案,分别是空分发送分集(STTD)和时间切换发射分集(TSTD)。 空分发送分集(STTD)是将在非分集模式下进行信道编码、速率匹配和交织的数据流在4个连续的信道比特块中使用STTD编码。STTD 编码方式如下图所示。空分发送分集(STTD)除了同步信道(SCH)以外均可使用。 图1 STTD编码方式 时间切换发射分集(TSTD)是根据时隙号的奇、偶,在两个天线上交替发送基本同步码和辅助同步码。例如奇时隙时用第1个天线发送,偶时隙则用第2个天线发送。采用TSTD,在移动台中可以很简单地获得与最大比值合并相当的效果,大大提高了用户端正确同步的概率,并缩短了同步搜索时间。时间切换发射分集(TSTD)专用于同步信道SCH。 二、闭环发射分集 专用物理控制信道(DPCCH)和专用物理数据信道(DPDCH)共同组成的专用物理信道,经扩频/扰码后被天线的特定复数加权因子W1和W2加权处理(加权因子由UE决定),用户设备根据接受到的下行公共导频信道(CPICH)的某个时隙来估计各发送天线的信道响应。闭环发射分集的结构如下图所示。 图2 闭环发射分集示意图 闭环模式发射分集关键是加权因子的计算,按加权因子计算方法不同分为两种模式:模式一采用相位调整量,两个天线发射DPCCH 的专用导频符号不同(正交);模式二采用相位/幅度调整量,两个天线发射DPCCH的专用导频符号相同。 (1)闭环发射分集模式一 在用户端,若对应的时隙号为奇,则第二个天线的信道响应先旋转90度再计算,若时隙号为偶则不旋转。基站端则实际使用相邻的且处于不同旋转集的两个时隙所对应的相位调整量,进行第二个天线的相位调整。当信道变化速率较低时,本模式实际可起到2 bit反馈控制的效果,而当信道变化速率较大时,也有一定的平滑作用。

WCDMA技术简析

WCDMA技术简析 随着社会的发展,人们对通信业务种类和数量需求的剧增已不再满足于使用第二代系统。于是,一种能够提供全球漫游,支持多媒体业务且具有足够容量的第三代移动通信系统就应运而生了。第三代移动通信系统是一种能提供多种类型、高质量的多媒体业务,能实现全球无缝覆盖,具有全球漫游能力,与固定网络相兼容,并以小型便携式终端在任何时候、任何地点进行任何种类的通信系统。 3G的三大主流国际标准包括:WCDMA、CMDA2000和TD-SCDMA。移动通讯系统的演进如图所示,本文将主要对WCDMA技术进行解析和介绍。 WCDMA(Wideband Code Division Multi Access)简介 WCDMA由欧洲标准化组织3GPP 所制定,由于它的物理层具有同时支持不同类型业务的能力,因此受全球标准化组织、设备制造商器件供应商运营商的广泛支持,将成为未来3G 的主流体制。 WCDMA全称为宽带码分多址接入,每个载频的所有用户共享频率、时间、功率资源,用户之间只依靠特征码来区分。其核心网基于GSM/GPRS 网络的演进,保持与GSM/GPRS 网络的兼容性。核心网络可以基于TDM 、ATM和IP 技术,并向全IP 的网络结构演进。核心网络逻辑上分为电路域和分组域两部分,分别完成电路型业务和分组型业务。 WCDMA系统基本特性包括:采用宽带CDMA技术,带宽为5MHZ;物理层可灵活的在单载波上传输各种速率的数据;多用户检测技术;传输分集技术;自适应天线技术;RAKE接收机技术。 WCDMA与TD-SCDMA、CDMA2000的技术参数的比较下图所示:

WCDMA与其他两个标准相比,有其自身的技术优势: 1、在利用CDMA技术方面,在小区复用系数、利用多径能力、可变扩频增益、软切换及软容量方 面较好; 2、在同步方面,WCDMA不需要小区同步; 3、在功率控制方面,WCDMA采用“开环+自适应闭环功率控制”,提高了功率控制的速度,可 抵消一般的快衰落; 4、系统容量和覆盖方面,从单载扇小区容量来看,WCDMA容量最大,拥有60个语音信道, CDMA2000拥有30个语音信道,TD-SCDMA为24个语音信道;从系统覆盖范围看,WCDMA 和cdma2000较TD-SCDMA系统更具优势,覆盖半径更大; WCDMA系统结构 UMTS (Universal Mobile Telecommunications System )通用移动通信系统是采用WCDMA 空中接口技术的第三代移动通信系统,通常也把UMTS系统称为WCDMA通信系统。UMTS系统采用了与第二代移动通信系统类似的结构,包括无线接入网络(Radio Access Network ,RAN)和核心网络(Core Network ,CN)。其中无线接入网络用于处理所有与无线有关的功能,而CN处理UMTS 系统内所有的话音呼叫和数据连接,并实现与外部网络的交换和路由功能。CN从逻辑上分为电路交换域(Circuit Switched Domain, CS )和分组交换域(Packet Switched Domain, PS ),电路域为用户提供“电路型业务”或提供相关信令连接,而分组域则为用户提供“分组型数据业务”。UTRAN 、CN

固定无线接入技术

5. 固定无线接入技术 5.1 引言 无线接入在接入网中的地位日趋重要,无线接入无需铺线、组网快捷灵活,接入自由;根据用户终端的可移性,无线接入分为固定无线接入和移动无线接入;固定无线接入开始用于密集住宅小区,对其他接入技术提出了挑战;固定无线接入是新运营商进军接入网市场的一个切入点。 5.2 固定无线接入概述 用户终端到网络节点交换机之间的传输设施,部分或全部采用无线传输称为无线接入。用户终端位置固定的无线接入称为固定无线接入。 固定无线接入的特点是:用户终端不具备移动性;对某一特定地域的固定用户提供接入;没有越区切换和漫游的功能;工作频率高,在微波波段;提供高的传输容量和多业务; 5.2.1 典型的固定无线接入技术 1. LMDS(Local Multipoint Distribute Service) 覆盖3-5km,向密集小区或大厦提供高速无线接入 2. MMDS(Multichannel Multipoint Distribute Service) 覆盖约50km,向城郊的分散用户提供无线接入 3. 高轨卫星接入 典型的为DBS(Direct Broadcast Satellite),覆盖广阔的地域,为偏远地区的用户提供无线接入。 5.2.2 固定无线接入网基本结构 一般采用有中心的结构,中心站称为基站;中心站控制所有用户站的接入,同时接入有线网;所有用户站之间不能直接通信,必须通过基站转发。如图5-1所示。 图5-1 固定无线接入网基本结构 5.2.3 固定宽带无线接入标准 固定宽带无线接入标准802.16的发展概况如下: 1. 80 2.16工作组1999年成立,制定本地/城域固定宽带无线接入标准。分为3个小组:802.16.1小组:10 GHz~66GHz 频带无线接口开发;802.16.2小组:宽带无线接入系统的共存;802.16.3小组:2GHz~11GHz频带无线接口开发。 2. 2001年12月802.16标准发布(10 ~66GHz)。 3. 2003年1月802.16a标准发布(2~11GHz )。 4.WiMAX联盟,WiMAX(World Interoperability for Microwave Access)推动802.16系列标准产品的应用及802.16产品的互连互通测试和认证。 5. 802.16e研究802.16用户在不同基站之间切换。

WCDMA第三代无线通信系统无线技术介绍-1

一、前言 属于第三代无线通信技术的WCDMA服务之所以可以提供更高的频宽,以符合各式多媒体与无线宽频需求,所注重的一点就是它比原来的第二代GSM无线通信系统来说,大幅改进了无线部分的多工技术,使得我们可以在有限的无线通信频带中,透过更新的无线传输技术来提供更为丰富与大量的使用者资料。 我们都知道,3GPP R99核心网络与GSM/GPRS核心网络是可以存在同一个架构下的,主要的原因还是在于可以保有GSM/GPRS系统业者原有的投资,并且沿用了现在最为稳定的核心网络架构,减少系统过渡到3G通信系统时,所产生的诸多相容问题。不过在无线通信接收端的部分,可就没有这么容易解决了,WCDMA所采用的无线通信多工技术与GSM/GPRS完全不相同,也就是说虽然他们可以共用相同的核心网络设备,不过在无线通信的接收端技术,彼此就是差异相当大的部分,因此希望通过本文的介绍,可以让各位真正的了解这些技术上的不同差异。 二、无线网络Cell的概念 如图一所示,在无线网络的环境中,我们会通过基地台来传送与接收使用者手持设备的资料,不过无线网络的资源是有限的,在有线的网络环境中,如果我们需要更多的频宽,可以通过更多的物理线路来提升两端点的可用频宽,可是无线网络的环境里,因为实际的传输媒介为我们生活的空间,而这部分的资源并不会因为我们需要更多的频宽而增加。

图一,无线网络Cell覆盖的示意图 因为这样的因素,所以每个基地台无线电所覆盖的范围就需要经过适当的考虑。例如:如果在一个认可稠密的区域,每一个无线电所覆盖的范围就要缩小,这样在同一个区域中,就可以建构一个以上的基地台无线通信区域,如此就可以增加该区域可容纳的使用者数目。相对的,如果我们把一个基地台无线电所覆盖的范围加大,那样在这个大区域范围中,所能接受的使用者数目,就仅限于一个基地台无线通信范围中,所能接受的人数了。 三、FDMA、TDMA、CDMA与SDMA 以目前常用的无线通信多工技术来说,我们可以大略的把各种技术区分为四类。FDMA(Frequency Division Multiple Access) 如图二所示,FDMA主要是通过切割许多小的无线通信频带,而每个无线通信频带都属于一个专属的使用者来传输资料,通过这样的方式我们可以在一个大的频带范围中,切割出许多小的频带,让多个使用者可以同时传输资料。

wcdma技术简介

WCDMA技术简介 一.通信系统概述 第一代移动通信系统是模拟制式的蜂窝移动通信系统,时间是本世纪七十年代中期至八十年代中期,1978年美国贝尔实验室研制成功先进移动电话系统AMPS,建成了蜂窝式移动通信系统。其它工业化国家也相继开发出蜂窝式移动通信网。这一阶段相对于以前的移动通信系统,最重要的突破是贝尔实验室在七十年代提出的蜂窝网的概念,蜂窝网,即小区制,由于实现了频率复用,大大提高了系统容量。 第一代移动通信系统的典型代表是美国的AMPS系统(先进移动电话系统)和后来的改进型系统TACS (总接入通信系统)等。AMPS使用800MHz频带,在北美、南美和部分环太平洋国家广泛,使用TACS使用900MHz频带,分ETACS(欧洲)和NTACS(日本)两种版本,英国、日本和部分亚洲国家广泛使用此标准。 第一代移动通信系统的主要特点是采用频分复用FDMA 模拟制式,语音信号为模拟调制,每隔30kHz/25kHz一个模拟用户信道。第一代系统在商业上取得了巨大的成功,但是其弊端也日渐显露出来: (1)频谱利用率低 (2) 业务种类有限 (3) 无高速数据业务 (4) 保密性差易被窃听和盗号 (5) 设备成本高 (6) 体积大重量大 第二代数字蜂窝移动通信系统的典型代表是美国的DAMPS系统、IS-95和欧洲的GSM系统。GSM(全球移动通信系统)发源于欧洲,它是作为全球数字蜂窝通信的TDMA标准而设计的,支持64kbit/s的数据速率,可与ISDN互连。GSM使用900MHz频带,使用1800MHz频带的称为DCS1800。GSM采用FDD双工方式和TDMA多址方式,每载频支持8个信道,信号带200kHz ,GSM标准体制较为完善,技术相对成熟,不足之处是相对于模拟系统其容量增加不多,仅仅为模拟系统的两倍左右,无法和模拟系统兼容。 DAMPS(先进的数字移动电话系统)也称IS-54(北美数字蜂窝),使用800MHz频带,是两种北美数字蜂窝标准中推出较早的一种,使用TDMA多址方式。 IS-95是北美的另一种数字蜂窝标准,使用800MHz或1900MHz频带,使用CDMA多址方式,已成为美国PCS 个人通信系统网的首选技术。 由于第二代移动通信以传输话音和低速数据业务为目的,从1996年开始,为了解决中速数据传输问题,又出现了2.5代的移动通信系统,如GPRS和IS-95B。 CDMA系统容量大。相当于模拟系统的10~20倍,与模拟系统的兼容性好。美国、韩国、香港等地已经开通了窄带CDMA系统,对用户提供服务。由于窄带CDMA技术比GSM成熟晚等原因,使得其在世界范围内的应用远不及GSM ,国内有北京、上海、广州、西安四地的窄带CDMA系统在运行。但从发展前景看,由于自有的技术优势,CDMA技术已经成为第三代移动通信的核心技术。 移动通信现在主要提供的服务仍然是语音服务以及低速率数据服务。由于网络的发展,数据和多媒体通信有了迅猛的发展势头,所以第三代移动通信的目标就是宽带多媒体通信。 第三代移动通信系统是一种能提供多种类型、高质量的多媒体业务,能实现全球无缝覆盖,具有全球漫游能力,与固定网络相兼容,并以小型便携式终端在任何时候、任何地点进

无线接入网安全技术规范详解

无线接入网安全技术规范详解 无线接入网的应用已经非常普及,这里我们主要介绍无线接入网安全技术规范,包括介绍Wi-Fi保护无线接入网(WPA)等方面。现在,无线接入网越来越普及了,但无线接入网的安全性也变得岌岌可危。为保护个人隐私,无线上网安全的意识也需增强。说说无线上网安全的规范,有助于新手以后用到。到底无线安全有哪些规范,下面详尽的讲解。 服务集标识符(SSID) 通过对多个无线接入网点AP(Access Point)设置不同的SSID,并要求无线工作站出示正确的SSID 才能访问AP,这样就可以允许不同群组的用户接入,并对资源访问的权限进行区别限制。因此可以认为SSID 是一个简单的口令,从而提供一定的安全,但如果配置AP向外广播其SSID,那么安全程度还将下降。由于一般情况下,用户自己配置客户端系统,所以很多人都知道该SSID,很容易共享给非法用户。目前有的厂家支持"任何(ANY)"SSID方式,只要无线工作站在任何AP范围内,客户端都会自动连接到AP,这将跳过SSID安全功能。 物理地址过滤(MAC) 由于每个无线工作站的网卡都有唯一的物理地址,因此可以在AP中手工维护一组允许访问的MAC地址列表,实现物理地址过滤。这个方案要求AP 中的MAC地址列表必需随时更新,可扩展性差;而且MAC地址在理论上可以伪造,因此这也是较低级别的授权认证。物理地址过滤属于硬件认证,而不是用户认证。这种方式要求AP中的MAC地址列表必需随时更新,目前都是手工操作;如果用户增加,则扩展能力很差,因此只适合于小型网络规模。 连线对等保密(WEP) 在链路层采用RC4对称加密技术,用户的加密密钥必须与AP的密钥相同时才能获准存取网络的资源,从而防止非授权用户的监听以及非法用户的访问。 WEP提供了40位(有时也称为64位)和128位长度的密钥机制,但是它仍然存在许多缺陷,例如一个服务区内的所有用户都共享同一个密钥,一个用户丢失钥匙将使整个网络不安全。而且40位的钥匙在今天很容易被破解;钥匙是静态的,要手工维护,扩展能力差。目前为了提高安全性,建议采用128位加密钥匙。 Wi-Fi保护无线接入网(WPA) WPA(Wi-Fi Protected Access)是继承了WEP基本原理而又解决了WEP缺点的一种新技术。由于加强了生成加密密钥的算法,因此即便收集到分组信息并对其进行解析,也几乎无法计算出通用密钥。其原理为根据通用密钥,配合表示电脑MAC地址和分组信息顺序号的编号,分别为每个分组信息生成不同的密钥。然后与WEP一样将此密钥用于RC4加密处理。通过这种处理,所有客户端的所有分组信息所交换的数据将由各不相同的密钥加密而成。无论收集到多少这样的数据,要想破解出原始的通用密钥几乎是不可能的。WPA还追加了防止数据中途被篡改的功能和认证功能。由于具备这些功能,WEP中此前倍受指责的缺点得以全部解决。WPA不仅是一种比WEP更为强大的加密方法,而且有更为丰富的内涵。作为802.11i标准的子集,WPA包含了认证、加密和数据完整性校验三个组成部分,是一个完整的安全性方案。 国家标准(WAPI)

WCDMA 系统的调制技术

?移动通信? WCDMA系统的调制技术 蒲迎春 吴晓文 (深圳中兴通讯股份有限公司 518004) 摘要 介绍第三代移动通信WCDMA系统的调制技术,包括QPSK调制和解调的基本原理,以及WCDMA系统的调制方式。分析了在实际应用中多普勒频偏和频率稳定度对调制性能的影响,并简要介绍了调制、解调的实现方法。 关键词 WCDMA QPSK 调制 解调 Abstract The modulation technology of the third generation mobile WCDMA sys2 tem including the QPSK is introduced in this paper,including the QPSK.We also analysize the impacts on the system capabilities caused by Doppler frequency shift and its own frequency stability. K eyw ords WCDMA QPSK modulation demodulation 数字调制/解调技术是数字移动通信系统空中接口的重要组成部分。在不同的应用环境中,移动通信信道将呈现不同的衰落特性。调制使数据信息与信道特性相匹配,以便有效地发送和接收数据信息。高效调制方式一直是移动通信研究的重要课题。 数字系统的两个基本资源是发射功率和信道带宽。通信系统的设计应尽可能有效利用这两个资源,这对于第三代移动通信系统尤其重要。第三代移动通信系统具有宽带、综合业务、全球范围高度一致性、高质量、高度灵活的特性,基本上从下列几方面对其无线传输技术(R TT)进行评价:频谱效率、技术复杂性/经济性、质量、灵活性、优选准则、对网络接口的影响、手持机能力和覆盖/功率效益。特别是对调制技术,要求频谱效率高和误码率低。 IM T22000R TT的两个主流方案是WCDMA和CDMA2000。WCDMA的数据调制方式为BPSK(上行)和QPSK(下行),扩频调制采用HPSK(上行)和QPSK(下行)。CDMA2000的数据调制采用BPSK(上行)和QPSK(下行);扩频调制方式为BPSK(上行)和QPSK(下行)。本文主要讨论QPSK调制方式。 图1 QPSK调制原理 1 QPSK调制原理和性能 1.1 QPSK数字调制原理 QPSK基本原理见图1。输入比特流D (n)以1/T速率进入调制器输入端,作串/并转换,映射为两组数据I(k)、Q(k)=±1,速率为1/2T,经正交调制后得调制输出S(t)。 在QPSK中,I(k)和Q(k)比特流排列一致,载波相位只能在2T时间内变化一次。

无线接入过程

无线接入过程三个阶段(MAC层) STA(工作站)启动初始化、开始正式使用AP传送数据帧前,要经过三个阶段才能够接入(802.11MAC层负责客户端与AP之间的通讯,功能包括扫描、接入、认证、加密、漫游和同步等功能):1)扫描阶段(SCAN) 2)认证阶段(Authentication) 3)关联(Association) 7.1 Scanning 802.11 MAC 使用Scanning来搜索AP,STA搜索并连接一个AP,当STA漫游时寻找连接一个新的AP,STA会在在每个可用的信道上进行搜索。 1)Passive Scanning(特点:找到时间较长,但STA节电)通过侦听AP定期发送的Beacon帧来发现网络,该帧提供了

AP及所在BSS相关信息:“我在这里”… 2)Active Scanning (特点:能迅速找到) STA依次在13个信道发出Probe Request帧,寻找与STA所属有相同SSID的AP,若找不到相同SSID的AP,则一直扫描下去.. 7.2 Authentication 当STA找到与其有相同SSID的AP,在SSID匹配的AP中,根据收到的AP信号强度,选择一个信号最强的AP,然后进入认证阶段。只有身份认证通过的站点才能进行无线接入访问。AP提供如下认证方法: 1)开放系统身份认证(open-system authentication) 2)共享密钥认证(shared-key authentication) 3)WPA PSK认证(Pre-shared key) 4)802.1X EAP认证 7.3 Association

无线接入技术概述

无线接入技术概述 前言 伴随着通信的飞速发展和电话普及率的日益提高,在人口密集的城市或位置偏远的山区安装电话,在铺设最后一段用户线的时候面临着一系列难以解决的问题:铜线和双绞线的长度在4-5公里的时候出现高环阻问题,通信质量难以保证:山区、岛屿以及城市用户密度较大而管线紧张的地区用户线架设困难而导致耗时、费力、成本居高不下。为了解决这个所谓的“最后一英(公)里”的问题,达到安装迅速、价格低廉的目的,作为接入网技术中的一个重要部分――无线接入技术便应运而生了。 无线接入系统的结构及功能 无线接入是指从交换节点到用户终端之间,部分或全部采用了无线手段。典型的无线接入系统主要由控制器、操作维护中心、基站、固定用户单元和移动终端等几个部分组成。各部分所完成的功能如下。 。 1.控制器 控制器通过其提供的与交换机、基站和操作维护中心的接口与这些功能实体相连接。控制器的主要功能是处理用户的呼叫(包括呼叫建立、拆线等)、对基站进行管理,通过基站进行无线信道控制、基站监测和对固定用户单元及移动终端进行监视和管理。 2.操作维护中心 操作维护中心负责整个无线接入系统的操作和维护,其主要功能是对整个系统进行配置管理,对各个网络单元的软件及各种配置数据进行操作:在系统运转过程中对系统的各个部分进行监测和数据采集;对系统运行中出现的故障进行记录并告警。除此之外,还可以对系统的性能进行测试。3.基站 基站通过无钱收发信机提供与固定终接设备和移动终端之间的无线信道,并通过无线信道完成话音呼叫和数据的传递。控制器通过基站对无线信道进行管理。基站与固定终接设备和移动终端之间的无线接口可以使用不同技术,并决定整个系统的特点,包括所使用的无线频率及其一定的适用范围。 4.固定终接设备 固定终接设备为用户提供电话、传真、数据调制解调器等用户终端的标准接口――Z接口。它与基站通过无线接口相接。并向终端用户透明地传送交换机所能提供的业务和功能。固定终接设备可以采用定向天线或无方向性天线,采用定向天线直接指向基站方向可以提高无线接口中信号的传输质量、增加基站的覆盖范围。根据所能连接的用户终端数量的多少;固定终接设备可分为单用户单元和多用户单元。单用户单元(SSU)只能连接一个用户终端;适用于用户密度低、用户之间距离较远的情况;多用户单元则可以支持多个用户终端,一般较常见的有支持4个、8个、16个和32个用户的多用户单元,多用户单元在用户之间距离很近的情况下(比如一个楼上的用户)比较经济。 5.移动终端 移动终端从功能上可以看作是将固定终接设备和用户终端合并构成的一个物理实体。由于它具备一定的移动性,因此支持移动终端的无线接入系统除了应具备固定无线接入系统所具有的功能外,还要具备一定的移动性管理等蜂窝移动通信系统所具有的功能。如果在价格上有所突破,移动终端会更受用户及运营商的欢迎。 无线接入系统的接口 无线接入系统中的各个功能实体通过一系列接口相互连接,并通过标准的接口与本地交换机和用户终端相互连接。在无线接入系统中最重要的两个接口是控制器与交换机之间的接口和基站与固

LTE无线接入:概述

第14章L TE无线接入:概述 上一章从总体上讨论了LTE的设计目标,很明显LTE的性能目标很宏伟。这一章我们介绍LTE最重要的一些组成部分和一些特征,而第15到17章将从整体上更加详细地讨论LTE的无线接入,尤其是一些关键特征。 为了满足第13章中提出的要求,在LTE发展的同时, 3GPP整体架构也在演进。这项工作被叫做系统架构演进(SAE),在第18章中我们将给出介绍SAE和SAE的设计原则。 14.1 传输方案:下行采用OFDM,上行采用SC-FDMA LTE下行传输方案基于OFDM。在第4章已经讨论过,下行传输方案中,OFDM技术比较具有吸引力,原因有很多。由于OFDM每个码元时间较长,结合循环前缀,所以OFDM有较强的对抗信道频率选择性的特性。当然,从原则上讲,可以通过接收方的均衡技术来对抗由于信道频率选择性引起的信号衰减,但是,对于一个5MHz以上带宽的终端,均衡的复杂度太高。因此,当有频率选择性衰落时,OFDM以其固有的健壮性,尤其是结合空分复用技术,对下行链路有极大的吸引力。a OFDM还有一些优点: 相比于HSPA,OFDM提供从频域上的接入,因此可以给信道依赖的调度增加了一个自由度 至少从基带的角度看,OFDM可以通过改变子载波数目以改变传输带宽,因此可以支持灵活的带宽分配。然而我们要知道,在基带上能支持多频谱段的分配,那么在RF上也就需要更加灵活的滤波能力,而确切的传输方案无关紧要。但是,保持相同的基带处理结构,不论带宽多少,可以简化终端的实现。 在广播/多播传输中,多个基站传输相同的信息,它的传输方案也是OFDM LTE上行采用的是第15章中介绍的基于DFT-SOFDM的单载波传输方案。上行传输需要更低的峰均比,在这方面,采用单载波调制比多载波调制(如OFDM)更有优势。对于给定的功率放大器,传输信号的峰均比越低,就意味着平均传输功率越高。单载波的低峰均比使得功放效率更高,意味着覆盖范围的增加。这对功率受限的终端显得尤为重要。相对于终端的信号处理资源受限很多,基站受限是较少的,因此,基站做针对信道频率选择性衰落的频域均衡,相对来说不成问题。 作为对比,WCDMA/HSPA的上行是采用非正交的单载波传输,而LTE的上行是采用正交的单载波传输,而且时域和频域资源都能正交地划分给不同用户。这样的正交划分在很多情况下避免了小区间干扰。然而,正如15章讨论的那样,如果把全部传输带宽都分配给一个用户,这种策略效率会很低,因为有些情况下数据率主要受限于传输功率而不是传输带宽。在这种情况下,通常分配带宽的一部分给这个用户,而余下的频谱资源可以分配给其他用户。因此,LTE上行还多了一个频域多址的部分。有时LTE上行的这种传输方案也叫做单载波FDMA(SC-FDMA) 14.2 信道依赖的调度和速率匹配 LTE方案中最核心的是“共享信道传输”,在共享信道中,用户之间动态地分配时频资源。这与HSDPA采用的思想很类似,只是两者对共享资源的实现上不一样:LTE是时域和频域,而HSDPA是时域和信道码。使用共享信道传输很好的匹配了分组数据对快速资源分配的要求,而且也使得LTE的其他关键技术成为可能。

无线接入技术

无线接入技术 无线接入技术(也称空中接口)是无线通信的关键问题。它是指通过无线介质将用户终端与网络节点连接起来,以实现用户与网络间的信息传递。无线信道传输的信号应遵循一定的协议,这些协议即构成无线接入技术的主要内容。无线接入技术与有线接入技术的一个重要区别在于可以向用户提供移动接入业务。 无线接入网是指部分或全部采用无线电波这一传输媒质连接用户与交换中心的一种接入技术。在通信网中,无线接入系统的定位:是本地通信网的一部分,是本地有线通信网的延伸、补充和临时应急系统。 无线接入系统可分以下几种技术类型: (1)模拟调频技术:工作在470MHz频率以下,通过FDMA方式实现,因载频带宽小于25KHz,其用户容量小,仅可提供话音通信或传真等低速率数据通信业务,适用于用户稀少、业务量低的农村地区。在超短波频率已大量使用的情况下,在超短波频段给无线接入技术规划专用的频率资源不会很多。因此,无线接入系统在与其他固定、移动无线电业务互不干扰的前提下可共用相同频率。 (2)数字直接扩频技术:工作在1700MHz频率以上,宽带载波可提供话音通信或高速率、图像通信等业务,其具有通信范围广、处理业务量大的特点,可满足城市和农村地区的基本需求。 (3)数字无绳电话技术:可提供话音通信或中速率数据通信等业务。欧洲的DECT、日本的PHS等技术体制和采用PHS体制的UT斯达康的小灵通等系统用途比较灵活,既可用于公众网无线接入系统,也可用于专用网无线接入系统。最适宜建筑物内部或单位区域内的专用无线接入系统。也适宜公众通信运营企业在用户变换频繁、业务量高的展览中心、证券交易场所、集贸市场组建小区域无线接入系统,或在小海岛上组建公众无线接入系统。 (4)蜂窝通信技术:利用模拟蜂窝移动通信技术,如TACS、AMPS等技术体制和数字蜂窝移动通信技术?如GSM、DAMPS、IS-95CDMA和正在讨论的第3代无线传输技术等技术体制组建无线接入系统,但不具备漫游功能。这类技术适用于高业务量的城市地区。

相关主题