搜档网
当前位置:搜档网 › m2m Traffic Characteristics(M2M交通特征)

m2m Traffic Characteristics(M2M交通特征)

Master of Science Thesis

Stockholm, Sweden 2009

A N D E R S O R R E V A D

When machines participate in communication

M2M Traffic Characteristics

K T H I n f o r m a t i o n a n d C o m m u n i c a t i o n T e c h n o l o g y

KUNGLIGA TEKNISKA H?GSKOLAN

Royal Institute of Technology Date: 01/12-2009

M2M Traffic Characteristics

When machines participate in communication

Anders Orrevad

Masters thesis

Examiner and academic advisor: Professor G. Q. Maguire Jr., KTH

Industrial advisor: Per Ljungberg M.Sc., Ericsson

Technical advisors: Jan Arwald, Hassan Alaoui, Vlasios Tsiatsis, Stefan Avesand

KUNGLIGA TEKNISKA H?GSKOLAN

Royal Institute of Technology Date: 01/12-2009

Abstract

Machine-to-machine, machine-to-man, or man-to-machine (M2M) communications is expected to grow very rapidly over the next few years with an anticipated 50 billion devices being connected to broadband connections by 2020 [35]. To be able to plan and dimension for the expected (increase) in data traffic it is important to have a model for the traffic that will flow through the network.

A concept often talked about in conjunction with M2M communications is the “Internet of things”, where billions of “smart” objects are connected to the Internet and can be easily shared and used or re-used by many applications. One sub-field of M2M communications is sensor/actuator networks that are installed in households, creating automated homes by enabling home appliances to talk to each other and to applications that can be running on hosts connected to the Internet. Such sensor/actuator networks extend the uses of home appliances into completely new and exciting applications, while also potentially making homes more energy efficient by smarter management and operation of these appliances.

The thesis was proposed by and carried out at Ericsson in Kista, Sweden during the summer and fall of 2009. The academic advisor was G. Q. Maguire Jr. of the Royal Institute of Technology (KTH) and industrial advisor was Per Ljungberg at Ericsson. This thesis has an industrial focus, specifically to produce models and prototypes that benefit Ericsson as a company and the Ericsson Connected Home project. This thesis has evaluated the available standards and designed, buildt, and evaluated a prototype application for one of these standards to operate with this home gateway. Additionally, the thesis should also benefit the academic world by offering tractable models for M2M traffic that have a foundation in reality, rather than solutions in search of a problem.

Keywords: M2M, WPAN, ZigBee, 6LoWPAN, Connected Home, home automation, traffic characteristics, 802.15.4, home gateway

Sammanfattning

Maskin-till-maskin, maskin-till-man, eller man-till-maskin (M2M) kommunikation f?rv?ntas v?xa mycket snabbt under de n?rmaste ?ren med f?rv?ntade 50 miljarder enheter anslutna till en bredbandsuppkoppling ?r 2020 [35]. F?r att kunna planera och dimensionera f?r den f?rv?ntade (?kningen) i datatrafik ?r det viktigt att ha en modell f?r den trafik som kommer att fl?da genom n?tverket.

Ett begrepp det ofta talas om i samband med M2M-kommunikation ?r " Internet of things ", d?r miljarder "smarta" objekt ?r anslutna till Internet och enkelt kan delas och anv?ndas p? nytt s?tt och av m?nga anv?ndare. En undergrupp inom M2M-kommunikation ?r sensor n?tverk som installeras i hush?ll, f?r att skapa automatiserade hem d?r hemelektroniken kan prata med andra apparater och program som k?rs p? datorer anslutna till Internet. S?dana sensorn?tverk utvidgar anv?ndningen av hush?llsapparater till helt nya och sp?nnande applikationer, samtidigt som det potentiellt g?ra bost?der mer energisn?la genom smartare f?rvaltning och drift av dessa apparater.

Detta examensarbete g?rs p? uppdrag av Ericsson i Kista, Sverige under sommaren och h?sten 2009. Akademisk r?dgivare ?r GQ Maguire Jr fr?n Kungliga Tekniska H?gskolan (KTH) och industriell r?dgivare ?r Per Ljungberg p? Ericsson. Examensarbetet har som industriellt fokus att tillverka modeller och prototyper f?r att modellera trafiken i Ericssons n?tverk. Examensarbetets akademiska v?rde ?r genom att erbjuda l?ttg?rliga modeller f?r M2M trafik som har en grund i verkligheten, snarare ?n l?sningar p? jakt efter ett problem.

Nyckelord: M2M, WPAN, ZigBee, 6LoWPAN, Connected Home, home automation, trafikkarakt?r, 802.15.4, home gateway

Acknowledgements

First and foremost I would like to thank my academic advisor and examiner Professor G. Q. Maguire Jr. for his through and constructive criticism and advice. Also I would like to thank my industrial advisor at Ericsson Per Ljungberg through which I received the thesis work. He has both given ample feedback himself and if not having the answers putting me in contact with the right people to further my work. Further acknowledgements go to Jan Arwald for his help with security concerns and business cases, Vlasios Tsiatsis for the tools given and tackling problems with the help of his engineering expertise and Stefan Avesand for giving me access to the Connected Home Gateway and all the support making work with the goals of my thesis. Also Fredrik and Niclas Luthman at TriTech for hardware support and technology reports, George Younan for his expert programming advice and lastly Dan Peterstr?m for letting me share an office at Ericsson with him and listening to my complaints and problems for 20 weeks.

Thank you,

Anders

Contents Abstract (i)

Acknowledgements (ii)

Contents (iii)

List of figures (v)

List of equations (vi)

List of Acronyms and Abbreviations (vii)

1Introduction (1)

1.1Overview (1)

2Background (3)

2.1Home Gateway Initiative (HGI) (3)

2.2Ericsson Connected Home (3)

2.2.1OSGi (4)

2.3The European Energy Challenge (4)

2.4Building Energy Watcher (BeyWatch) (4)

2.5Contiki (5)

2.6Wireless Personal Area Network (WPAN) standards (5)

2.6.1IEEE 802.15.4 (6)

2.6.1.1Frames (6)

2.6.1.2Headers (6)

2.6.26LoWPAN (6)

2.6.2.1Advantages of 6LoWPAN (7)

2.6.2.2Disadvantage of 6LoWPAN (7)

2.6.2.36LoWPAN compression (7)

2.6.2.4Application layers (8)

2.6.3ZigBee (8)

2.6.3.1Advantages of ZigBee: (9)

2.6.3.2Disadvantages of ZigBee: (10)

2.6.4Z-Wave (10)

2.6.4.1Advantages of Z-Wave: (10)

2.6.4.2Disadvantages of Z-Wave: (10)

2.6.5Bluetooth Low Energy (10)

2.6.5.1Advantages of Bluetooth LE: (10)

2.6.5.2Disadvantages of Bluetooth LE: (10)

2.7Conclusions regarding WPAN standards (11)

2.8Home gateways to WPANs (11)

2.8.1End-to-end security (11)

2.8.1.1IEEE 802.15.4 (13)

2.8.1.26LoWPAN (13)

2.8.1.3ZigBee (13)

2.8.1.4Access management and public-key cryptography (13)

2.8.2Aggregation (14)

2.8.3Implementations of standards (15)

iii

3Traffic characteristics (16)

3.1Parameterization of devices (16)

3.2Confidence interval and level (18)

3.3Traffic generation (18)

3.4Conclusions on traffic characteristics (18)

3.4.1What traffic patterns are observed? (21)

4Prototype (22)

4.1Use-cases (22)

4.1.1Water leak alert and response (22)

4.1.2House in sleep-mode (23)

5Theoretic traffic estimates (25)

5.1Common traffic patterns (25)

5.2Water leak alert and response (26)

5.3House in sleep mode (26)

5.4Automated home estimate (26)

6Hardware (29)

6.1Sensinode Development Kit (29)

6.2Sentilla Perk (29)

6.3Moteiv tmote sky (29)

7Connected home demo (30)

7.1Functional overview (31)

7.2Demonstration configurations (32)

7.2.1Demonstration setup A - Network initiated communication (32)

7.2.2Demonstration setup B – User initiated communication (33)

7.3Design choices (33)

8Conclusions (34)

8.1M2M traffic calculations (34)

8.2WPAN standards (35)

8.3Contiki (36)

8.4OSGi evaluation (36)

9Future work (37)

9.1KTH (37)

9.2Ericsson (37)

9.3Home automation partners (37)

References (38)

Appendix A - ZigBee/802.15.4 headers (40)

Appendix B – Modifications to run Contiki on a Connected Home Gateway Ubuntu 7.10 image (41)

Appendix C – Manual for Ericsson Connected Home Gateway demonstration use-cases (42)

Appendix D – SensorSky OSGi Bundle (43)

Appendix E – HttpSensor OSGi Bundle (44)

iv

List of figures

Figure 1 - BeyWatch Roadmap (5)

Figure 2 - Illustration of different operators needing their own security sphere for home automation (14)

Figure 3 – Implementing WPAN standards in an OSGi home gateway (15)

Figure 4: Illustration of interference experiment (20)

Figure 5 - Water leak alert and response (23)

Figure 6 - House in sleep-mode (going into sleep mode) (23)

Figure 7 - House in sleep-mode (waking up from sleep mode) (24)

Figure 8 – IEEE 802.15.4 Message sequence chart for association (26)

Figure 9 - Functional overview of demo setup (31)

Figure 10 - Layered overview of demo setup (32)

Figure 13 – ZigBee ZCL payload (40)

Figure 14 – ZigBee ZCL header (40)

Figure 15 – ZigBee APS header (40)

Figure 16 – ZigBee NWK header (40)

Figure 17 – 802.15.4 MAC header (40)

Figure 18 – 802.15.4 PHY frame (40)

Figure 19 - UML diagram of SensorSky bundle (43)

Figure 20 - UML diagram of httpSensor bundle (44)

v

List of equations

Equation 1 - Calculate the heartbeat traffic (18)

Equation 2 - Calculate the trigger traffic for non-alert type sensor devices (18)

Equation 3 – Calculate the trigger traffic for alert type sensor devices (18)

Equation 4 – Calculate the f threshold value for Equation 3 (18)

vi

List of Acronyms and Abbreviations

APN Access point name

CSCF Call Session Control Function

eCall Emergency call

3G Third generation of mobile telephony standards

6LoWPAN IPv6 Low Power PAN

CEMA Central Europe, Middle East and Africa

CHG Connected hHome Gateway

CLDC Connected Limited Device Configuration

DLNA Digital Living Network Alliance

ECC Elliptic Curve Cryptography

HIGA Home IMS Gateway

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IITB IMS in the box

IMS IP Multimedia Subsystem

IP Internet protocol

IPSO IP Smart Objects

IPTV Internet Protocol television

ISM Industrial, Scientific, and Medical

LAN Local Area Network

LTE Long Term Evolution

M2M machine-to-machine, machine-to-man, or man-to-machine communications MAN Metropolitan Area Network

ME Mobile Edition

MTU Maximum transmission unit

NAS Network attached storage

OEM Original Equipment Manufacturer

OMP Open Multimedia Platform

OSGi Open Services Gateway initiative

PAN Personal Area Networks

PDA Personal Digital Assistant

PKC Public-Key Cryptography

PPDU Protocol data unit

QoS Quality of Service

SAP Service Access Point

SDS Service Development Studio

SMS Short Message Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over IP

WAN Wide Area Network

WPAN Wireless Personal Area Network

vii

KUNGLIGA TEKNISKA H?GSKOLAN

Royal Institute of Technology Version: Beta Date: 16/10-2009

1Introduction

In this thesis, M2M communications refers to machine-to-machine, machine-to-man, or man-to-machine communications. These contexts all have a common element: machine interaction. Some examples of each of these categories are:

?Machine-to-machine without any human interaction, e.g. remote sensors sending measurements to a shared data collection server;

?Man-to-machine, e.g. a operator remotely configuring, supervising, and operating equipment; and ?Machine-to-man, e.g. a vehicle initiating a call with an emergency service if an accident occurs.

Unlike traditional telecommunications communication scenarios with information exchange between human operators communication with a machine on one or both sides may have different characteristics than traditional conversational telecommunications. This thesis project seeks to identify and understand some of these differences in traffic characteristics.

Although M2M has been around for more than 60 years in the form or telemetry and radio frequency identifiers, M2M is still in its infancy. However, M2M is expected to grow rapidly over the next five years, becoming a large commercial market. Some of the factors driving this growth are the desire for increased efficiency, increased safety, a desire to carry out proactive maintenance rather than repair, minimizing environmental impact, increased national security, and increased profits..Home automation is one area where M2M communication is a hot topic. By enabling home appliances to talk to each other, and to applications running on hosts connected to the Internet, we can facilitate the creation of some very interesting applications, while also making our homes more energy efficient by making these homes smarter. The most popular type of communication link for communication between devices in the home is low-power Wireless Personal Area Networks (WPANs). Characteristics of WPANs are Limited bandwidth, reach and processing power as well as constrained memory and storage space with the benefit being low energy consumption allowing years of operation on a single charge. These links have the advantage that they are wireless, low power, low cost, and do not require line of sight between the devices. There are many standards for WPAN being developed and in use.

Ericsson has in development a Home IMS Gateway (HIGA) as part of their Connected Home initiative [20]. The HIGA handles both the IMS signaling outside the home network and whatever signaling is needed inside the home in order to enable the user to remotely control network enabled devices (for example, to manage these devices from their mobile phone). For the Connected Home program to be a success, the HIGA should support one or more of the most popular WPAN standards in the market. Therefore, this thesis will evaluate the available standards and design, build, and evaluate a prototype application for one of these standards to operate with this home gateway.

It is important to emphasize that M2M in this thesis does not refer to “Mobile to Mobile” communication, although this is another common meaning for this acronym.

1.1Overview

This master thesis is part of a project to extract a model for “M2M Traffic Characteristics”. This project began by evaluating different WPAN standards in terms of their suitability for home automation. Their advantages and disadvantages were considered when selecting the most appropriate standard to be used in this project for a prototype home automation application. While all of these WPAN standards are interesting for the Ericsson Connected Home project, as the HIGA should be versatile and support many different configurations to be successful - this thesis project was carried out for a limited period of time, hence it was necessary to select one of these standards for use in this thesis project.

After selecting a standard and analyzing the specification, a theoretical model was created in order to calculate some of the important M2M traffic characteristics. From this model an even more generalized model was created that could apply to other WPAN standards, although the generalized model may need some modifications to account for application specific behavior.

The project has two major goals: the first is to design and implement a prototype that can be used to verify the traffic model, and the second goal is to interact with the Ericsson Connected Home group (as this group will focus on the implementation of the sensor/actuator networks). Measurements and analysis of the traffic characteristics of the prototype will be used to verify the traffic model and as necessary modifications were made to the model so that it better models the actual observed traffic.

The thesis background in Chapter 2 is divided into an introduction that describes the goals of the thesis project, a background study of prior work ,describing what has been done previously and what can be learned from it, and a survey of Wireless Personal Area Network (WPAN) standards that are used in existing products and an evaluation of these standards (relative to the thesis topic). Chapter 3 discusses how the traffic characteristics shall be modeled and how this model can be used to accurately predict interesting results meaning quantified numbers on sensor networks traffic patterns. Chapter 4 describes the prototype implementation that implements the proposed home automation use-cases. For each of the use-cases, Chapter 5 utilizes the parameterized model designed in this thesis to estimate the amount of traffic that will be produced in different sizes of automated homes. Chapter 6 describes the hardware that was used for the demonstration (described in Chapter 7). Chapters 8 and 9 present some conclusions and future work, respectively.

2Background

This chapter starts by summarizing related work in home automation and WPANs. It continues with a discussion of a number of different WPAN standards and their features. The chapter concludes with the selection of a standard that should be explored further in this thesis project (i.e., the standard that should be used to create a prototype).

2.1Home Gateway Initiative (HGI)

The Home Gateway Initiative (HGI) is a non-profit alliance of telecommunications companies that have come together to provide a forum where operators, content providers, service providers, and manufacturers can discuss home gateways. The primary goals of this initiative are to improve interoperability and functionality. The specific sub-goals of the initiative are:

“To produce requirements for a residential gateway enabling end-to-end delivery of services;

To work with manufacturers in order to leverage volumes, to validate against uses cases and requirements, in order to ensure interoperability; and

Build upon the existing standards and work of others (such as ITU H610, DSL forum, DLNA, OSGi Alliance ...) and to analyze gaps with respects to the requirements for home gateways.” [21]

2.2Ericsson Connected Home

Connected Home is Ericsson′s platform for making the home remotely accessible. The main product in this platform is the Home IMS Gateway (HIGA). Thus far the focus has been on accessing media content such as IPTV, VoIP, and remote storage i.e. network attached storage (NAS), but the possibility of enabling the gateway to communicate with other networks (e.g. WPANs) for home automation has also come up as an interesting feature. This development means that the Connected Home project and this thesis project have a common interest in WPANs and as such it makes sense that the prototype should be built around the Connected Home platform and its gateway.

Home Gateway

Water – Trigger sends alert to gateway which

sends message to home owner and tells the

actuator to turn off the water main

Temperature – Reports temperature to

gateway that regulates A/C or heating

Smoke/fire – Trigger makes gateway sound

the fire alarm, send a report to emergency

services along with temperature readings from all rooms, …

Sensors and triggers

Other uses: motion sensors, access control,

lighting, electrical appliances, remote controls etc.

2.2.1OSGi

The OSGi alliance (formerly the Open Services Gateway initiative) is an open standards organization that develops the OSGi specification. The alliance has specified a Java based platform that can be remotely managed with the core deliverable being a framework for application life cycle management, a service registry, an execution environment, and modules.

For OSGi you develop bundles. Bundles have OSGi specific code in them to be able to install, start, stop and update the bundle. The Activator class present in all OSGi bundles implements the start and stop functionality and registering of services making them visible to other bundles. The manifest for each bundle stores information about bundle properties such as name, version and export and import requirements.

An OSGi environment is more and more becoming a common addition to gateways. This is also true for the HIGA, as it will incorporate the OSGi environment. A result is that an implementation for sensor devices developed to run in the OSGi environment can be transferred relatively easily between different models and brands of home gateways. The OSGi environment could implement support for many different sensor network standards by having several specific standard drivers - as proposed in [36].

2.3The European Energy Challenge

The European Union (EU) has together with its member states defined clear goals and directives regarding energy politics and management to tackle the threats of climate change and to secure an energy supply for the future. The green house gas emissions are expected to increase 2% from the 1990 level by 2010 and 5% by 2030 [7]. The commission’s “An Energy Policy for Europe” [8] proposed a strategic energy plan to combat the energy and pollution threats of the EU. This plan states that by 2020 that green house gas emissions should be lowered 20% compared to the 1990 level and further to comply with the commission’s “Limiting Climate Change to 2°C - Policy Options for the EU and the World for 2020 and Beyond”[9] to lower global emissions 50% by 2050. One of the methods proposed in the European Strategic Energy Technology Plan (SET-plan) to achieving these goals is:

“Full liberalization and interconnection of energy systems, incorporating 'smart' information and communication technologies to provide a resilient and interactive (customers/operators) service network.”[7]

The above EU directives suggest that a prototype for energy management is highly interesting and in line with current energy politics and policies. Hence this will be one of the target applications of the prototype developed in this thesis to apply developed models.

2.4Building Energy Watcher (BeyWatch)

BeyWatch is a European research project supported by the European Commission under the seventh Framework Program. Using Information and Communication Technology (ICT) tools it focuses on environment and energy management. The scope of BeyWatch spans all the way from designing energy efficient white-goods such as dishwashers, refrigerators/freezers, and washing machines to utility companies being able to monitor energy consumption and scheduling operation of appliances to balance the load versus generating capacity (and its impact), thus saving energy and reducing cost for all parties involved.

Since its start in December 2008, BeyWatch has produced and published several white papers, specifications, and reports on the current market situation and other topics. These reports have been useful to this thesis project by providing background information concerning current market state and ideas for use-cases. However, they have not (yet) provided much technical knowledge. As the roadmap (Figure 1) shows, BeyWatch started in December 2008 and ends in June 2011 with the first implemented deliverables coming in 2010. We should be on the lookup for results from the BeyWatch Agent and M2M Communication Interface efforts, as these results become available during this thesis project.

Figure 1 - BeyWatch Roadmap [31] (Appears with permission of BeyWatch Project)

2.5Contiki

Contiki is the operating system that will be run on the sensor nodes used when developing the platform for prototyping of use-cases proposed in this thesis. Contiki is a light-weight open-source operating system designed to run on several memory-constrained networked systems, e.g. on nodes in WPANs. The core has been developed by Adam Dunkels at the Swedish Institute of Computer Science (SICS). Contiki incorporates multitasking and the world’s smallest IP stack enabling a full graphical installation requiring only a few kilobytes of code and a few hundred bytes of RAM to run. Contiki has been ported to several microprocessor architectures. One of these microprocessors is the Texas Instruments MSP430 that the Sentilla Perk development kit is built on (see section 6.2).

2.6Wireless Personal Area Network (WPAN) standards

Home automation is one of many areas where WPANs have a huge advantage over wired or infrared (IR) solutions because of the ease of installation, price competitiveness, and many diverse use-cases. IR devices are limited by the requirement for line-of-sight; while wired options of course require the installation of wires that is costly and often inconvenient. WPANs promise many advantages over these technologies with richer communication and increased reliability, enhanced features, flexibility, interoperability, etc. The most prominent standards for WPANs are: ZigBee, 6LoWPAN, Z-Wave, and Bluetooth Low Energy. Each of these will be examined below, but first the IEEE 802.15.4 standard is introduced; as this is used as the physical and medium access and control layers for both ZigBee and 6LoWPAN.

2.6.1IEEE 802.15.4

IEEE 802.15.4 is a standard developed and maintained by the IEEE 802.15 working group. It is a specification of the physical (PHY) and medium access control (MAC) layers. It was developed for low-rate, low-power, ubiquitous wireless personal area networks. This standard relies on others to define higher layers to offer a full networking protocol stack. Standards that utilize IEEE 802.15.4 include: ZigBee, WirelessHART, 6LoWPAN, etc.

The physical layer is defined for three different frequency bands:

868-868.8 MHz (Europe) allows one communication channel

902-928 MHz (North America) initially up to ten channels, extended to thirty 2400-2483.5 MHz (worldwide use) up to sixteen channels

Important features of this standard are the use of guaranteed time slots (GTS) and carrier sense multiple access with collision avoidance (CSMA/CA) to avoid collisions, robustness to noise by using direct sequence spread spectrum (DSSS), and energy efficiency by sleeping most of the time. GTS makes it possible to guarantee some sensor types their transmission if they are of a critical nature, e.g. in the case of home automation this could be a fire alarm wanting to transmit an alert or a security system detecting an intruder.

2.6.1.1Frames

With different frames we mean a standard behavior or pattern that other devices can parse and understand. Different frame types have different characteristics and uses. Four types of frames are defined in the IEEE 802.15.4 standard: Beacon, Data, ACK, and MAC. In the standard they are described as:

“A beacon frame, used by a coordinator to transmit beacons

A data frame, used for all transfers of data

An acknowledgment (ACK) frame, used for confirming successful frame reception

A MAC command frame, used for handling all MAC peer entity control transfers” [32]

The beacon, ACK, and MAC frames are mostly used for lower layer signaling, e.g. for associating with another device and making transfers sufficiently robust for transmission in noisy environments.

2.6.1.2Headers

Headers in the IEEE 802.15.4 standard consist of the physical layer (PHY) and medium access control (MAC) layer headers with several options that will be set and read when transmitting. Maximum physical layer packet size (aMaxPHYPacketSize) is 127 octets, with a maximum frame overhead (aMaxFrameOverhead) of 25 octets. The resulting maximum frame size at the MAC layer is 102 octets. Link-layer security, which is optional, but highly recommended, imposes further overhead, which in the maximum case (21 octets in the AES-CCM-128 case, versus 13 and 9 for AES-CCM-64 and AES-CCM-32, respectively) leaves 81 octets available for higher layers.

2.6.26LoWPAN

IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN) is a specification for compressing the IPv6 headers to run on small inexpensive microcontrollers with low power wireless capabilities, specifically on the MAC/PHY layers of IEEE 802.15.4. The major advantage of 6LoWPAN over ZigBee is that 6LoWPAN is built on the latest IP protocol (i.e. IP v6) and as such enables users to reach devices over the Internet without having to go through a protocol translation, for example a ZigBee-to-IP translation step. Earlier the main reason for IP not being the obvious choice when implementing light weight network devices has been that IP has been regarded as being too resource heavy, but with IP stacks such as Contiki uIP [10] and several others consuming only ~10 kilobytes of memory - this belief had been refuted.

IPv4 and IPv6 are and have been the workhorses of local, metropolitan, and wide area networks for the last two decades and are set to continue offering an open, lightweight, versatile, ubiquitous, manageable, scalable, stable, end-to-end solution for data delivery for the foreseeable future [10]. For this reason 6LoWPAN offers a long-lasting and highly interoperable solution to low power wireless embedded devices.

2.6.2.1 Advantages of 6LoWPAN

? Building on IPv6 gives 6LoWPAN a standardized, lightweight, and platform-independent means of access to smart objects and other embedded network devices making them accessible from anywhere

and anything, e.g. PCs, PDAs, mobile phones, etc.

? Several open source (uIP and lwIP) and commercial IP stacks are available with memory footprints as small as or smaller than that of ZigBee. The IP Smart Object (IPSO) Alliance [11] has attracted more

than fifty members since its inception in September 2008. Hence, there is a sizable group of developers that are interested in using 6LoWPAN.

2.6.2.2 Disadvantage of 6LoWPAN

? Does not define a specification for the layers above IP. UDP is the most widespread transport layer, but for the application layer no framework exists. At the 75th IETF meeting a group of people met

to discuss the formation of a 6LowApp working group to address this issue 1.

2.6.2.3 6LoWPAN compression

The IP maximum transport unit (MTU) for standard IPv6 packets over IEEE 802.15.4 is 1280 octets

[29]. Such an IPv6 packet will not fit inside a single 802.15.4 frame. An IPv6 packet header is 40 octets, so encapsulating an uncompressed IPv6 packet in an 802.15.4 frame would result in only 41 octets being left for upper layer protocols and user data (see section 2.6.1.2). Even using a minimal application layer such as UDP on top of the 6LoWPAN layer would take an additional 8 octets leaving only 33 octets for application layer data.

In addition to all the headers, there is also a need for a fragmentation and reassembly adaptation layer at a layer below IP, as per section 5 of the IPv6 specification [30]. A specification for such a layer can be found in section 5 of the IPv6 over IEEE 802.15.4 specification [29]. Taking all these layers and headers into account means that header compression is compelling to the point of almost being unavoidable for IP over IEEE 802.15.4 networks.

To compress the IPv6 header 6LoWPAN exploits the fact that devices that have joined the same 6LoWPAN network share some state information. By relying on information pertaining to the entire link there is no need to explicitly build any compression context state for flows in the network. As a result, the following IPv6 header fields are expected to be common in 6LoWPAN networks [29]:

1.

The IP version field is always IPv6. 2. If both IPv6 source and destination addresses are link local i.e. are auto-configured using the

interfaces MAC address as per [28], then the IPv6 interface identifiers (bottom 64 bits) for the source or destination addresses can be inferred from the link layer source and destination addresses.

3. The packet length can be inferred either from layer two ("Frame Length" in the IEEE 802.15.4 PPDU) or from the "datagram_size" field in the fragment header (if present).

4. Both the Traffic Class and the Flow Label are zero.

5.

The Next Header is UDP, ICMP, or TCP.

1 See https://www.sodocs.net/doc/1d8232198.html,/area/app/trac/wiki/BarBofs/IETF75/6LowApp and https://www.sodocs.net/doc/1d8232198.html,/2009/07/07/6lowapp-embedded-application-protocols/

With all the typical fields as described above in place, the common IPv6 header can be compressed from 40 to 2 octets using the LOWPAN_IPHC encoding. Although the actual compression depends on how many of the fields match the common case, as some may need to be carried in-line with different combinations being described in the two octets used for encoding. A worst case scenario as described above would mean that a standard UDP packet (with its 8 octet header) would have a maximum payload of 71 octets per IEEE 802.15.4 DATA frame.

2.6.2.4Application layers

With 6LoWPAN having specified the framework for wireless embedded IP networking, the next step is

to develop application protocols for resource-constrained embedded devices and networks. As mentioned above, a 6LoWApp [37] workgroup is likely to form within the IETF with this as its goal.

2.6.3ZigBee

The ZigBee specification was designed for low power, low bandwidth, and secure WPANs. ZigBee runs on the IEEE 802.15.4-2003 MAC/PHY standard by adding network and application layers to complete the protocol stack. Developing and backing the ZigBee standard is the ZigBee alliance, which consists of some 200 companies and contributors. The ZigBee 1.0 specification was ratified in December 2004 while the latest version of this specification was released in October 2007. To promote interoperability between products from different vendors the ZigBee standard has defined several device profiles. The profiles that have been defined thus far in the ZigBee standard are Home Automation, ZigBee Smart Energy, Commercial Building Automation, Telecommunication Applications, and Personal-, Home-, and Hospital Care. These profiles cover applications such as industrial control, embedded sensing, medical data collection, smoke and intruder warning, building automation, home automation, etc.

The ZigBee/IP initiative is an effort to incorporate the IETF 6LoWPAN and ROLL IPv6 standards in the ZigBee stack. The most straightforward way to do this is by adapting the ZigBee Application Layer (ZAL) over UDP [39].

The ZigBee specification defines several layers above the MAC/PHY of IEEE 802.15.4. The network (NWK), Application Support Sub- layer (APS), and ZigBee Cluster Library (ZCL) header structures can all be seen in Appendix A and are the building blocks of the ZigBee stack. An analysis of the stack gives an idea of how much overhead each layer adds for maximum, minimum, and typical usage.

Running ZigBee on 802.15.4 that has a maximum physical layer packet size (aMaxPHYPacketSize) of 127 octets leaves on average ~50-70 bytes of payload for application specific traffic i.e. goodput [38] depending on if we use IEEE 16 bit or IPv6 64 bit addresses in the network.

2.6.

3.1Advantages of ZigBee:

1.The required software is designed to be easy to develop on small, inexpensive microcontrollers.

2.The market acceptance is strong with lots of products already available and many more to come.

This also has the effect that the price of ZigBee hardware is very competitive.

3.ZigBee profiles enable interoperability between components from different vendors.

2.6.

3.2Disadvantages of ZigBee:

1.ZigBee networking protocols are proprietary, and not directly compatible with the Internet.

However, an effort is being made to enable ZigBee with IP.

https://www.sodocs.net/doc/1d8232198.html,ing an intermediary translation gateway between the ZigBee network and the Internet creates a

single point of failure.

3.Having two separate protocols, one for inside the network and one outside creates two different

security ‘spheres’. This creates a point of attack that weakens the integrity of the end-to-end communication.

The potential weaknesses introduced by protocol conversion in the gateway will be an important issue in this thesis project. This suggests that we need to use end-to-end security in our solution. This issue will be addressed in section 2.8.1.

2.6.4Z-Wave

Z-Wave is a proprietary wireless standard developed for remote control in light commercial and residential environments. Z-Wave was developed by the Danish company Zensys, now a division of SIGMA [15]. The specification is now maintained by the Z-Wave alliance. It is designed to operate in sub-Gigahertz frequencies around 900 MHz which reduces interference from other common wireless appliances, such as Wi-Fi, Bluetooth, cordless phones, etc. that operate in the higher 2.4 GHz ISM band.

2.6.4.1Advantages of Z-Wave:

1.Operates on frequencies with reduced interference from other common appliances; and

2.The Z-Wave alliance has 160 member manufacturers who are developing products for the

Z-Wave standard.

2.6.4.2Disadvantages of Z-Wave:

1.Offers relatively low bandwidth (40 Kbit/s) compared to other WPANs technologies; and

2.Z-Wave is a proprietary standard and not open to non-Zensys customers (i.e., it is only available

under a non-disclosure agreement).

2.6.5Bluetooth Low Energy

The specification for a low energy version of Bluetooth (Bluetooth LE) was made public when this effort merged with the Nokia Wibree group [16] in June 2007. The current version (v.0.9) specification was released in May 2009, but the version number implies it is still not mature enough for development of applications. A finalized 1.0 version is not yet scheduled for release, but the first production devices are expected at the end of 2009 or beginning of 2010 [17].

2.6.5.1Advantages of Bluetooth LE:

1.Builds on and is interoperable with the original Bluetooth standard (enabling a potentially large

number of devices to communicate with Bluetooth LE devices);

2.Bluetooth has a huge market presence with an 8000-company strong trade association (Bluetooth

SIG) responsible for advancing Bluetooth wireless technology [16]; and

3.The specification is for a bandwidth of 200 Kbit/s.

2.6.5.2Disadvantages of Bluetooth LE:

1.No finalized version or hardware available, and

2.Typical maximum distance is limited to 10 m.

2.7Conclusions regarding WPAN standards

Based upon my study of the above WPAN standards, all of the above standards would seem to be appropriate for the use-cases described in Chapter 4. However, some issues make some standards more attractive than others. The criteria that I have considered when evaluating the different standards have been:

?Bandwidth and range,

?Hardware costs,

?Interoperability between vendors and existing standards,

?Openness of standards, and

?Current availability

After comparing these standards with regards to the above criteria, it was decided that the most versatile and interesting platforms to work with in this thesis project are 802.15.4/6LoWPAN and 802.15.4/ZigBee. The reason for this decision is that 6LoWPAN and ZigBee are meant to run on the IEEE 802.15.4 MAC/PHY that has been widely adopted for a wide range of possible application, several frequency bands enable worldwide operation, and it has sufficient robustness against interference and noise for operation in a home.

6LoWPAN adds the capabilities of IP that is the dominant protocol used in the Internet and also the protocol implemented on nearly every network enabled device available. Furthermore, 6LoWPAN achieves efficiency and performance equal to or better than ZigBee; while being directly compatible with the Internet without the need for protocol translation. 6LoWPAN can make use of IP capable gateways and routers, this can be viewed as simply extending the Internet to 6LoWPAN capable devices. All of this makes 6LoWPAN an extremely versatile and future proof technology. One shortcoming of 6LoWPAN is that there is no well-defined specification for the layers and protocols above IP. The protocols must also support the needs of WPAN networks (specifically: the devices often have limited battery power, hence the devices must spend most of their time sleeping).

ZigBee offers a complete protocol stack specification with several profiles that make interoperability between manufacturers and application design simple. The drawbacks of ZigBee are that it is a proprietary technology; it is not directly compatible with the Internet as it is now, and security issues that arise with the need to do protocol conversion when connecting a ZigBee network to the Internet.

Realizing the strengths and weaknesses of 6LoWPAN and ZigBee a possible middle road would be to take the APS and ZCL layers from the ZigBee stack and put these on top of the 6LoWPAN network layer in UDP packets. This solution would eliminate the weaknesses and keep the strengths of both protocols/specifications; although it is outside the scope of this thesis. An IETF Internet-Draft advocating this approach exists [39].

In this thesis we will use IEEE 802.15.4 DATA frames to transport information (including signaling) between devices; as this is how communication is done in 6LoWPAN [29]. An advantage of choosing this approach is that the signaling is independent of the underlying PHY and MAC layers, making it easy to utilize alternative PHY and MAC layers.

2.8Home gateways to WPANs

There are several design and implementation issues that need to be addressed concerning home gateways supporting wireless sensor networks with security and confidentiality, access management, aggregation of data, and standards support being the most prominent issues.

2.8.1End-to-end security

One important aspect of having devices and sensors collecting information and handling tasks in a home is security. This concern for security is common to all applications. Appropriately performing authorization and authentication, and providing confidentiality are each of great importance. However, security may face hard tradeoffs in WPANs since high security always has a cost and WPANs have a

道路交通标志和标线--尺寸

F o r p e r s o n a u s e o n y s t u d y a n d r e s a r c h n o t f r c o m me r c a u s e 道路交通标志和标线Road traffic signs and matkings (GB5768—1999)

目录

第一篇道路交通标志 (2) 1 2警告标志 (2) 3 4禁令标志 (4) 5 6指示标志 (5) 7 8指路标志 (6) 9 10旅游区标志 (8) 11 12道路施工安全标志 (9) 第二篇道路交通标线 (10) 1 指示标线 (10) 2 禁止标线 (14) 3 警告标线 (16)

第一篇道路交通标志 道路交通标志是用图形符号、颜色和文字向交通参与者传递特定信息,用于管理交通的设施。当标志上采用中英两种文字时,地名用汉语拼音,专用名词用英文。 1. 警告标志:警告车辆、行人注意危险地点的标志。 警告标志的颜色为黄底、黑边、黑图案。警告标志的形状为等边三角形,顶角朝上。

警1 十字交叉警2 T形交叉警3 T形交叉警4 T形交叉警5 Y形交叉警6 环形交叉警7 向左急弯路警8 向右急弯路警9 反向弯路警10 连续弯路警11 上陡坡警12 下陡坡警13 两侧变窄警14 右侧变窄警15 左侧变窄警16 窄桥警17 双向交通警18 注意行人警19 注意儿童警20 注意牲畜

警21 注意信号灯警22a 注意落石警22b 注意落石警23 注意横风警24 易滑 警25a 傍山险路警25b 傍山险路警26a 堤坝路警26b 堤坝路警27 村庄警28 隧道警29 渡口警30 驼峰桥警31 路面不平警32 过水路面 警33 有人看守铁 路道口 警34 无人看守铁 路道口 警35 叉形符号警36a 斜杠符号警36b 斜杠符号警36c 斜杠符号 警37 注意非机动 车 警38 事故易发路 段 警39 慢行警40a 左右绕行

道路交通标线大全及图解

道路交通标线大全及图解 时间:2013-11-14 23:34:24 来源:MSN汽车编辑:gc7c 新手必读:道路交通标线大全及图解。 白色虚线和实线 通常道路交通标线都以白色居多,其中白色虚线是分隔同向行驶的车道,可以进行越线变道等操作;而白色实线则不允许越线行驶,常常作为白色虚线的延长线在交叉路口前出现,或是分隔路边的停车区域。 黄色实线

黄色实线用来区分不同方向的车道,一般画在马路正中间,车道多的路面上就是双黄线,车道少的路面上则用单黄线。而无论单黄线还是双黄线,均严格禁止车辆跨越,因此压线行驶、超车或者掉头等都是不允许的。一旦违规,就等着被罚款吧。 黄色虚线

黄色虚线也是为了区分不同方向的车道,通常设置在较为狭窄的路面上。而不论单黄线还是双黄线,只要是虚线,就可以越线借道超车或掉头,当然必须要在保证安全的情况下。 虚实线 在匝道、桥梁前后并入主路的地方常常会出现白色或黄色的虚实线,虚线一侧的车辆允许临时越线超车或掉头转弯,而实线一侧的车辆则不能允许压线,否则即属违章行为。 减速提示线

通常在路口或学校门口等地的路面上,常常会出现提醒车辆减速的标线或标识,样式颇为丰富,并不单一。 导流线

导流线也是出现在路口、匝道或掉头车道的指示标线,引导车辆按规定的线路行驶。但很多驾驶者误以为这是停车区域,其实导流线覆盖的地面是不能随意压线或越线行驶的,也不能在区域内停车。 导向指示线 这应该是最简单的道路标线了,但很多驾驶者应该都走错过车道,有的车辆或许没有看清地上的标线无意间走错了车道,或许发现走错了车道于是强行跨越实线“加塞儿”转回正确车道……总之都是违章行为,罚款扣分一个都不会少。 停止线

交通工程检测题库交安设第3章道路交通标线

交通工程检测题库——交通安全设施 第3章道路交通标线 一、单选题 1、分隔道路上对向行驶的交通流的标线为何种颜色。( C ) A.橙色标线 B.蓝色标线 C.黄色标线 D.白色标线 2、GB/T16311-2009中图形、字符或人行横道线取样检测单位划分,以每( B )标线面积为一个检测单位。 A.1000m2 B.1500m2 C.2000m2 D.2500m2 3、标线尺寸、角度、形状与位置检测仪器为( D ) A.钢卷尺(分度值不大于0.2mm)、量角器(测量精度为±0.20) B.钢卷尺(分度值不大于0.3mm)、量角器(测量精度为±0.30) C.钢卷尺(分度值不大于0.4mm)、量角器(测量精度为±0.40) D.钢卷尺(分度值不大于0.5mm)、量角器(测量精度为±0.50) 4、横向标线的线宽最小值为( B ) A.15cm B.20cm C.25cm D.30cm 5、标线实际位置与设计位置的横向允许误差为( D ) A.±15mm B.±20mm C.±25mm D.±30mm 6、GB/T16311-2009中图形、字符或人行横道线取样核查区域划分,从每个检测单位中选取( A )有代表性的图形、字符或人行横道线为核查区域。 A.3个 B.5个 C.6个 D.7个 7、标线最薄的是热熔突起振动标线,其突起部分高度为( C ) A.2-4mm B.3-5mm C.3-7mm D.4-10mm 8、标线色度性能亮度因数、色品坐标检测仪器为( B ) A.分光计 B.色彩色差计 C.色卡 D.光谱分析仪 9、GB5768-2009中规定纵向标线的线宽最低值为( B ) A.5cm B.8cm C.10cm D.12cm 10、GB/T16311-2009中新划路面标线初始逆反射亮度系数的取样应执行《新划路面标线初始逆反射亮度系数及测试方法》( D ) A.GB21383-2000 B.GB/T21383-2000 C.GB21383-2008 D.GB/T21383-2008 11、闪现率效果最好在( C ) A.2.0~2.2次/s之间时 B.2.4~2.6次/s之间时 C.2.8~3.0次/s之间时 D.3.0~3.2次/s之间时 12、热熔型路面标线涂料熔料温度一般在( A ) A.200℃以上 B.230℃以上 C.250℃以上 D. 280℃以上 13、标线设置角度的允许误差为( C ) A.±1° B.±2° C.±3° D.±5° 14、据不完全统计,我国热熔型标线的用量占标线总量的( C ) A.70%以上 B.80%以上 C.90%以上 D.95%以上 15、公路交通标线的交竣工验收依据为( C ) A.《道路交通标志和标线》(GB5768-2009) B.《道路交通标线质量要求和检测方法》(GB/T16311-2009) C.《公路工程质量检验评定标准》(JTG F80/1-2017) D.《道路交通标线》(GB57768-2012) 16、GB/T16311-2009中图形、字符或人行横道线取样测试点划分从每个核查区随机选取( A )测试点。 A.5个 B.10个 C.15个 D.20个

中国道路交通标志、标线汇总

1.警告标志 十字交叉T形交叉T形交叉T形交叉 除了基本形十字路口外,还有 部分变异的十字路口,如:五 路交叉路口、变形十字路口、 变形五路交叉路口等。五路以 上的路口均按十字路口对待。 丁字形标志原则上设在与 交叉口形状相符的道路 上。右侧丁字路口,此标 志设在进入T字路口以前 的适当位置。 丁字形标志原则上设在与交 叉口形状相符的道路上。左 侧丁字路口此标志设在进入 丁字路口以前的适当位置。 丁字形标志原则上设在与 交叉口形状相符的道路上。 此标志设在进入T字路口 以前的适当位置。 Y形交叉环形交叉向左急弯路向右急弯路 设在Y形路口以前的适当位 置。 有的环形交叉路口,由于 受线形限制或障碍物阻 挡,此标志设在面对来车 的路口的正面。 向左急弯路标志设在左急转 弯的道路前方适当位置。 向右急弯路标志,设在右急 转弯的道路前方适当位置。 反向弯路连续弯路上陡坡下陡坡 此标志设在两个相邻的方向 相反的弯路前适当位置。 此标志设在有连续三个以 上弯路的道路以前适当位 置。 此标志设在纵坡度在7%和 市区纵坡度在大于4%的陡 坡道路前适当位置。 此标志设在纵坡度在7%和 市区纵坡度在大于4%的陡 坡道路前适当位置。 两侧变窄右侧变窄左侧变窄窄桥 车行道两侧变窄主要指沿道 路中心线对城缩窄的道路;此 标志设在窄路以前适当位置。 车行道右侧缩窄。此标志 设在窄路以前适当位置。 车行道左侧缩窄。此标志设 在窄路以前适当位置。 此标志设在桥面宽度小于 路面宽度的窄桥以前适当 位置。

双向交通注意行人注意儿童注意牲畜 双向行驶的道路上,采用天然 的或人工的隔离措施,把上下 行交通完全分离,由于某种原 因(施工、桥、隧道)形成无 隔离的双向车道时,须设置此 标志。 一般设在郊外道路上划有 人行横道的前方。城市道 路上因人行横道线较多, 可根据实际需要设置。 此标志设在小学、幼儿园、 少年宫、儿童游乐场等儿童 频繁出入的场所或通道处。 此标志设在经常有牲畜活 动的路段特别是视线不良 的路段以前适当位置。 注意信号灯注意落石注意落石注意横风 此标志设在不易发现前方位 信号灯控制的路口前适当位 置。 此标志设在左侧有落石 危险的傍山路段之前适 当位置。 此标志设在右侧有落石 危险的傍山路段之前适 当位置。 此标志设在经常有很强的侧风 并有必要引起注意的路段前适 当位置。 易滑傍山险路傍山险路堤坝路 此标志设在路面的摩擦系数 不能满足相应行驶速度下要 求紧急刹车距离的路段前适 当位置。行驶至此路段必须减 速慢行。 此标志设在山区地势险 要路段(道路外侧位陡 壁、悬崖危险的路段)以 前适当位置。 此标志设在山区地势险 要路段(道路外侧位陡 壁、悬崖危险的路段)以 前适当位置。 此标志设在沿水库、湖泊、河流 等堤坝路以前适当位置。 堤坝路村庄隧道渡口 此标志设在沿水库、湖泊、河 流等堤坝路以前适当位置。 此标志设在不易发现前 方有村庄或小城镇的路 段以前适当位置。 此标志设在进入隧道前 的适当位置。 此标志设在汽车渡口以前适当 位置。特别是有的渡口地形较位 复杂、道路条件较差,使用此标 志能引起驾驶员的谨慎驾驶、注 意安全。

道路交通标线图解(支持直接打印)

道路交通标线图解(支持直接打印) 标线的分类及功能 一、道路标线按设置方式分为3类; 1、纵向标线一沿道路行车方向设置的标线。 2、横向标线一和道路行车方向成直角的标线。 3、其他标线一字符标记或其他非普通标线状形式标线。 二、道路标线按形态分为4类。 1、线条一标划于路面、缘石或立面上的实线或虚线。 2、字符标记一标划与路面上的文字、数字及各种图像符合。 3、突起路标一安装于路面上,用于标志车道分解、边缘、分合流、弯道、危险路段、路 宽变化、路面障碍物位置的反光或不反光体。 4、道路边缘轮廓标一安装于道路两侧或中分带上,用以指示道路的方向、行车道边界轮 廓的反光柱 三、道路标线按标划方式分为7类: 1、白色虚线一划于路段中时,用以分隔同向行驶的交通流或作为行车安全距离标示线; 划于路口时,用以引导车辆行进。 2、白色实线一划于路段中时,要以分隔同向行驶的机动车和非机动车,或分隔普通机动 车和专用车道﹙如公交车和多乘客专用道﹚,或指示行车道的边缘;设于路口时,作为停止线或用作不可换道车道线。 3、双白虚线一划于路口时,作为减速让行线。 4、黄色虚线一划于路段中时,用以分隔对向行驶的交通流。划于路侧或缘石上时, 用于禁止车辆长时在路边停放。 5、黄色实线划于路段中时,用以分隔对向行驶的交通流;划于路侧或缘石上时, 用以禁止车辆长时或临时在路边停放。 6、双黄虚线一设于路段中时,作为行车方向随时间改变的可逆车道线。 7、黄色虚实线划于路段中时,用以分隔对向行驶的交通流。黄色实线一侧禁止车 辆超车、跨越或回转,黄色虚线一侧在保证安全的情况下准许车辆超车、跨越或回转。 四、标线的颜色。 标线的颜色主要是黄色和白色,还有一些表达特殊意义的颜色,如红色、蓝色以及黑色线条。 1 2 1

2017最新道路交通标线大全及图解

2017最新道路交通标线大全及图解 新手必读:2017道路交通标线大全及图解【超详细版】白色虚线和实线通常道路交通标线都以白色居多,其中白色虚线是分隔同向行驶的车道,可以进行越线变道等操作;而白色实线则不允许越线行驶,常常作为白色虚线的延长线在交叉路口前出现,或是分隔路边的停车区域。 黄色实线黄色实线用来区分不同方向的车道,一般画在马路正中间,车道多的路面上就是双黄线,车道少的路面上则用单黄线。而无论单黄线还是双黄线,均严格禁止车辆跨越,因此压线行驶、超车或者掉头等都是不允许的。一旦违规,就等着被罚款吧。黄色虚线黄色虚线也是为了区分不同方向的车道,通常设置在较为狭窄的路面上。而不论单黄线还是双黄线,只要是虚线,就可以越线借道超车或掉头,当然必须要在保证安全的情况下。虚实线在匝道、桥梁前后并入主路的地方常常会出现白色或黄色的虚实线,虚线一侧的车辆允许临时越线超车或掉头转弯,而实线一侧的车辆则不能允许压线,否则即属违章行为。减速提示线通常在路口或学校门口等地的路面上,常常会出现提醒车辆减速的标线或标识,样式颇为丰富,并不单一。导流线导流线也是出现在路口、匝道或掉头车道的指示标线,引导车辆按规定的线路行驶。但很多驾驶者误以为这

是停车区域,其实导流线覆盖的地面是不能随意压线或越线行驶的,也不能在区域内停车。导向指示线这应该是最简单的道路标线了,但很多驾驶者应该都走错过车道,有的车辆或许没有看清地上的标线无意间走错了车道,或许发现走错了车道于是强行跨越实线“加塞儿”转回正确车道……总之都是违章行为,罚款扣分一个都不会少。停止线这是设置在路口处斑马线前的横向线,当停止信号灯亮起时,车辆需停在线后,压线或超线都是违章,更不用提闯红灯了。禁停线在路上看到黄色网状条纹的话,就要注意了,它们一般都位于重要单位、部门前,禁止车辆在此停留,不论停车或是等候交通灯都属于违章行为,轻则罚款200元,重则有被拖走的危险。待转区在车道较多,路面情况复杂的交通路口,为了提高机动车通过量,避免交通堵塞,常常会设立左转弯待转区,允许车辆在直行绿灯亮起后,转入“左转弯待转区”等候。不过,如果在直行和左转灯都是红灯时进入待转区,也将按闯红灯计算。数字标识这个很容易看懂,就是对车道车速的要求。其中白色数字表示该路段的最低限速,黄色数字则表示最高限速。公交站标线驾校考试中有一项是测试驾驶者在经过公交站时应该进行的操作,而除了减速鸣笛以外,还得注意不要停车。公交专用道现在许多城市都开辟了公交专用道,通常会在地面用汉字标出。不过现在

(最全)图解道路交通标志和标线

图解交通标识 国家标准GB5768-1999(2号修改单修订后) 《道路交通标志和标线》相关内容 道路交通标志 1、警告标志 十字交叉 除了基本形十字路口外,还有部分变异的十字路口,如:五路交叉路口、变形十字路口、变形五路交叉路口等。五路以上的路口均按十字路口对待。 T 形交叉 丁字形标志原则上设在与交叉口形状相符的道路上。右侧丁字路口,此标志设在进入T 字路口以前的适当位置。 T 形交叉 丁字形标志原则上设在与交叉口形状相符的道路上。左侧丁字路口此标志设在进入丁字路口以前的适当位置。 T 形交叉 丁字形标志原则上设在与交叉口形状相符的道路上。此标志设在进入T 字路口以前的适当位置。 Y 形交叉 设在Y 形路口以前的适当位置。 环形交叉 有的环形交叉路口,由于受线形限制或障碍物阻挡,此标志设在面对来车的路 口的正面。

向左急弯路 向左急弯路标志设在左急转弯的道路前方适当位置。 向右急弯路 向右急弯路标志,设在右急转弯的道路前方适当位置。 反向弯路 此标志设在两个相邻的方向相反的弯 路前适当位置。 连续弯路 此标志设在有连续三个以上弯路的道路以前适当位置。 上陡坡 此标志设在纵坡度在7%和市区纵坡度在大于4%的陡坡道路前适当位置。 下陡坡 此标志设在纵坡度在7%和市区纵坡度 在大于4%的陡坡道路前适当位置。 两侧变窄 车行道两侧变窄主要指沿道路中心线对城缩窄的道路;此标志设在窄路以前 适当位置。 右侧变窄 车行道右侧缩窄。此标志设在窄路以前适当位置。 左侧变窄 车行道左侧缩窄。此标志设在窄路以前适当位置。 窄桥 此标志设在桥面宽度小于路面宽度的窄桥以前适当位置。 双向交通 双向行驶的道路上,采用天然的或人工的隔离措施,把上下行交通完全分离,由于某种原因(施工、桥、隧道)形成无隔离的双向车道时,须设置此标志。 注意行人 一般设在郊外道路上划有人行横道的 前方。城市道路上因人行横道线较多,可根据实际需要设置。 注意儿童 注意牲畜 注意信号灯

道路交通标线

道路交通标线 道路交通标线是由各种路面标线、箭头、文字、立面标记、突起路标和道路边线轮廓标等构成的交通安全设施。它可以与道路交通标志配合使用,也可单独使用。 简介 交通标线是由标画于路面上的各种线条、箭头、文字、立面标记、突起路标和轮廓标等所构成的交通安全设施,它的作用是管制和引导交通。作用 它的作用是管制和引导交通。 (1)实行分道行驶。(2)渠化平交路口交通。(3)告示交通控制指令。(4)预告道路状况。(5)执法依据。 分类 按施工工艺分两类:冷涂和热熔(热熔根据其效果又有反光和不反光之分),冷涂只要用于地下停车场的车位线和其他摩擦较小的地方,而热熔反光标线都用于高速公路、国道、省道等车流量大的区域。 根据《道路交通标志和标线》国家标准(GB5768-1999)的规定,我国现行的道路交通标线分为:指示标线、禁止标线和警告标线3类。指示标线 是指示车行道、行驶方向、路面边缘、人行横道等设施的标线。 1)双向两车道路面中心线 双向两车道路面中心线(分隔对向行驶的交通流,在保证安全的情况下允许车辆越线超车或左转弯)没说掉头 用来分隔对向行驶的交通流。表示在保证安全的原则下,准许车辆跨越超车。通常指示机动车驾驶人靠右行驶。线为黄色虚线。 2)车行道分界线 用来分隔同向行驶的交通流。表示在保证安全的原则下,准许车辆跨越线超车或变更车道行驶。线为白色。 3)车行道边缘线 车行道边缘白色实线车行道边缘白色虚线

车行道边缘白色虚实线黄色单实线车行道边缘线 左弯待转区即左转弯待转区。

仍然是:白线区分同向,黄线区分对向。黄线的应该叫:路口导向线,白线的应该叫:左转弯导向线 6)人行横道线 7)高速公路车距确认标线

道路交通标志和标线(GB5768-1999)

道路交通标志和标线(GB5768-1999) 指示标志 直行向左转弯向右转弯直行和向左转弯 表示只准一切车辆直行。此 标志设在直行的路口以前适 当位置。 表示只准一切车辆向左转 弯。此标志设在车辆必须向 左转弯的路口以前适当位 置。 表示只准一切车辆向右转 弯。此标志设在车辆必须向 右转弯的路口以前适当位 置。 表示只准一切车辆直行和向 左转弯。此标志设在车辆必 须直行和向左转弯的路口以 前适当位置。 直行和向右转弯向左和向右转弯靠右侧道路行驶靠左侧道路行驶 表示只准一切车辆直行和向 右转弯。此标志设在车辆必 须直行和向右转弯)的路口 以前适当位置。 表示只准一切车辆向左和向 右转弯。此标志设在车辆必 须向左和向右转弯的路口以 前适当位置。 表示只准一切车辆靠右侧 道路行驶。此标志设在车辆 必须靠右侧行驶的路口以 前适当位置。 表示只准一切车辆靠左侧) 道路行驶。此标志设在车辆 必须靠左侧行驶的路口以前 适当位置。 立交直行和左转弯行驶立交直行和右转弯行驶环岛行驶步行 表示车辆在立交处可以直行 和按图示路线左转弯行驶。 此标志设在立交左转弯出口 处适当位置。 表示车辆在立交处可以直行 和按图示路线右转弯行驶。 此标志设在立交右转弯出口 处适当位置。 表示只准车辆靠右环行。此 标志设在环岛面向路口来 车方向适当位置。 表示该街道只供步行。此标 志设在步行街的两端。 鸣喇叭最低限速单行路向左或向右单行路直行 表示机动车行至该标志处必 须鸣喇叭。此标志设在公路 表示机动车驶入前方道路之 最低时速限制。此标志设在 表示一切车辆向左或向右 单向行驶。此标志设在单行 表示一切车辆单向行驶。此 标志设在单行路的路口和入

道路交通标线知识大全

道路交通标线知识 1道路交通标线的主要功能为:分离交通、渠化平交路口交通、指示和预告前方路况、执法和守 法依据。 1交通量小于15000PCU/D 可用长效标线带(12月)和临时标线带(3月); 2长效标线带按是否有背胶分为I (不带)和II 级(带),按反光分为I 大于II ,按抗滑分为A (45)、B(55)。 3临时标线带分I 可以清除和II 不可清除。 4道路交通标线按材料分为:溶剂型(0.3-0.8)、热熔型(0.7-2.5;如为振动的为3-7,基线1-2)、水性(0.3-0.8)、双组分(0.4-2.5)、预成型(0.3-2.5)五种。 5标线颜色有白色、黄色(分隔交通流)、蓝色(非机动车、临时停车位)、橙色、红色。 6标线的闪现率 2.8-3.2次/S ,实虚搭配为:2,2;2,4;4,4;4,6;6,9。 7纵向标线对驾驶员没有影响,标线宽度一般取10、15、20、25,最小8,最大30; 8横向标线要宽,一般取20、30、40、45 9对正常使用的反光标线,白色的逆反色系数不低于150(新划)80(使用),黄色不低于100(新划)50(使用); 10标线的抗滑一般不低于原路面,且大于45; 11标线实际位置与设计位置的横向允许误差为正负30mm 12标线宽度允许偏差为0-5mm 13其他标线尺寸允许误差不超过5% 14长度及间距允许偏差16311与F80不同,F80的较大。 15设置角度允许偏差为3度 16常温型、加热型、热熔型允许偏差为:-(0.03,0.05,0.10);+(0.10,0.15,0.50) 17热熔型路面标线的是工工艺为:熔料(200度以上)、清扫和干燥、放线、二次清扫和干燥、涂刷下涂剂(分沥青路面与水泥路面,刷涂、喷涂或滚涂)、标线施划(热熔刮涂(0.7-2.5)、热熔喷涂(较刮涂先进0.7-1.2)、热熔振荡(突起标线用,配方与一般热熔标线不同))。18热熔标线的玻璃珠用量为0.3-0.4kg/m 2。 19溶剂型的施工温度不应低于5度。且因为较薄,较少反光型。(分加热和不加热两种,加热在我国用量较少) 20双组分标线由A (主剂)、B (固化剂)组分组成,施工方式包括:喷涂、刮涂、结构型和振 荡型。喷涂标线的干膜厚0.3-0.8mm ,刮涂厚 1.5-2.5mm 。双组分标线怕碱性层,施工温度宜在10-35之间,固化时间与厚度无关,与配比与施工温度有关。 21水性标线施工设备与工艺与溶剂型相同,在施工时不能加水稀释,不能在潮湿的环境下施工。 22标线的抽样方法22.1纵向实线或间断线:以10公里左右为检测单位,在标线的起点、终点及中间部位选择3个100m 为核查区域,再从每个核查区域随机连续抽查10个测试点。22.2图形、字符或人行横道线:每1500平方米为一个检测单位,每个检测单位中取三个有代表性图形,字符或横道线为核查区域,每个核查区域取5个测试点。22.3新划标线的初始亮度取样按照《新划路面标线初始逆反射亮度系数及测试方法》(GB/T 21383-2008)进行。 23标线厚度的测量23.1湿膜:将玻璃片或金属片防在要划线处,划线后在四个角20mm 处,用湿膜梳规锤子插入,稳定3S 后提出。取其平均值。23.2干膜:将玻璃片或金属片防在要划线处,划线后,待5-10min ,用游标卡尺在四角20mm 处量取取均值。23.3已形成厚度:用标线厚度测量块测量。规格3mm 和9mm 两种。(作为被减数) 24摆值检测:24.1摆距125正负1.6mm ;24.2调平、调零、定长、检测(第一个值不算)24.3检测时为车流方向。对有花纹的标线,取车流方向与45度方向的均值。 25面撒玻璃珠分布:5倍放大镜观测是否均匀,结团,结块。 26标线的玻璃珠含量大约为18%-25% 类型生产工艺成型方式不粘胎时间耐磨性(1kg ,200转)耐水性耐碱性耐候性遮盖力附着性(划圈法)固体含量溶剂型较热熔多磨砂、过滤、溶剂挥发物理变化15(普通)10(反光)40 水中泡24h 无异常氢氧化钙饱和溶液中泡24h / 白95,黄80 小于4级(普通及反光)60(普通)65(反光)

道路交通标志标线质量要求和检测方法

前言 为了确保道路交通标线质量,更好地贯彻实施CB5768-86《道路交通标志和标线》中标线标准,并使其具有可操作性,特制定本标准。 本标准由中华人民共和国交通部提出。 本标准由交通部公路管理司归口。 本标准由交通部公路科学研究所、交通部标准计量研究所负责起草。 本标准主要起草人:杜玲玲、姜开友。 1范围 本标准规定了涂料型道路交通标线分类、质量要求及检测方法。适用于公路、城市道路路面上的涂料型交通标线。矿区、港区、场(厂)区路面涂料型交通标线可参照执行。 2引用标准 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB5768—86道路交通标志和标线 3术语 3.1光亮度因数luminance factor 非自发辐射的媒质面元在给定方向上的光亮度与相同照明条件下理想漫反射(或透射)体的光亮度之比。 3.2逆反射retroreflection 反射光线从靠近入射光线的反回的反射。 3.3光强度系数coefficient of luminous intensity 逆反射在观测方向的光强度除以投向逆反射体且落在垂直于入射光方向的平面内的光照度之商。 即: R=I/E (1) 式中:R——光强度系数,mcd·lx-1; I——光强度,mcd; E——光照度,lx。 3.4逆反射系数coefficient of retroreflection 逆反射面的逆反射光强度系数除以它的面积之商。 即: R'=R/A=I/(E·A) 式中:R'——逆反射系数,mcd·lx-1·m-2; A——试样表面的面积,m2。 4涂料型标线分类 4.1按标线涂料种类分: a.溶剂型常温涂料标线; b.溶剂型加热涂料标线; c.热熔型涂料标线。 4.2按标线反光性能分: a.反光型标线; b.普通型标线 5标线质量要求

道路交通标线

第二篇道路交通标线 17 一般规定 17.1 道路交通标线是由标划于路面上的各种线条、箭头、文字、立面标记、突起路标和轮廓标等所构成的交通安全设施。它的作用是管制和引导交通。可以与标志配合使用,也可单独使用。 17.2 高速公路、一、二级公路和城市快速路、主干路应按本标准规定设置反光交通标线。其他道路可根据需要按本标准设置标线。 17.3 道路交通标线按设置方式可分为以下三类: a)纵向标线沿道路行车方向设置的标线; b)横向标线与道路行车方向成角度设置的标线; c)其他标线字符标记或其他形式标线。 17.4 道路交通标线按功能可分为以下三类: a)指示标线指示车行道、行车方向、路面边缘、人行道等设施的标线。 b)禁止标线告示道路交通的遵行、禁止、限制等特殊规定,车辆驾驶人及行人需严格遵守的标线。 c)警告标线促使车辆驾驶人及行人了解道路上的特殊情况,提高警觉,准备防范应变措施的标线。 17.5 道路交通标线按型态可分为以下四类: a)线条标划于路面、缘石或立面上的实线或虚线。 b)字符标记标划于路面上的文字、数字及各种图形符号。 c)突起路标安装于路面上用于标示车道分界、边缘、分合流、弯道、危险路段、路宽变化、路面障碍物位置的反光或不反光体。 d)路边丝轮廓标安装于道路两侧,用以指示道路的方向、车行道边界轮廓的反光柱(或片)。 17.6 道路交通标线的标划区分如下: a)白色虚线划于路段中时,用以分隔同向行驶的交通流或作为行车安全距离识别线;划于路口时,用以引导车辆行进。 b)白色实线划于路段中时,用以分隔同向行驶的机动车和非机动车,或指示车行道的边缘;设于路口时,可用作导向车道线或停止线。 c)黄色虚线划于路段中时,用以分隔对向行驶的交通流。划于路侧或缘石上时,用以禁止车辆长时在路边停放。 d)黄色实线划于路段中时,用以分隔对向行驶的交通流;划于路侧或缘石上时,用以禁止车辆长时或临时在路边停放。 e)双白虚线划于路口时,作为减速让行线;设于路段中时,作为行车方向随时间改变之可变车道线。 f)双黄实线划于路段中时,用以分隔对向行驶的交通流。 g)黄色虚实线划于路段中时,用以分隔对向行驶的交通流。黄色实线一侧禁止车辆超车、跨越或回转,黄色虚线一侧在保证安全的情况下准许车辆超车、跨越或回转。 h)双白实线划于路口时,作为停车让行线。 18 指示标线 18.1 指示标线的分类 18.1.1 纵向标线 a)双向两车道路面中心线 b)车行道分界线 c)车行道边缘线 18.1.2 横向标线 a)人行横道线 b)距离确认线 18.1.3 其他标线 a)高速公路出入口标线 b)停车位标线 c)港湾或停靠站标线 d)收费岛标线 e)导向箭头 f)路面文字标记 18.2 双向两车道路面中心线 a)双向两车道路面中心线为黄色虚线,用于分隔对向行驶的交通流。一般设在车行道中线上,但不限于一定设在道路的几何中心线上。在保证安全的情况下,允许车辆越线超车或向左转弯。 b)凡路面宽度可划两条机动车道的双向行驶的道路,应划黄色中心虚线。用于指示车辆驾驶人靠右行驶,各行其道,分向行驶。双向两车道路面中心线的划法见线1。 线1 双向两车道路面中心线单位:cm 18.3 车行道分界线 a)车行道分界线为白色虚线,用来分隔同向行驶的交通流,设在同向行驶的车行道分界线上。在保证安全的情况下,允许车辆越线变换车道行驶。 b)凡同一行驶方向有二条或二条以上车行道时,应划车道分界线。高速公路、一级公路和城市快速路,车道分界线的尺寸如线2所示。其他道路,如线3所示。

最全的道路交通标线图解新手一定要仔细学习

交通安全 >> 标志图解 >> 第二篇道路交通标线 https://www.sodocs.net/doc/1d8232198.html,/fmxjjinfo.asp?bigclassname=交通安全&smallclassname=标志图解 第二篇道路交通标线 第二篇道路交通标线 17 一般规定 17.1 道路交通标线是由标划于路面上的各种线条、箭头、文字、立面标记、突起路标和轮廓标等所构成的交通安全设施。它的作用是管制和引导交通。可以与标志配合使用,也可单独使用。 17.2 高速公路、一、二级公路和城市快速路、主干路应按本标准规定设置反光交通标线。其他道路可根据需要按本标准设置标线。 17.3 道路交通标线按设置方式可分为以下三类: a)纵向标线沿道路行车方向设置的标线; b)横向标线与道路行车方向成角度设置的标线; c)其他标线字符标记或其他形式标线。 17.4 道路交通标线按功能可分为以下三类: a)指示标线指示车行道、行车方向、路面边缘、人行道等设施的标线。 b)禁止标线告示道路交通的遵行、禁止、限制等特殊规定,车辆驾驶人及行人需严格遵守的标线。 c)警告标线促使车辆驾驶人及行人了解道路上的特殊情况,提高警觉,准备防范应变措施的标线。 17.5 道路交通标线按型态可分为以下四类: a)线条标划于路面、缘石或立面上的实线或虚线。 b)字符标记标划于路面上的文字、数字及各种图形符号。 c)突起路标安装于路面上用于标示车道分界、边缘、分合流、弯道、危险路段、路宽变化、路面障碍物位置的反光或不反光体。 d)路边丝轮廓标安装于道路两侧,用以指示道路的方向、车行道边界轮廓的反光柱(或片)。 17.6 道路交通标线的标划区分如下: a)白色虚线划于路段中时,用以分隔同向行驶的交通流或作为行车安全距离识别线;划于路口时,用以引导车辆行进。 b)白色实线划于路段中时,用以分隔同向行驶的机动车和非机动车,或指示车行道的边缘;设于路口时,可用作导向车道线或停止线。 c)黄色虚线划于路段中时,用以分隔对向行驶的交通流。划于路侧或缘石上时,用以禁止车辆长时在路边停放。 d)黄色实线划于路段中时,用以分隔对向行驶的交通流;划于路侧或缘石上时,用以禁止车辆长时或临时在路边停放。

道路交通标线一般规定

道路交通标线一般规定 一、道路交通标线是由标划于路面上的各种线条、箭头、文字、立面标记、突起路标和轮廓标等所构成的交通安全设施。这的作用是管制和引导交通。可以与标志配合使用,也可单独使用。 二、高速公路、一、二级公路和城市快速路、主干路应按本标准规定设置反光交通标线。其他道路可根据需要按本标准设置标线。 三、道路交通标线按设置可分以下三类: 1、纵向标线沿道路行车方向设置的标线。 2、横向标线与道路行车方向成角度设置的标线。 3、其他标线字符标记或其他形式标线。。 四、道路交通标线按功能可分为以下三类: 1、指示标线指示车行道、行车方向、路面边缘、人行道等设施的标线。 2、禁止标线告示道路交通的遵行、禁止、限制等特殊规定,车辆驾驶员及行人需严格遵守的标线。 3、警告标线促使车辆驾驶员及行人了解道路上的特殊情况,提高警觉,准备防范或采取应变措施的标线。 五、道路交通标线按型态可分为以下四类: 1、线条标划于路面、缘石或立面上的实线或虚线。 2、字符标记标划于路面上的文字、数字及各种图形符号。 3、突起路标安装于路面上用于标示车道分界、边缘、分合流、弯道、危险路段、路宽变化、路面障碍物位置的反光或不反光体。 4、路边线轮廓标安装于道路两侧,用以指示道路方向、车行道边界轮廓的反光柱(或片)。

六、道路交通标线的标划区分如下: 1、白色虚线划于路段中时,用以分隔同向行驶的交通流或作为行车安全距离识别线;划于路口时,用以引导车辆行进。 2、白色实线划于路段中,用以分隔同向行驶的机动车和非机动车,或指示车行道的边缘;设于路口时,可用作导向车道线或停止线。 3、黄色虚线划于路段中时,用以分隔对向行驶的交通流。划于路侧或缘石上时,用于禁止车辆长时在路边停放。 4、黄色实线划于路段中时,用以分隔对向行驶的交通流;划于路侧或缘石上时,用以禁止车辆长时或临时在路边停放。 5、双白虚线划于路口时,作为减速让行线;设于路段时,作为行车方向随时间改变之可变车道线。 6、双黄实线划于路段中时,用以分隔对向行驶的交通流。 7、黄色虚实线划于路段中时,用以分隔对向行驶的交通流。黄色实线一侧禁止车辆超车、跨越或回转,黄色虚线一侧在保证安全的情况下准许车辆超车、跨越或回转。 8、双白实线划于路口时,作为停车让行线。

道路交通标线解释

道路交通标线 中心黄色双实线(严禁车辆跨线或压线行驶) 中心黄色虚实线(实线一侧禁止车辆越线或左转弯,虚线一侧准许车辆越线超车或左转弯) 双向两车道路面中心线(分隔 对向行驶的交通流,在保证安 全的情况下允许车辆越线超车 或左转弯) 车行道边缘线(白色实线,用来指示机动车道的边缘,或用来划分机动车道与非机动车道的分界) 禁止变换车道线(白色实线) 左弯待转区线(左弯车辆可在直行时段进入待转区,等待左转。左转时段终止,禁止车辆 在待转区内停留) 人行横道 左转弯导向线(白色虚线,表示左转弯机动车与非机动车之间的分界) 高速公路车距确认标线(用以提供车辆驾驶人保持行车安全 距离之参考) 直接式出口标线 平行式出口标线 直接式入口标线 平行式停车位 倾斜式停车位 垂直式停车位 港湾式停靠站(公共客车专用) 三车道标线 禁止路边长时停放车辆线

禁止路边临时或长时停放车辆线 信号灯路口的停止线(白色实线,表示车辆等候放行的停车位置) 停车让行线(表示车辆在此路口必须停车让干道车辆先行) 减速让行线(表示车辆在此路口必须减速让干道车辆先行) 中心圈(用以区分车辆大、小转弯,车辆不得压线行驶) 非机动车禁驶区标线(左转弯骑车人须沿禁驶区外围绕行) 网状线(用以告示驾驶人禁止 在该交叉路口临时停车) 简化网状线 近铁路平交道口标线 复杂行驶条件丁字路口导流线 Y 型路口导流线 支路口主干道相交路口导流线 专用车道线(仅限于某车种行驶) 三车道缩减为双车道 四车道缩减为双车道 四车道缩减为三车道 四车道缩减为双车道 三车道斑马线过渡 双向两车道改变为双向四车道 双车道中间有障碍 四车道中间有障碍 同方向二车道中间有障碍

道路交通标线标记大全

17 一般规定 17.1道路交通标线是由标划于路面上的各种线条、箭头、文字、立面标记、突起路标和轮廓标等所构成的交通安全设施。它的作用是管制和引导交通。可以与标志配合使用,也可单独使用。 17.2高速公路、一、二级公路和城市快速路、主干路应按本标准规定设置反光交通标线。其他道路可根据需要按本标准设置标线。 17.3道路交通标线按设置方式可分为以下三类: a) 纵向标线沿道路行车方向设置的标线; b) 横向标线与道路行车方向成角度设置的标线; c) 其他标线字符标记或其他形式标线。 17.4道路交通标线按功能可分为以下三类: a) 指示标线指示车行道、行车方向、路面边缘、人行道等设施的标线。 b) 禁止标线告示道路交通的遵行、禁止、限制等特殊规定,车辆驾驶人及行人需严格遵守的标线。 c) 警告标线促使车辆驾驶人及行人了解道路上的特殊情况,提高警觉,准备防范应变措施的标线。 17.5道路交通标线按型态可分为以下四类: a) 线条标划于路面、缘石或立面上的实线或虚线。 b) 字符标记标划于路面上的文字、数字及各种图形符号。 c) 突起路标安装于路面上用于标示车道分界、边缘、分合流、弯道、危险路段、路宽变化、路面障碍物位置的反光或不反光体。 d) 路边丝轮廓标安装于道路两侧,用以指示道路的方向、车行道边界轮廓的反光柱(或片)。 17.6道路交通标线的标划区分如下: a) 白色虚线划于路段中时,用以分隔同向行驶的交通流或作为行车安全距离识别线;划于路口时,用以引导车辆行进。 b) 白色实线划于路段中时,用以分隔同向行驶的机动车和非机动车,或指示车行道的边缘;设于路口时,可用作导向车道线或停止线。 c) 黄色虚线划于路段中时,用以分隔对向行驶的交通流。划于路侧或缘石上时,用以禁止车辆长时在路边停放。 d) 黄色实线划于路段中时,用以分隔对向行驶的交通流;划于路侧或缘石上时,用以禁止车辆长时或临时在路边停放。 e) 双白虚线划于路口时,作为减速让行线;设于路段中时,作为行车方向随时间改变之可变车道线。 f) 双黄实线划于路段中时,用以分隔对向行驶的交通流。 g) 黄色虚实线划于路段中时,用以分隔对向行驶的交通流。黄色实线一侧禁止车辆超车、跨越或回转,黄色虚线一侧在保证安全的情况下准许车辆超车、跨越或回转。 h) 双白实线划于路口时,作为停车让行线。 18 指示标线 18.1指示标线的分类 18.1.1 纵向标线 a) 双向两车道路面中心线 b) 车行道分界线 c) 车行道边缘线 18.1.2 横向标线 a) 人行横道线

新国标《道路交通标志和标线》

交通标志分为警告标志、禁令标志、指示标志、指路标志、旅游区标志、作业区标志、告示标志等七类主标志,辅助标志附设在主标志下,对其进行辅助说明。其中禁令标志和指示标志为必须遵守标志,套用于无边框的白色底板;其他标志仅提供信息,为非必须遵守标志,不得套用于无边框的白色底板。

警告标志:增设了急弯路、反向弯路、连续弯路、陡坡、窄路、路面不平、建议速度等组合标志;注重人文关怀,对一些重要交通标志增加图形和橙色、荧光;新增了注意残疾人、注意野生动物、路面高突、路面低洼、隧道开车灯、注意潮汐车道、注意保持车距、注意分离式道路、注意合流、避险车道、注意路面结冰、注意前方车辆排队等标志。 禁令标志:一是对车辆禁行路段,提前增添了预告或绕行标志;二是新增了禁止电动三轮车驶入、禁止电动三轮汽车、低速货车驶入、禁止停车、禁止高度、海关检查、区域禁止(速度和停车)及解除速度和停车等标志;三是增设了禁止直行、禁止向左向右转弯、禁止直行和向左转弯等组合标志。 指示标志:一是对直行和向左或向右转弯、单行路、车道行驶方向增加了组合标志,二是新增了快速公交系统(BRT)专用车道、多乘员车辆(HOV)专用车道、不同的专用车道标志,三是细化了停车位标志。 指路标志:对原只在路口一个方向设置一块告知标志,现增添为预告、告知和确认三块标志;增设了公路编号标志和命名编号标志;新增了停车场、观景台、应急避难设施、休息区、交通监控设备、隧道出口距离预告、停车领卡、特殊天气建议速度、收费站预告及收费站、ETC车道、计重收费、超限检测站以及方向标志。 告示标志:新增了驾车时禁用手持电话标志、严禁乱扔弃物标志及校车停靠站点标志。交通标线则分为指示标线、禁止标线、警告标线和其他标线,可以单独使用,也可以与交通标志配合使用,还可将标志图案设置在漆划标线的路面。 指示标线新增了潮汐车道线、左弯待区线、可变导向车道线、行人左右分道的人行横道线、车距确认线、机动车、非机动车停车位线、减速丘(橡胶减速带)指示线和路面限速标记。其中路面限速标记一般设置在高速公路上,黄色代表最高限制速度标记、白色代表最低限制速度标记。 禁止标线新增了禁止跨越对向车道分界线、非机动车禁驶区标线、多乘员车辆专用车道标线、非机动车道标线以及禁止转弯标记。警告标线新增了车行道纵向减速标线。新增的其他标线还有双向左转车道标线和右转弯导流线。

道路交通标线标记大全

17 一般规定 道路交通标线是由标划于路面上的各种线条、箭头、文字、立面标记、突起路标和轮廓标等所构成的交通安全设施。它的作用是管制和引导交通。可以与标志配合使用,也可单独使用。 高速公路、一、二级公路和城市快速路、主干路应按本标准规定设置反光交通标线。其他道路可根据需要按本标准设置标线。 道路交通标线按设置方式可分为以下三类: a) 纵向标线沿道路行车方向设置的标线; b) 横向标线与道路行车方向成角度设置的标线; c) 其他标线字符标记或其他形式标线。 道路交通标线按功能可分为以下三类: a) 指示标线指示车行道、行车方向、路面边缘、人行道等设施的标线。 b) 禁止标线告示道路交通的遵行、禁止、限制等特殊规定,车辆驾驶人及行人需严格遵守的标线。 c) 警告标线促使车辆驾驶人及行人了解道路上的特殊情况,提高警觉,准备防范应变措施的标线。 道路交通标线按型态可分为以下四类: a) 线条标划于路面、缘石或立面上的实线或虚线。 b) 字符标记标划于路面上的文字、数字及各种图形符号。 c) 突起路标安装于路面上用于标示车道分界、边缘、分合流、弯道、危险路段、路宽变化、路面障碍物位置的反光或不反光体。 d) 路边丝轮廓标安装于道路两侧,用以指示道路的方向、车行道边界轮廓的反光柱(或片)。 道路交通标线的标划区分如下: a) 白色虚线划于路段中时,用以分隔同向行驶的交通流或作为行车安全距离识别线;划于路口时,用以引导车辆行进。 b) 白色实线划于路段中时,用以分隔同向行驶的机动车和非机动车,或指示车行道的边缘;设于路口时,可用作导向车道线或停止线。 c) 黄色虚线划于路段中时,用以分隔对向行驶的交通流。划于路侧或缘石上时,用以禁止车辆长时在路边停放。 d) 黄色实线划于路段中时,用以分隔对向行驶的交通流;划于路侧或缘石上时,用以禁止车辆长时或临时在路边停放。 e) 双白虚线划于路口时,作为减速让行线;设于路段中时,作为行车方向随时间改变之可变车道线。 f) 双黄实线划于路段中时,用以分隔对向行驶的交通流。 g) 黄色虚实线划于路段中时,用以分隔对向行驶的交通流。黄色实线一侧禁止车辆超车、跨越或回转,黄色虚线一侧在保证安全的情况下准许车辆超车、跨越或回转。 h) 双白实线划于路口时,作为停车让行线。 18 指示标线 指示标线的分类 18.1.1 纵向标线 a) 双向两车道路面中心线 b) 车行道分界线 c) 车行道边缘线 18.1.2 横向标线

相关主题